導航:首頁 > 污水知識 > 污水氣浮池原理

污水氣浮池原理

發布時間:2023-08-18 12:05:31

Ⅰ 淺層氣浮機的工作原理是怎樣的

淺層氣浮的原理是在污水中引入大量微小氣泡,氣泡通過表面張力作用粘附於細小懸浮物上,形成整體比重小於1的狀況,根據浮力原理浮至水面,實現固液分離,污水得以凈化。
傳統氣浮由於設計結構上的致命缺陷,處理能力很低,污水在氣浮內滯留時間需40—60分鍾,設備體積極為龐大,且凈化率很低,現已淘汰。
超效淺層氣浮凈水器的出現是氣浮凈水技術的一個重大突破。它改 靜態進水,動態出水為動態進水,靜態出水,利用「零速度」原理,使浮選體在相對靜止的環境中垂 直浮至水面,上浮路程減至最小,且不受出水流速影響。理論池深僅需約450mm,污水在氣浮中的滯留時間僅需3-5分鍾,設備體積大幅減小。 加之氣泡分布均勻,無氣浮死區,刮泥裝置對水體擾動小等優點,凈化率大幅提高。

Ⅱ 氣浮法在污水處理中有什麼作用

氣浮法在污水處理中起到分離污染物的作用。

利用高度分散的微小氣泡作為載體粘版附於廢水中污染物權上,使其浮力大於重力和上浮阻力,從而使污染物上浮至水面,形成泡沫,然後用刮渣設備自水面刮除泡沫,實現固液或液液分離。

氣浮過程的必要條件是:在被處理的廢水中,應分布大量細微氣泡,並使被處理的污染質呈懸浮狀態,且懸浮顆粒表面應呈疏水性,易於粘附於氣泡上而上浮。

(2)污水氣浮池原理擴展閱讀

原理

懸浮物表面有親水和憎水之分。憎水性顆粒表面容易附著氣泡,因而可用氣浮法。親水性顆粒用適當的化學葯品處理後可以轉為憎水性。

水處理中的氣浮法,常用混凝劑使膠體顆粒結成為絮體,絮體具有網路結構,容易截留氣泡,從而提高氣浮效率。再者,水中如有表面活性劑(如洗滌劑)可形成泡沫,也有附著懸浮顆粒一起上升的作用。

Ⅲ 氣浮法處理廢水原理是什麼

工作原理是處理過的部分廢水循環流入溶氣罐,在加壓空氣狀態下,空氣過飽和溶解,然後在氣浮池的入口處與加入絮凝劑的原水混合,由於壓力減小,過飽和的空氣釋放出來,形成了微小氣泡,迅速附著在懸浮物上,將它提升至氣浮池的表面。

從而形成了很容易去除的污泥浮層,較重的固體物質沉澱在池底,也被去除。

氣浮池已廣泛應用於原水濁度低、藻類多、溫度低、色度高、溶解氧低的供水凈化處理上,同時亦廣泛應用於煉油、造紙、印染等多種行業的廢水處理上。

氣浮池結構

從外形上區分,主要分兩大類氣浮池:圓形氣浮池和長方形氣浮池;

圓形氣浮池稱為超效淺層氣浮,是市場上最先進的氣浮機,主要是是運用了淺池理論和零速度原理,及高效運用了國際先進的微氧化技術和高密度的離子氣泡技術,改變了水的表面張力,大規模的提升了水中的溶解氧,大量的吸附了水中的短鏈有機物分子和有色基團,取得了生化和物化都難以降解的COD的技術突破。

而長方形氣浮池是傳統的氣浮工藝,只是運用在水中注入大量氣泡,使水中顆粒狀懸浮物上浮,在運行過程中達不到靜態上浮效果,一般出水穩定性較差。

氣浮池構成

氣浮池一般由絮凝室、氣泡接觸室、分離室三部分組成。分別具有完成水中絮拉的形成與成長,微氣泡對絮粒的黏附、捕集,帶氣絮粒與水的分究等功能。除氣浮池本身外,尚需有其他附屬設施與之相組合,如壓力落氣氣浮池,需配以壓力洛氣罐以及溶氣釋放器等裝置。

Ⅳ 氣浮機的原理是什麼

氣浮機來是溶氣系統在水源中產生大量的微細氣泡,使空氣以高度分散的微小氣泡形式附著在懸浮物顆粒上,造成密度小於水的狀態,利用浮力原理使其浮在水面,從而實現固-液分離的水處理設備。

氣浮機分為超效淺層氣浮機,渦凹氣浮機,平流式氣浮機。目前在給水、工業廢水和城市污水處理方面都有應用。氣浮機優點在於它固-液分離設備具有投資少、佔地面積小、自動化程度高、操作管理方便等特點。

Ⅳ 污水處中,氣浮池是怎麼解釋的

氣浮池就是利用高度分散的微小氣袍作為載體粘附於廢水中的懸浮污染物,使其浮力大於重力和阻力,從而使污染物上浮至水面,形成泡沫,然後用刮渣設備自水面刮除泡沫,實現固液或液液分離。

說到氣浮,不得不提一下溶器罐的作用:
在加壓條件下,使空氣溶於水,形成空氣過飽和狀態。然後將溶氣水送至氣浮池,減壓,使空氣析出,以微小氣泡釋放於水中,實現氣浮,此法形成氣泡小,約20~100μm,除油效果好。

Ⅵ 氣浮裝置的運行原理是什麼

氣浮裝置工作原理:

經加葯反應後的污水進入氣浮的混合區,與釋放後的溶氣水混合接觸,使絮凝體粘附在細微氣泡上,然後進入氣浮區。絮凝體在氣浮力的作用下浮向水面形成浮渣,下層的清水經集水器流至清水池後,一部分迴流作溶氣水使用,剩餘清水通過溢流口流出。氣浮池水面上的浮渣積聚到一定厚度以後,由刮沫機刮入氣浮機污泥池後排出。


氣浮裝置的工藝流程:

1.原水進入混合反應器,在混合反應器中加入葯劑(除油劑或混凝劑),以形成可分離的絮凝物;

2.經預處理後的污水進入氣浮裝置,在進水室污水和氣水混合物中釋放的微小氣泡(氣泡直徑范圍30~50um)混合。這些微小氣泡粘附在污水中的絮體上,形成比重小於水的氣浮體。氣浮體上升至水面凝聚成浮油(或浮渣),通過刮油(渣)機刮至收油(渣)槽;

3.在進水室較重的固體顆粒在此沉澱,通過排砂閥排出,系統要求定期開啟排砂閥以保持進水室清潔;

4.污水進入氣浮裝置布水區,快速上升的粒子將浮到水面;上升較慢的粒子在波紋斜板中分離,一旦一個粒子接觸到波紋斜板,在浮力的作用下,它能夠逆著水流方向上升;

5.所有重的粒子將下沉,下沉的粒子通過底部刮渣機收集,通過定期開啟排泥閥排出。


圖下為流程圖:

Ⅶ 氣浮池工作原理

懸浮物、濁液、膠體
以下為工作原理:
超效納米淺層氣浮設備
我公司經過多年的研究和探索,綜合以往水處理設備的優點,自主研製開發的新型水處理系統--超效納米淺層氣浮系統,經嚴格的質量控制,滿足相關行業標准(HJ/T282-2006),廣泛應用於造紙行業、熱電廠的洗煤灰廢水,焦化廠的煉焦廢水、印染廢水、煉油廠的含油廢水的一級處理中,運轉效果令用戶非常滿意。
超效納米淺層氣浮系統有傳統氣浮、渦凹氣浮等氣浮設備不可比擬的優越性,現就其結構原理、設計參數、應用優點分述如下:
一:結構原理

中央旋轉部分包括進水口、出水口和污泥去除機械,這部分和螺旋泥斗以和進水流速一致的速度沿池旋轉。

原水從池中心的旋轉接頭進入,通過配水器布水,配水器的移動速度和進水流速相同,這樣就產生了「零速度」,我們定義為「零速原理」,這一原理的應用是本設備的關鍵,這樣進水不會對原水產生擾動,使得顆粒的懸浮和沉降在一種靜態下進行。
清水由集水管排出,集水管連在中央部分和它一齊旋轉,這樣原水的氣浮分離時間就是中央旋轉部分的回轉周期。
連在移動的配水器上的刮板將池底和池壁上的沉泥刮集到泥斗中,定期排放。行走部分和泥斗的轉動由調速電機驅動,中心滑環供電。
二:基本設計參數

①:表面負荷
9.6~12m3/m2h;

②:迴流比
20%~40%;

③:分離時間
3~5min;

④:溶氣壓力
6~7.5bar(表壓);

⑤:氣浮池深
650mm;

⑥:氣浮池有效水深 550mm。
三:設備在應用中的優點
①:微細氣泡與絮粒的粘附發生在整個氣浮分離過程,也就是說沒有氣浮死區;

②:應用「淺池理論」進行設計,池深只有650mm,有效水深<550mm,另外進、出水的巧妙隔離,使懸浮物的分離不受V上、V下的限制,氣浮分離時間只有3~5分鍾,使設備的佔用空間大幅度減小。以同樣處理量7000m3/d的造紙白水為例, 傳統氣浮池的佔用面積約為115(95+20)m2,超效納米淺層氣浮池的佔用面積約為51m2。

③:浮渣的清除,用螺旋泥斗,清除的浮渣在某一時刻總是池內浮起時間最長的浮渣,換句話說,也就是此處固、液分離最徹底,而且浮渣是瞬時清除,隔離排出,對水體幾乎沒有擾動,另外通過調速電機調節,螺旋泥斗的自轉周期 t及斗子個數的選擇與泥斗的公轉周期T和浮渣的厚薄有嚴格的匹配關系,非常靈活、機動。

④:「靜態」進水,「靜態」出水,對水體的擾動非常小。
⑤:在一定程度上,氣固比越大,使出水懸浮物的濃度越低, 浮渣含固率越高,因為超效納米淺層氣浮池應用了新的溶氣機理,在溶氣管體積比傳統氣浮池配備的溶氣罐小12~17倍的情況下,氣固比反而高2~3倍。
⑥:溶氣管的新溶氣機理是:利用一特製結構,先把壓縮空氣切割成微細氣泡,然後在擾動非常劇烈的情況下與加壓水混合和溶解,這時空氣在溶氣管內以兩種形式存在,一種形式是溶解在水中(此處與溶氣罐類似,不過溶氣罐的停留時間是2~4分鍾,而溶氣管的停留時間是8~12秒, 同時溶氣管內的氣、液接觸面積要遠遠大於罐內的接觸面積。)另一種形式是微細氣泡以游離狀態夾裹、混合在水中,在氣浮時這種氣泡直接用於氣浮,並且是作為氣泡的主要來源,從溶氣水中釋放的微細氣泡也加入到氣浮過程中去,這兩種途徑形成的微細氣泡的數量要遠遠大於溶氣罐加溶氣釋放器的結構形式的數量,這也是兩種溶氣結構的本質區別所在,也是溶氣管結構不必要加溶氣釋放器的原因所在。

⑦:溶氣管的特殊結構,使其沒有填料堵塞的問題,也沒有控制罐內水位高低的問題,因為在其治「標」的同時,也治了「本」。(空氣在溶解前已微細化)
⑧:原水和溶氣水在加入氣浮池本體前,已在一段管道內已充分混合,氣泡及時均勻地彌散在懸浮顆粒中。避免了因多個閥門或溶氣釋放器的開啟度不一而造成的氣泡不均勻現象。
⑨:池底設置了泥斗和排出管,中央回轉部分設置了池側和池底的刮泥機構,能保證池中的沉積物定期清除,對出水不會產生任何影響。

Ⅷ 氣浮工藝及加壓溶氣氣浮的原理


(一)基本概念
氣浮處理法就是向廢水中通人空氣,並以微小氣泡形式從水中析出成為載體,使廢水中的乳化油、微小懸浮顆粒等污染物質粘附在氣泡上,隨氣泡一起上浮到水面,形成泡沫一氣、水、顆粒(油)三相混合體,通過收集泡沫或浮渣達到分離雜質、凈化廢水的目的。浮選法主要用來處理廢水中靠自然沉降或上浮難以去除的乳化油或相對密度接近於1的微小懸浮顆粒。
(二)氣浮的基本原理
1.帶氣絮粒的上浮和氣浮表面負荷的關系
粘附氣泡的絮粒在水中上浮時,在宏觀上將受到重力G浮力F等外力的影響。帶氣絮粒上浮時的速度由牛頓第二定律可導出,上浮速度取決於水和帶氣絮粒的密度差,帶氣絮粒的直徑(或特徵直徑)以及水的溫度、流態。如果帶帶氣絮粒中氣泡所佔比例越大則帶氣絮粒的密度就越小;而其特徵直徑則相應增大,兩者的這種變化可使上浮速度大大提高。
然而實際水流中;帶氣絮粒大小不一,而引起的阻力也不斷變化,同時在氣浮中外力還發生變化,從而氣泡形成體和上浮速度也在不斷變化。具體上浮速度可按照實驗測定。根據測定的上浮速度值可以確定氣浮的表面負荷。而上浮速度的確定須根據出水的要求確定。
2.水中絮粒向氣泡粘附
如前所述,氣浮處理法對水中污染物的主要分離對象,大體有兩種類型即混凝反應的絮凝體和顆粒單體。氣浮過程中氣泡對混凝絮體和顆粒單體的結合可以有三種方式,即氣泡頂托,氣泡裹攜和氣粒吸附。顯然,它們之間的裹攜和粘附力的強弱,即氣、粒(包括絮廢體)結合的牢固程度與否,不僅與顆粒、絮凝體的形狀有關,更重要的受水、氣、粒三相界面性質的影響。水中活性劑的含量,水中的硬度,懸浮物的濃度,都和氣泡的粘浮強度有著密切的聯系。氣浮運行的好壞和此有根本的關聯。在實際應用中質須調整水質。
3.水中氣泡的形成及其特性
形成氣泡的大小和強度取決於空氣釋放時各種用途條件和水的表面張力大小。(表面張力是大小相等方向相反,分別作用在表面層相互接觸部分的一對力,它的作用方向總是與液面相切。)
(1)氣泡半徑越小,泡內所受附加壓強越大,泡內空氣分子對氣泡膜的碰撞機率也越多、越劇烈。因此要獲得穩定的微細泡,氣泡膜強度要保證。
(2)氣泡小,浮速快,對水體的擾動小,不會撞碎絮粒。並且可增大氣泡和絮粒碰撞機率。但並非氣泡越細越好,氣泡過細影響上浮速度,因而氣浮池的大小和工程造價。此外投加一定量的表面活性劑,可有效降低水的表面張力系數,加強氣泡膜牢度,r也變小。
(3)向水中投加高溶解性無機鹽,可使氣泡膜牢度削弱,而使氣泡容易破裂或並大。
4、表面活性劑和混凝劑在氣浮分離中的作用和影響
(1)表面活性物質影響
如水中缺少表面活性物質時,小氣泡總有突破泡壁與大泡並合的趨勢,從而破壞氣浮體穩定。此時就需要向水中投加起泡劑,以保證氣浮操作中氣培卜泡的穩定。所謂起泡劑,大多數是由極性一非極性分子組成的表面活性劑,表面活性劑的分子結構符號一般用0表示,圓頭端表示極性基,易溶於水,伸向水中(因為水是強極性分子);尾端表示非極性基,為疏水基,伸人氣泡。由於同號電荷的相斥作用,從而防止氣泡的兼配鎮穗並和破滅,增強了泡沫穩定性,因而多數表面活性劑也是起泡劑。
對有機污染物含量不多的廢水進行氣浮法處理時,氣泡的分散度和泡沫的穩定性可能時是必須的(例如飲用水的氣浮過濾)。但是當其濃度超過一定限度後由於表面活性物質增多,使水的表面張力減小,水中污染粒子嚴重乳化,表面電位增高,此時水中含有與污染粒子相同荷電性的表面活性物的作用則轉向反面,這時盡管起泡現象強烈,泡沫形成穩定;但氣一粒粘附不好,氣浮效果變低。因此,如何掌握好水中表面活性物質的最佳含量,便成為氣浮處理需要探討的重要課題之一。
(2)混凝劑投加產生的帶電絮粒
對含有細分散親水性顆粒雜質(例如紙漿、煤泥等)的工業廢水,採用氣浮法處理時,除應用前述的投加電解質混凝劑進行表面電中和方法旅運外,還可向水中投加(或水中存在)浮選劑,也可使顆粒的親水性表面改變為疏水性,並能夠與氣泡粘附。當浮選劑(亦屬二親分子組成的表面活性物)的極性端被吸附在親水性顆粒表面後,其非極性端則朝向水中,這樣具有親水性表面的物質即轉變為疏水性,從而能夠與氣泡粘附,並隨其上浮到水面。
浮選劑的種類很多,使用時能否起作用,首先在於它的極性端能否附著在親水性污染物質表面,而其與氣泡結合力的強弱,則又取決於其非極性端鏈的長短。
如分離洗煤廢水中煤粉時所採用的浮選劑為脫酚輕油、中油、柴油、煤油或松油等。
(三)、氣浮工藝的形式
氣浮凈水上藝已開發出多種形式。按其產生氣泡方式可分為:布氣法氣浮(包括轉子碎氣法、微孔布氣法,葉輪散氣浮選法等)電解氣浮法;生化氣浮法(包括生物產氣浮法,化學產氣氣浮);溶解空氣氣浮(包括真空氣浮法,壓力氣浮法的全溶氣式、部分溶氣式及部分迴流溶氣式)。
1.布氣氣浮
布氣氣浮是利用機械剪切力,將混合於水中的空氣碎成細小的氣泡,以進行氣浮的方法。按粉碎氣泡方法的不同,布氣氣浮又分為:水泵吸水管吸氣浮、射流氣浮、擴散板曝氣浮選以及葉輪氣浮等四種。
(1)水泵吸水管吸人空氣氣浮
這是最簡單的一種氣浮方法。由於水泵工作特性的限制,吸人的空氣量不宜過多,一般不大於吸水量的10%(按體積計),否則將破壞水泵吸水管的負壓工作。另外,氣泡在水泵內被破碎的不夠完全,粒度大,氣浮效果不好,這種方法用於處理通過除油池後的含油廢水,除油效率一般為50%~65%。
(2)射流氣浮
採用以水帶氣射流器向廢水中混入空氣進行氣浮的方法。射流器由噴嘴射出的高速水流使吸人室形成負壓,並從吸氣管吸人空氣,在水氣混合體進入喉管段後進行激烈的能量交換,空氣被粉碎成微小氣泡,然後直人擴散段,動能轉化為勢能,進一步壓縮氣泡、增大了空氣在水中的溶解度,最終進入氣浮池中進行氣水分離。射流器各部位的尺寸及有關參數,一般都是通過試驗來確定其最佳尺寸的。
(3)擴散板曝氣氣浮
這種布氣浮比較傳統,壓縮空氣通過具有微細孔隙的擴散板或擴散管,使空氣以細小氣泡的形式進入水中,但由於擴散裝置的微孔過小易於堵塞。若微孔板孔徑過大,必須投加表面活性劑,方可形成可利用的微小氣泡,從而導致該種方法使用受到限制。但近年研製、開發的彈性膜微孔曝氣器,克服了擴散裝置微孔易堵或孔徑大等缺點,用微孔彈性材料製成的微孔盤起到擴張、關閉作用。
(4)葉輪氣浮
葉輪在電機的驅動下高速旋轉,在蓋板下形成負壓吸入空氣,廢水由蓋板上的小孔進入,在葉輪的攪動下,空氣被粉碎成細小的氣泡,並與水充分混合成水氣混合體經整流板穩流後,在池體內平穩地垂直上升,進行氣浮。形成的泡沫不斷地被緩慢轉動的刮板刮出槽外。
葉輪直徑一般多為200~400mm,最大不超過600~700mm。葉輪的轉速多採用900~1500r/min,圓周線速度則為10~15m/s。氣浮池充水深度與吸氣量有關一般為1.5~2.0m但不超過3m。葉輪與導向葉片間的間距也能夠影響吸氣量的大小,實踐證明,此間距超過8mm將使進氣量大大降低。
這種氣浮設備適用於處理水量小,而污染物質濃度高的廢水。除油效果一般可達80%左右,布氣氣浮的優點是設備簡單,易於實現。但其主要的缺點是空氣被粉碎的不夠充分,形成的氣泡粒度較大,一般都不小於0.1mm。這樣,在供氣量一定的條件下,氣泡的表面積小,而且由於氣泡直徑大,運動速度快,氣泡與被去除污染物質的接觸時間短,這些因素都使布氣浮達不到高效的去除效果。
2.溶氣氣浮
根據廢水中所含懸浮物的種類、性質、處理水凈化程度和加壓方式的不同,基本流程有以下三種。
(1)全流程溶氣氣浮法
全流程溶氣氣浮法是將全部廢水用水泵加壓,在泵前或泵後注入空氣。在溶氣罐內,空氣溶解於廢水中,然後通過減壓閥將廢水送人氣浮池。廢水中形成許多小氣泡粘附廢水中的乳化油或懸浮物而逸出水面,在水面上形成浮渣。用刮板將浮渣連排入浮渣槽,經浮渣管排出池外,處理後的廢水通過溢流堰和出水管排出。
全流程溶氣氣浮法的優點:①溶氣量大,增加了油粒或懸浮顆粒與氣泡的接觸機會;②在處理水量相同的條件下,它較部分迴流溶氣氣浮法所需的氣浮池小,從而減少了基建投資。但由於全部廢水經過壓力泵,所以增加了含油廢水的乳化程度,而且所需的壓力泵和溶氣罐均較其他兩種流程大,因此投資和運轉動力消耗較大。
(2)部分溶氣氣浮法
部分溶氣氣浮法是取部分廢水加壓和溶氣,其餘廢水直接進入氣浮池並在氣浮池中與溶氣廢水混合。其特點為:①較全流程溶氣氣浮法所需的壓力泵小,故動力消耗低;②壓力泵所造成的乳化油量較全流程溶氣氣浮法低:③氣浮池的大小與全流程溶氣氣浮法相同,但較部分迴流溶氣氣浮法小。
(3)部分迴流溶氣氣浮法
部分迴流溶氣氣浮法是取一部分除油後出水迴流進行加壓和溶氣,減壓後直接進入氣浮池,與來自絮凝池的含油廢水混合和氣浮。迴流量一般為含油廢水的25%~100%。其特點為:①加壓的水量少,動力消耗省;②氣浮過程中不促進乳化;③礬花形成好,出水中絮凝也少;④氣浮池的容積較前兩種流程大。為了提高氣浮的處理效果,往往向廢水中加入混凝劑或氣浮劑,投加量因水質不同而異,一般由試驗確定。
(四)、加壓溶氣氣浮法的主要設備。
進氣方式加壓溶氣法有兩種進氣方式,即泵前進氣和泵後進氣。泵前進氣,這是由水泵壓水管引出一支管返回吸水管,在支管上安裝水力噴射器,省去了空壓機。廢水經過水力噴射器時造成負壓,將空氣吸人與廢水混合後,經吸水管、水泵送人溶氣罐。此法比較簡便,水氣混合均勻,但水泵必須採用自吸式進水,而且要保持1m以上的水頭。此外,其最大吸氣量不能大於水泵吸水量的10%,否則,水泵工作不穩定,會產生氣蝕現象。泵後進氣,一般是在壓水管上通人壓縮空氣。這種方法使水泵工作穩定,而且不必要求在正壓下工作,但需要由空氣壓縮機供給空氣。
評價溶氣系統的技術性能指標主要有兩個即溶氣效率和單位能耗。到目前為止雙膜理論解釋氣體傳質於液體還是比較接近於實際的。根據雙膜理論,對於難溶氣體決定傳質過程的主要阻力來自液膜,而氣膜中的傳質阻力與之相比,可以忽略而不計。即要強化溶氣過程,除應有足夠的傳質推動力外,關鍵在於擴大液相界面或減薄液膜厚度。但實際上在紊流劇烈的自由界面上是難以存在穩定的層流膜。因此便出現了隨機表面更新理論,這種理論增加了表面更新速率,即在考慮氣液接觸界面傳質時,引入了氣相、液相在單位時間內因渦流擴散而流入氣、液更新界面的傳質因素,從而使理論和實際更為接近。
(五)加壓溶氣氣浮工藝流程
加壓溶氣氣浮法在國內外應用最為廣泛。目前壓力氣氣浮法應用最為廣泛。與其他方法相比,它具有以下優點:
在加壓條件下,空氣的溶解度大,供氣浮用的氣泡數量多,能夠確保氣浮效果;
溶入的氣體經驟然減壓釋放,產生的氣泡不僅微細、粒度均勻、密集度大、而且上浮穩定,對液體擾動微小,因此特別適用於對疏鬆絮凝體、細小顆粒的固液分離;
工藝過程及設備比較簡單,便於管理、維護;特別是部分迴流式,處理效果顯著、穩定,並能較大地節約能耗。
水泵自調節池將原水提升到反應池。絮凝劑在吸水管上(泵前)投入,並經葉輪混合於反應池中進行絮凝,根據廢水的性質不同反應池的強度和反應時間應有所調整。反應後的絮凝水進入氣浮池的接觸區,與來自溶氣釋放器釋出的溶氣水相混合,此時水中的絮粒和微氣泡相互碰撞粘附,形成帶氣絮粒而上浮,並在分離區進行固液分離,浮至水面的泥渣由刮渣機刮至排渣槽排出。清水則由穿孔集水管匯集至集水槽後出流。部分清水經由迴流水泵加壓後進入溶氣罐,在罐內與來自空壓機的壓縮空氣相互接觸溶解,飽和溶氣水從罐底通過管道輸向釋放器。
壓力溶氣氣浮法工藝主要由三部分組成,即壓力溶氣系統、溶氣釋放系統及氣浮分離系統。
1.壓力溶氣系統。它包括水泵、空壓機、壓力溶氣罐及其它附屬設備。其中壓力溶氣罐是影響溶氣效果的關鍵設備。
採用空壓機供氣方式的溶氣系統是目前應用最廣泛的壓力溶氣系統。氣浮法所需空氣量較少,可選用功率小的空壓機,並採取間歇運行方式。此外空壓機供氣還可以保證水泵的壓力不致有大的損朱。一般水泵至溶氣罐的壓力約0.5MPa,因此可以節省能耗。
2.溶氣釋放系統。它一般是由釋放器(或穿孔管、減壓閥)及溶氣水管路所組成。溶氣釋放器的功能是將壓力溶氣水通過消能、減壓,使溶入水中的氣體以微氣泡的形式釋放出來,並能迅速而均勻地與水中雜質相粘附。
對溶氣釋放器的具體要求是:
?充分地減壓消能,保證溶人水中的氣體能充分地全部釋放出來;
?消能要符合氣體釋出的規律,保證氣泡的微細度,增加氣泡的個數,增大與雜質粘附的表面積,防止微氣泡之間的相互碰撞而使氣泡擴大;
?創造釋氣水與待處理水中絮凝體良好的粘附條件,避免水流沖擊,確保氣泡能迅速均勻地與待處理水混合,提高"捕捉"機率;
?為了迅速地消能,必須縮小水流通道,故必須要有防止水流通道堵塞的措施;
?構造力求簡單,材質要堅固、耐腐蝕,同時要便於加工、製造與拆裝,盡量減少可動部件,確保運行穩定、可靠;
?溶氣釋放器的主要工藝參數為:釋放器前管道流速:1m/s以下,釋放器的出口流速以0.4~0.5m/s為宜;沖洗時狹窄縫隙的張開度為5mm;每個釋放器的作用范圍30~100cm。
3.氣浮分離系統。它一般可分為三種類型即平流式、豎流式及綜合式。其功能是確保一定的容積與池的表面積,使微氣泡群與水中絮凝體充分混合、接觸、粘附,以保證帶氣絮凝體與清水分離。
下面以平流式氣浮池為例分析帶氣絮凝體上浮分離過程的運動狀態。
帶氣絮粒在接觸室內通過浮力、重力與水流阻力的平衡作用後,取得了向上的升速U上。進入分離區後,又受到兩個力的作用:一是水流擴散後由水平推力所產生的水平向流速U推;二是由於底部出流所產生的向下流速U下。這兩種流速的合速度大小及方向決定了帶氣絮凝體或是上浮去除,或是隨水流挾出。至於其中上升或下降的速度則視合成速度U合在縱軸上投影的大小。該速度影響了氣浮的處理效果。絮凝體的大小,氣泡的大小,氣浮池體中水流向下的速度三者直接影響合成向上速度。合成向上的速度越大,氣浮的去除效率越高,氣浮池體的就越小,整個工程造價越低。要使上浮效果好,首先在池體中盡量降低U下。它可用擴大底部出流面積或提高出水的均勻度實現,隨著底部的均勻集流、出流,水流到池未端U平約為零,這有利於上浮力較小的帶氣絮凝體的分離;如要提前實現上浮去除,應盡量降低u平,這可用擴大氣浮池橫斷面的方式來實現。接著要處理好絮凝體的大小,通過加葯混合,和絮凝反應來完成,應注意控制以下幾個點,葯劑的品種,投葯量,葯劑和污水的混合時間和混合強度,葯劑的投加點,葯劑和污水的反應時間和反應強度,產生的絮凝體的大小。另外還要控制溶氣系統中氣泡的大小。
豎流式氣浮池分離區中顆粒的運動狀態與平流式相似。但其水平向分速要小得多、而且隨徑向距離的增加,斷面迅速擴展,u平迅速變小。特別是豎流式的流速方向改不大,絮凝體主要受到向上水流推動力的慣性作用,顆粒的向上分速增大,使得帶氣絮凝體與水體的分離條件比平流式要優越得多。不過究竟採用什麼形式還需要對各方面的條件進行綜合評價後才能確定。
(六)電解氣浮氣浮工藝流程
電解氣浮法對廢水進行電解,這時在陰極產生大量的氫氣泡,氫氣泡的直徑很小,僅有20~100微米,它們起著氣浮劑的作用。廢水中的懸浮顆粒粘附在氫氣泡上,隨其上浮,從而達到了凈化廢水的目的。與此同時,在陽極上電離形成的氫氧化物起著混凝劑的作用,有助於廢水中的污泥物上浮或下沉。
電解氣浮法的優點是:能產生大量小氣泡;在利用可溶性陽極時,氣浮過程和混凝過程結合進行;裝置構造簡單,是一種新的廢水凈化方法。
這是最近幾年在水處理領域才出現的二種工藝,由於這種方法具有設備簡單;管理方便;運行條件易於控制、裝置緊湊、效果良好,因而發展很快。
(七)溶氣浮法的設計與計算
1.設計要點及注意事項
(1)要充分研究探討待處理水的水質情況,分析採用氣浮工藝的合理性和適用性;
(2)在有條件的情況下,對需處理的廢水應進行必要的氣浮小型試驗或模型試驗。並根據試驗結果選擇適當的溶氣壓力及迴流比(指溶氣水量與待處理水量的比值)。通常溶氣壓力採用0.2~0.4MPa,迴流比取5%~100%一之間,迴流比的確定需和懸浮物的濃度聯系起來。濃度高迴流比大,濃度小迴流比小。
(3)根據試驗時選定的混凝劑種類、投加量、絮凝時間、反應程度等,確定反應形式及反應時間,一般沉澱反應時間較短,以2一30分鍾為宜;
(4)確定氣浮池的池型,應根據對處理水質的要求、凈水工藝與前後處理構築物的銜接、周圍地形和構築物的協調、施工難易程度及造價等因素綜合地加以考慮。反應池宜與氣浮池合建。為避免打碎絮體,應注意構築物的銜接形式。進人氣浮池接觸室的流速宜控制在0.1m/s以內;
(5)接觸室必須對氣泡與絮凝體提供良好的接觸條件,同時寬度應考慮安裝和檢修的要求。水流上升流速一般取10~20mm/s:,水流在室內的停留時間不宜小於60秒。
(6)接觸室內的溶氣釋放器,需根據確定的迴流量,溶氣壓力及各種型號釋放器的作用范圍按下表來選定:
(7)氣浮分離室需根據帶氣絮體上浮分離的難易程度和水質的處理要求而定。選擇水流(向下)的流速,一般取1.5~3.0mm/s,即分離室的表面負荷率取5.4~10.8m3/(m2.h);
(8)氣浮池的有效水深一般取2.0~2.5m,池中水流停留時間一般為10~20min;
(9)氣浮池的長寬比無嚴格要求;一般以單格寬度不超過10m,池長不超過15m為宜;
(10)氣浮池的排渣一般採用刮渣機定期排除。集渣槽可設置在池的一端或兩端.;刮渣機的行車速度宜控制在5m/min以內;
(11)氣浮池集水應力求均勻,一般採用穿孔集水管,集水管的最大流速宜控制在0.5m/s左右;
2.設計程序
(1)進行實驗室或現場試驗
由於廢水種類繁多,即使是同類型的廢水,其水質變化也很大。通常的設計參數也只是經驗統計值。因此可靠的辦法最好採用實驗室或現場小型試驗取得的結果作為設計依據。
(2)確定設計方案在進行現場查勘及綜合分析各種資料的基礎上,確定主體設計方案。
①溶氣方式採用全溶氣式還是部分迴流式;
②氣浮池池型選用平流式還是豎流式,取圓形、方形還是矩形;
③在氣浮前或後是否需要用預處理或後續處理構築物,其形式怎樣,如何銜接?
④浮渣處理與處置途徑;
⑤工藝流程及平面布置的初步確定及合理性分析。
(3)設計計算(不包括一般處理構築物的常規計算)
(4)提供廢水性質,詳細的表格參見後面的附表。
(八)溶氣浮法的主要設備的設計
1.溶氣釋放器
(1)釋氣完全,在0.15MPa以上能釋放溶氣量的99%左右;
(2)能在較低壓力下工作,在0.2MPa以上時能取得良好的凈水效果,節約電耗:
(3)釋出的氣泡微細,氣泡平均直徑為20-40微米,氣泡密集,附著性能良好。
2.壓力溶氣罐
溶氣效率達80%以上
(九)技術經濟分析
由於凈水工藝中沉澱法沿用了多年,人們選用氣浮法自然地要與沉澱法比較。其實,兩種方法各具特點,對於輕飄易浮的雜質宜採用溶氣氣浮法,;對於密實沉重的雜質宜採用沉澱法。通常通過投葯、混合反應後形成的絮體,當上浮速度快於沉澱時,則選用氣浮法為好。因為氣浮法佔地面積小(僅為沉澱法的1/8一1/2),池容積也小(僅為沉澱法的1/8-1/4),處理後出水水質好,不僅濁度及SS低而且溶解氧高,排出的浮渣含水率遠遠低於沉澱法排出的污泥。一般污泥體積比為1/10-1/2,這給污泥的進一步處理和處置既帶來了較大方便,又節約了費用。
有些廢水同時含可沉、可浮的雜質,單獨使用氣浮或沉澱效果都不理想。此時可將沉澱與氣浮結合,發揮各自優點,不僅會提高處理效果,而且也節省投資和運行費用。
生產實踐表明,氣浮池不僅在除色、去濁上優於沉澱池,而且在降低污染水的COD、木質素以及提取氧等方面都顯出極其獨特的優點,其造價也比平流沉澱池、斜管沉澱池、水力或機械加速澄清池低,其運行費用也略低。
盡管氣浮法凈水因其獨特優點而日露鋒芒,但要充分發揮其特點,目前還應重點在以下應三個方面進行研究開發。
1.氣泡進一步微細化。
眾所周知,在相等的釋氣量條件下,所產生的微氣泡越細,則氣泡個數越多越密集,粘附的絮粒也越小,凈水效果也就越好,而且形成的浮渣也越穩定。因此。研究氣泡平均直徑更小的溶氣釋放器是當前提高氣浮凈水技術的一個途徑。它不僅能提高現有凈水對象的去除效果,而且還能開拓氣浮法凈水的應用范圍。
2.直接切割氣體製造微氣泡
壓力溶氣氣浮法凈水存在兩個問題:第一是壓力溶氣相對能耗較大;第二是溶氣水量的加入增大了氣浮池內的水力負荷,給分離帶來困難。解決這兩個問題的理想辦法是研製直接產生微氣泡的布氣裝置,通過該裝置將氣體切割成穩定、微細、密集的微氣泡群,從而極大限度地降低能耗,而且不會增加氣浮池容積。盡管直接布氣法難度很大,但它是最有吸引力的研究方向。
3.固、液分離技術。
為了提高固、液分離技術,充分發揮氣浮凈水的優勢,除上述氣泡進一步微細化與採用直接布氣法外,改善固、液分離效果也是一個重要方面。因為氣浮凈水的最終目的還是體現在提高分離效果上。如果設法將電凝聚氣浮的泡、絮同時形成並凝聚的這個概念引人壓力溶氣氣浮法中則有可能大大提高其分離效果。這個概念可稱共凝聚氣浮。為了適應共凝聚氣浮,應該研製一種新型的溶氣釋放器,它應該延時釋出高度密集的超微氣泡,在與投葯混合後的初級反應水(確切說,微絮粒尚未形成時的水)充分混和時,兩者同時成長,即超微氣泡與微絮粒同時形成並結合在一起,進而共同成長為帶氣絮粒。這樣形成的帶氣絮粒在上浮過程中,不但不會受剪力影響而使氣泡脫落,以至下沉,而且上浮快,浮渣穩定,耗用的氣量最少。因此說共凝聚氣浮是很有前途的研究方向。
4,如何妥善地解決粘附牢度問題也是當前急待解決的一個問題。
氣浮法作為一個物化法,不僅要提高氣泡質量(如細微度、密集度、穩定性等),而且還要十分重視改善絮粒的性能。如果我們能得到僧水性、吸附性強的絮粒,則將大大有助於提高氣浮凈水的效果。為此,研究供氣浮用的絮凝劑和助凝劑也是迫在眉捷的一個問題。
正象沉澱技術的發展離不開沉澱理論的研究一樣,氣浮技術的發展也需要氣浮理論的指導。更何況氣浮研究的對象是液、固、氣三相體系,比沉澱更復雜。對於氣泡的結構和特性、氣泡尺寸的正確選擇與控制、氣泡與絮粒粘附的條件,均須深入研究。有些理論上的新概念與假設,尚須進一步通過實驗逐個地得到驗證與確認。因此氣浮凈水技術遠非已臻完善,眾多的問題等待著我們去研究突破。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

閱讀全文

與污水氣浮池原理相關的資料

熱點內容
家用純凈水怎麼來 瀏覽:418
吉他音色提升強化器好用嗎 瀏覽:820
小米空氣凈化器除味效果怎麼樣 瀏覽:464
專家建議凈水機買什麼樣好 瀏覽:851
清理污水坑費用多少 瀏覽:31
自己地熱過濾網清洗方法 瀏覽:210
怎樣去水垢 瀏覽:210
桑椹酒要過濾嗎 瀏覽:38
塑料王樹脂粉價格 瀏覽:342
小米凈化器怎麼樣帶香味 瀏覽:449
酒泉車載空氣凈化器大概多少錢 瀏覽:248
貴州省污水處理屬於什麼區 瀏覽:759
普通瓶裝水飲水機熱水溫度多少 瀏覽:292
用過的濾芯還能做什麼 瀏覽:525
養龜用上過濾器那種好 瀏覽:351
神定河污水處理廠 瀏覽:412
什麼凈化器沒酸味 瀏覽:731
被農葯污染的水過濾 瀏覽:615
廢水cod會低於檢測限嗎 瀏覽:372
凈水器壓力桶有多少g 瀏覽:127