1概述
1.1 設計依據
本設計採用的主要規范及標准:
《城市污水處理廠污染物排放標准 (GB18918-2002) 》二級排放標准 《室外排水設計規范》(1997年版) (GBJ 14-87) 《給水排水工程概預算與經濟評價手冊》
1.2 設計任務書(附後)
2原水水量與水質和處理要求
2.1 原水水量與水質
Q=60000m3/胡攜d
BOD 5=190mg/L COD=360mg/L SS=200mg/L NH 3-N=45mg/L TP=5mg/L
2.2處理要求
污水排放的要求執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准:
BOD 5≤30mg/L COD≤100mg/L SS≤30mg/L NH 3-N ≤25(30)mg/L TP≤3mg/L
3污水處理工藝的選擇
本污水處理廠水質執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准,其污染物的最高允許排放濃度為:BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L;TP ≤3mg/L。
城市污水中主要污染物質為易生物降解的有機污染物,因此常採用二級生物處理的方法來進行處理。
二級生物處理的方法很多,主要分兩類:一類是活性污泥法,主要包括傳統活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延時活性污泥法(氧化溝)、AB 工藝、A/O工藝、A 2/O工藝、SBR 工藝等。另一類是生物膜法,主要包括生物濾池、生物轉盤、生物接觸氧化法等工藝。任何工藝都有其各自的特點和使用條件。
活性污泥法是當前使用比較普遍並且有比較實際的參考數據。在該工藝中微生物在處理單元內以懸浮狀態存在,因此與污水充分混合接觸,不會產生阻塞,對進水有機物濃度的適應范圍較大,一般認為BOD 5在150—400 mg/L之間時,都具有良好的處理效果。但是傳統活性污泥處理工藝在處理的多功能性、高效穩定性和經濟合理性方面已經難以滿足不斷提高的要求, 特別是進入90年代以來, 隨著水體富營養化的加劇, 我國明確制定了嚴格的氨氮和硝酸鹽氮的排放標准, 從而各種具有除磷、脫氮功能的污水處理工藝:如 A/O工藝、A 2/O工藝、SBR 工藝、氧化溝等污水處理工藝得到了深入的研究、開發和廣泛的應用, 成為當今污水處理工藝的主流。
該地的污水中BOD 5 在190 mg/L左右, 要求出水BOD 5低於30mg/L。在出水的水質中,
不僅對COD 、BOD 5、SS 去除率都有較高的要求, 同時對氮和磷的要求也進一步提高. 結合具體情況在眾多的污水處理工藝中選擇了具有良好脫氮除磷效果的兩種工藝—CASS 工 藝和Carrousuel 氧化溝工藝進行方案技術經濟比較。
4污水處理工藝方案比選
4.1 Carrousuel氧化溝工藝(方案一)
氧化溝時二十世紀50年代由荷蘭的巴斯維爾開發,後在歐洲、北美迅速推廣,80年代中期,我國部分地區也建造了氧化溝污水處理工程。近幾年來,處理廠的規模也發展到日處理水量數萬立方米的工業廢水及城市污水的大、中型污水處理工程。
氧化溝之所以能在近些年來褲孝伏得到較快的發展,在於它管理簡便、運行穩定、流程簡單、耐慎局沖擊負荷、處理效果好等優點,特別是氧化溝具有特殊的水流混合特徵,氧化
溝中的曝氣裝置只設在某幾段處,溶解氧濃度較高,理NH 3-N 效果非常好,同時由於存在厭氧、好氧條件,對污水中的磷也有一定的去除率。
氧化溝根據構造和運行方式的不同,目前較多採用的型式有「Carrousel 型氧化溝」、「Orbal 型氧化溝」、「一體化氧化溝」和「交替式氧化溝」等,其中,由於交替式氧化溝要求自動化水平較高,而Orabal 氧化溝因水深較淺,佔地面積較大,本報告推選Carrousel 氧化溝作為比選方案之一。
本設計採用的是Carrousel 氧化溝工藝. 其工藝的處理流程圖如下圖4-1所示: `
圖4-1 Carrousel氧化溝工藝流程圖
4.1.1污水處理系統的設計與計算
4.1.1.1進水閘門井的設計
進水閘門井單獨設定, 為鋼筋混凝土結構。設閘門井一座, 閘門的有效面積為1.8m 2, 其具體尺寸為1.2×1.5 m,有效尺寸為1.2 m×1.5 m×4.5 m。設一台矩形閘門。當污水廠正常運行時開啟, 當後序構築物事故檢修時, 關閉某一閘門或者全部關閉, 使污水通過超越管流出污水處理廠。
4.1.1.2 中格柵的設計與計算
其計算簡圖如圖4-2所示
(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.02m,格柵傾角α=60°,建議格柵數為2,一備一用。
Q max sin α0. 652⨯sin 60
=≈68個 n =
Nbhv 0. 02⨯0. 5⨯0. 9
(2)格柵寬度:設柵條寬度S=0.01m,
B=S(n-1)+bn=0.01×(68-1)+0.02×68=2.03≈2.00m
(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.60m,其漸寬部分的展開角
α1=20(進水渠道內的流速為0.82m/s),
l 1=
B -B 12. 0-1. 6
=≈0.56m 2tg α12tg 20
(4)柵槽與出水渠道連接處漸窄部分的長度:
l 2=
l 10. 56==0.28m 22
(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 02⎭
43
=0.103m
(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.103+0.3≈0.9m
(7)柵槽總長度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.8m
tg 60
=0. 56+0. 28+0. 5+1. 0+
(8)每日柵渣量:在格柵間隙為20mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=3. 29m 3/d>0.2 m3/d =
1. 2⨯1000K Z ⨯1000
宜採用機械清渣。
圖4-2 格柵計算示意圖
4.1.1.3細格柵的設計與計算
其計算簡圖如圖4-2所示
(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.006m,格柵傾角α=600,格柵數為2。
Q max 0. 652⨯sin 60
=≈109個 n =
Nbhv 2⨯0. 006⨯0. 5⨯0. 9
(2)格柵寬度:設柵條寬度S=0.01m,
B=S(n-1)+bn=0.01×(109-1)+0.006×109=1.73≈1.75m
(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.6m,其漸寬部分的展開角α1=20
(進水渠道內的流速為0.82m/s),
l 1=
B -B 11. 75-1. 60
=≈0.22m 2tg α12tg 20
(4)柵槽與出水渠道連接處漸窄部分的長度:
l 2=
l 10. 22
==0.11m 22
(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 006⎭
43
=0.51m
(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.3+0.51≈1.3m (7)柵槽總長度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.41m
tg 60
=0. 22+0. 11+0. 5+1. 0+
(8)每日柵渣量:在格柵間隙為6mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=1. 65m 3/d>0.2 m3/d =
2⨯1. 2⨯1000K Z ⨯1000
宜採用機械清渣。
4.1.1.4 曝氣沉砂池的設計與計算
本設計採用曝氣沉砂池是考慮到為污水的後期處理做好准備。建議設兩組沉砂池一備一用。其計算簡圖如圖4-3所示。具體的計算過程如下:
(1)池子總有效容積:設t=2min,
V=Q max t ×60=0.652×2×60=78 m3
(2)水流斷面積:
A=
Q max 0. 652
==9.31m2 0. 07v 1
沉砂池設兩格,有效水深為2.00m ,單格的寬度為2.4m 。
(3)池長:
V 78L===8.38m,取L=8.5 m A 9. 31
(4)每格沉砂池沉砂斗容量:
V 0=0.6×1.0×8.5=5.1 m
(5)每格沉砂池實際沉砂量:設含砂量為20 m3/106 m3污水,每兩天排一次,
3
20⨯0. 652
⨯86400⨯2=1.13〈5.1 m3
6
10⨯2
(6)每小時所需空氣量:設曝氣管浸水深度為2.5 m,查表得單位池長所需空氣量為28 m3/(m·h),
q=28×8.5×(1+15%)×2=547.4 m3
圖4-3 曝氣沉砂池計算示意圖
4.1.1.5 厭氧池的設計與計算
4.1.1.5.1 設計參數
設計流量為60000 m3/d,設計為兩座每座的設計流量為30000 m3/d。 水力停留時間:
T =2h 。
污泥濃度:
X =3000mg/L
污泥迴流液濃度:
V 0"=
X R =10000 mg/L
4.1.1.5.2 設計計算 (1)厭氧池的容積:
V =QT =30000×2/24=2500 m3
(2)厭氧池的尺寸:
水深取為h =5,則厭氧池的面積:
V 2500A ===500 m2。
h 5
厭氧池直徑:
D =
4A
π
=
4⨯500
=25 m。 3. 14
考慮0.3的超高,故池總高為H =h +0. 3=5.3 m。 (3)污泥迴流量的計算 迴流比計算:
R =
X
=0.42
X R -X
污泥迴流量:
Q R =RQ =0.42×30000=12600 m/d
4.1.1.6 Carrousel氧化溝的設計與計算
氧化溝,又被稱為循環式曝氣池,屬於活性污泥法的一種。見圖4-4氧化溝計算示3
4.1.1.6.1設計參數
設計流量Q=30000m3/d設計進水水質BOD 5=190mg/L; COD=360mg/L;SS=200mg/L;NH 3-N=45mg/L;污水水溫T =25℃。
設計出水水質BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L; TP ≤3mg/L。
污泥產率系數Y=0.55; 污泥濃度(MLSS )X=4000mg/L;揮發性污泥濃度(MLVSS )X V =2800mg/L; 污泥齡θc =30d; 內源代謝系數K d =0.055. 4.1.1.6.2設計計算
(1)去除BOD
氧化溝出水溶解性BOD 濃度S 。為了保證沉澱池出水BOD 濃度S e ≤30mg/L,必須控制所含溶解性BOD 濃度S 2,因為沉澱池出水中的VSS 也是構成BOD 濃度的一個組成部分。
S=Se -S 1
S 1為沉澱池出水中的VSS 所構成的BOD 濃度。
S 1=1.42(VSS/TSS)×TSS ×(1-e-0. 23⨯5) =1.42×0.7×20×(1-e-0. 23⨯5)
=13.59 (mg/L)
S=20-13.59=6.41(mg/L)
好氧區容積V 1。好氧區容積計算採用動力學計算方法。
V 1=
Y θc Q (S 0-S )
X V (1+K d θc )
=
0. 55⨯30⨯30000⨯(0. 16-0. 00641)
2. 8⨯(1+0. 055⨯30)
=10247m 3
好氧區水力停留時間:t=剩餘污泥量∆X
Y
∆X=Q (S 0-S ) +Q (X 0-X 1) -QX e
1+K d θc
V 110247⨯24==8.20h
30000Q
=2096(kg/d)
去除每1kgBOD 5所產生的干污泥量=
∆X
=0.499(kgD S /kgBOD5)。
Q (S 0-S )
(2)脫氮
需氧化的氨氮量N 1。氧化溝產生的剩餘污泥中含氮率為12.4%,則用於生物合成的總氮量為:
0. 124⨯769. 93⨯1000N 0==3.82(mg/L)
25000
需要氧化的氨氮量N 1=進水TKN-出水NH 3-N-生物合成所需要的氨N 。
N 1=45-15-3.82=26.18(mg/L)
脫氮量NR=進水TKN-出水TN-生物合成所需要的氨N=45-20-3.82=21.18(mg/L) 脫氮所需要的容積V 2
脫硝率q dn(t)= qdn(20)×1.08(T-20)=0.035×1.08(14-20)=0.022kg 脫氮所需要的容積:
V 2=
脫氮水力停留時間t 2:
QN r 30000⨯21. 18
==10315 m3 q dn X v 0. 022⨯2800
t 2 =
氧化溝總體積V 及停留時間t:
V 2
=8.25 h Q
V=V1+V2=10247+10315= 20562m3
t=V/Q=16.45 h
校核污泥負荷N =
QS 025000⨯0. 16
==0.083[kgBOD 5/(kgMLVSS ∙d )] XV 2. 8⨯17135
(3)氧化溝尺寸:取氧化溝有效水深為5m ,超高為1m ,氧化溝深6m 。
V
=20562/5=4112.4m 2 h
單溝寬10m ,中間隔牆寬0.25m 。則彎道部分的面積為:
2⨯10+0. 2523π()
3⨯10+3⨯0. 252A 1=+() π⨯10=965.63m
22
直線段部分的面積:
氧化溝面積為A=
A 2=A -A 1 =4112.4-965.63=3146.77 m2
單溝直線段長度:
L=
A 23146. 77
==78.67m ,取79m 。 4⨯104⨯b
進水管和出水管:污泥迴流比R=63.4%,進出水管的流量為:Q 1=(1+R ) Q =1.634×
30000m /d=0.568 m /s,管道流速為v =1.0m/s。
3
3
則管道過水斷面:
A=
管徑d=
Q 0. 568==0.568m 2 v 1
4A
π
=0.850m, 取管徑850mm 。
校核管道流速:
v=
(4)需氧量
Q
=0.94m A
實際需氧量:
AOR=D1-D 2-D 3+D4-D 5
去除BOD 5需氧量:
D 1=a "Q (S 0-S ) +b "VX =7754.03(kg/d) (其中a "=0.52,b "=0.12)
剩餘污泥中BOD 5需氧量:
D 2=1. 42⨯∆X 1=1131.64(kg/d)
剩餘污泥中NH 3-N 耗氧量:
D 3=4. 6⨯0. 124⨯∆X =454.57(kg/d) (0.124為污泥含氮率)
去除NH 3-N 的需氧量:
D 4=4.6×(TKN-出水NH 3-N )×Q/1000=3450(kg/d)
脫氮產氧量:
D 5=2.86×脫氮量=1514.37(kg/d)
AOR= D1-D 2-D 3+D4-D 5=8103.45(kg/d)
考慮安全系數1. 2,則AOR=8103.45×1. 2=11344.83(kg/d) 去除每1kgBOD 5需氧量=
AOR
Q (S 0-S )
11344. 83
25000⨯(0. 16-0. 00641)
=
=2.95(kgO 2/kgBOD5)
標准狀態下需氧量SOR
SOR=
AOR ∙C S (20)
α(βρC S (T ) -C ) ⨯1. 024
(T -20)
(C S (20)20℃時氧的飽和度,取9.17mg/L;T=25℃;C S(T)25℃時氧的飽和度,取 8.38mg/L;C 溶解氧濃度,取2 mg/L;α=0.85;β=0.95;ρ=0.909)
SOR=
11344. 83⨯9. 17
=20764.89(kg/d) (25-20)
0. 85⨯(0. 95⨯0. 909⨯8. 38-2) ⨯1. 024
∆SOR
=5.41(kgO 2/kgBOD5)
Q (S 0-S )
去除每1kgBOD 5需氧量=
曝氣設備的選擇:設兩台倒傘形表面曝氣機,參數如下: 葉輪直徑:4000mm ;葉輪轉速:28R/min;浸沒深度:1m ; 電機功率:210KW ;充氧量:≥2.1kgO 2/(kW·h)。
4.1.1.7二沉池的設計與計算
其計算簡圖如圖4-5所示
4.1.1.7.1設計參數
Q max =652 L/s=2347.2 m 3/h;
氧化溝中懸浮固體濃度 X =4000 mg/L;
二沉池底流生物固體濃度 X r =10000 mg/L;
污泥迴流比 R=63.4%。
4.1.1.7.2 設計計算
(1) 沉澱部分水面面積 F 根據生物處理段的特性,選取二沉池表面負荷q=0.9m3 /(m2·h), 設兩座二次沉澱池 n =2.
F =Q max 2347. 22==1304(m) nq 2⨯0. 9
(2)池子的直徑 D
D =4F
π=4⨯1304
π=40. 76(m),取D =40m 。
(3)校核固體負荷G
24⨯(1+R ) QX 24⨯(1+0. 634)⨯30000⨯4000G == F 1304
=141.18 [kg/(m2·d)] (符合要求)
(4) 沉澱部分的有效水深h 2 設沉澱時間為2.5h 。
h 2=qt =0.9×2.5=2.25 (m)
(5) 污泥區的容積V
V =2T (1+R ) QX 2⨯2⨯(1+0. 634) ⨯30000⨯4000 =24⨯(X +X r ) 24⨯(10000+4000)
=1945.2 (m3)
(6)污泥區高度h 4
污泥斗高度。設池底的徑向坡度為0.05,污泥斗底部直徑D 2=1.6m,上部直徑D 1=4.0m,傾角為60°,則:
"= h 4D 1-D 24. 0-1. 6⨯tg 60°=2.1(m) ⨯tg 60°=22
11
V 1=2)πh 1"⨯(D 12+D 1D 2+D 2
12=13.72 (m3)
圓錐體高度
""=h 4D -D 140-4⨯0. 05=0.9(m) ⨯0. 05=22
V 2=
=
豎直段污泥部分的高度 ""πh 412⨯(D 2+DD 1+D 12) ⨯(402+40⨯4+42) =418.25(m3) π⨯0. 912
"""=h 4V -V 1-V 21945. 2-13. 72-418. 25==1.16(m) 1304F
"+h 4""+h 4"""=2.1+0.9+1.16=4.16(m) 污泥區的高度h 4=h 4
沉澱池的總高度H 設超高h 1=0.3m,緩沖層高度h 3=0.5m。
則 H =h 1+h 2+h 3+h 4=0.3+2.25+0.5+4.16=7.21m
取H =7.2 m
4.1.1.8接觸池的設計與計算
採用隔板式接觸反應池。其計算簡圖如圖4-5所示。
水力停留時間:t=30min
12
平均水深:h =2.4m。
隔板間隔:b=1.5m。
池底坡度:3%
排泥管直徑:DN=200mm。
4.1.1.8.2設計計算
接觸池容積:
V =Qt =0.652×30×60=1174 m 3
水流速度:
v =Q 0. 652==0. 18 m/s hb 2. 4⨯1. 5
表面積:
Q 1174==489. 2 m2 h 2. 4
廊道總寬度:隔板數採用10個,則廊道總寬度為B=11×b=11×1.5=16.5m。 接觸池長度:
F 489. 2L ===29.6m取30m 。 B 16. 5
水頭損失,取0.4m 。 F =
13
『貳』 污水處理廠處理污水的流程是哪些
現代污水處理技術,按處理程度劃分,可分為一級、二級和三級處理。 x0dx0a一級處理,主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求。經過一級處理的污水,BOD一般可去除30%左右,達不到排放標准。一級處理屬於二級處理的預處理。 x0dx0a二級處理,主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標准。 x0dx0a三級處理,進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂率法,活性炭吸附法,離子交換法和電滲分析法等。 x0dx0a整個過程為通過粗格刪的原污水經過污水提升泵提升後,經過格刪或者篩率器,之後進入沉砂池,經過砂水分離的污水進入初次沉澱池,以上為一級處理(即物理處理),初沉池的出水進入生物處理設備,有活性污泥法和生物膜法,(其中活性污泥法的反應器有曝氣池,氧化溝等,生物膜法包括生物濾池、生物轉盤、生物接觸氧化法和生物流化床),生物處理設備的出水進入二次沉澱池,二沉池的出水經過消毒排放或者進入三級處理,一級處理結束到此為二級處理,三級處理包括生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法。 x0dx0ax0dx0a二沉池的污泥一部分迴流至初次沉澱池或者生物處理設備,一部分進入污泥濃縮池,之後進入污泥消化池,經過脫水和乾燥設備後,污泥被最後利用。 x0dx0a以上是污水處理廠處理工藝的基本流程,流程圖見下頁圖一。 x0dx0a二.各個處理構築物的能耗分析 x0dx0a1.污水提升泵房 x0dx0a進入污水處理廠的污水經過粗格刪進入污水提升泵房,之後被污水泵提升至沉砂池的前池。水泵運行要消耗大量的能量,占污水廠運行總能耗相當大的比例,這與污水流量和要提升的揚程有關。 x0dx0a2.沉砂池 x0dx0a沉砂池的功能是去除比重較大的無機顆粒。沉砂池一般設於泵站前、倒虹管前,以便減輕無機顆粒對水泵、管道的磨損;也可設於初沉池前,以減輕沉澱池負荷及改善污泥處理構築物的處理條件。常用的沉砂池有平流沉砂池、曝氣沉砂池、多爾沉砂池和鍾式沉砂池。 沉砂池中需要能量供應的主要是砂水分離器和吸砂機,以及曝氣沉砂池的曝氣系統,多爾沉砂池和鍾式沉砂池的動力系統。 x0dx0a3.初次沉澱池 x0dx0a初次沉澱池是一級污水處理廠的主題處理構築物,或作為二級污水處理廠的預處理構築物設在生物處理構築物的前面。處理的對象是SS和部分BOD5,可改善生物處理構築物的運行條件並降低其BOD5負荷。初沉池包括平流沉澱池,輻流沉澱池和豎流沉澱池。 x0dx0a初沉池的主要能耗設備是排泥裝置,比如鏈帶式刮泥機,刮泥撇渣機,吸泥泵等,但由於排泥周期的影響,初沉池的能耗是比較低的。 x0dx0ax0dx0a圖一城市污水處理典型流程 x0dx0ax0dx0a4.生物處理構築物 x0dx0a污水生物處理單元過程耗能量要佔污水廠直接能耗相當大的比例,它和污泥處理的單元過程耗能量之和占污水廠直接能耗的60%以上。活性污泥法的曝氣系統的曝氣要消耗大量的電能,其基本上是聯系運行的,且功率較大,否則達不到較好的曝氣效果,處理效果也不好。氧化溝處理工藝安裝的曝氣機也是能耗很大的設備。生物膜法處理設備和活性污泥法相比能耗較低,但目前應用較少,是以後需要大力推廣的處理工藝。 x0dx0a5.二次沉澱池 x0dx0a二次沉澱池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上,能耗比較低。 x0dx0a6.污泥處理 x0dx0a污泥處理工藝中的濃縮池,污泥脫水,乾燥都要消耗大量的電能,污泥處理單元的能量消耗是相當大的,這些設備的電耗功率都很大。 x0dx0a三.針對各個處理構築物的節能途徑 x0dx0a1.污水提升泵房 x0dx0a污水提升泵房要節省能耗,主要是考慮污水提升泵如何進行電能節約,正確科學的選泵,讓水泵工作在高效段是有效的手段,合理利用地形,減少污水的提升高度來降低水泵軸功率N也是有效的辦法,定期對水泵進行維護,減少摩擦也可以降低電耗。 x0dx0a2.沉砂池 x0dx0a採用平流沉砂,避免採用需要動力設備的沉砂池,如平流沉砂池。採用重力排砂,避免使用機械排砂,這些措施都可大大節省能耗。 x0dx0a3.初次沉澱池 x0dx0a初次沉澱池的能耗較低,主要能量消耗在排泥設備上,採用靜水壓力法無疑會明顯降低能量的消耗。 x0dx0a4.生物處理構築物 x0dx0a國外的學者通過能耗和費用效益分析比較了生物處理工藝流程,他們認為處理設施大部分的能量消耗是發生在電機這類單一的設備上,因而節能應從提高全廠功率因數、選擇高效機電設備及減少高峰用電要求等方面入手。他們提出的節能措施既包括改善電機的電氣性能,也包括解決運轉的工藝問題,還包括污水廠產物中的能量回收(Energy Recovery)。 x0dx0a曝氣系統的能耗相當大,對曝氣系統能耗能效的研究總是涉及到曝氣設備的改造和革新。新型的曝氣設備雖然層出不窮,但目前仍然可劃分為2類:第1種是採用淹沒式的多孔擴散頭或空氣噴嘴產生空氣泡將氧氣傳遞進水溶液的方法,第2種是採用機械方法攪動污水促使大氣中的氧溶於水的方法。微孔曝氣,曝氣擴散頭的布局和曝氣系統的調節這些都是節能的有效措施。在傳統活性污泥處理廠曝氣池中辟出前端厭氧區,用淹沒式攪拌器混合的節能、生物除磷方案。這一簡單的改造可以節省近20%的曝氣能耗,如果算上混合用能,節能也達到12%。自動控制系統的應用於污水處理節能,曝氣系統進行階段曝氣,溶解氧存在濃度梯度,既減少了能耗,又可以改善處理效果,減少污泥量。 x0dx0a生物膜法處理工藝採用厭氧處理可以明顯降低能量的消耗。 x0dx0a5.二次沉澱池 x0dx0a二次沉澱池中對排泥設備的研究和排泥方式的改善是降低能耗的有效方法。 x0dx0a6.污泥處理 x0dx0a污泥處理系統節能研究主要集中於污泥處理的能量回收。從污水污泥有機污染物中回收能量用於處理過程早在上世紀初就已投入實踐,但能源危機之前一直不受重視。目前有兩種回收途徑:一是污泥厭氧消化氣利用,一是污泥焚燒熱的利用。 x0dx0a消化氣性質穩定、易於貯存,它可通過內燃機或燃料電池轉化為機械能或電能,廢熱還可回收於消化污泥加熱。因此利用消化氣能解決污水廠不同程度的能量自給問題。林榮忱等人比較了沼氣發電機和燃料電池兩種利用形式,認為燃料電池能量利用率高,具有很好的發展前途。對消化氣的最大化利用是提高能效的主要方式。沼氣發電機組並網發電的研究和應用在國內已有應用實例,是大型污水處理廠的沼氣綜合利用的可行途徑。 x0dx0ax0dx0a另外一種能量回收方式是將城市固體廢物焚燒場建在污水處理廠旁,將固廢與污水污泥一起焚燒,獲得的電能用於處理廠的運轉。 x0dx0a城市污水處理的能耗分析研究與節能技術和手段的發展往往並不同步。由於污水處理能量平衡分析方法研究的欠缺,節能措施的制訂和實施常常超前。而多數節能途徑和手段常常由處理廠的操作管理人員結合各處理設施實際情況提出,具有經驗性和個別性,不一定能適用於其他污水廠甚至是工藝相似的污水廠;另一方面,從廣義上說,污水處理學科領域的技術創新、新材料和新設備的使用都蘊涵著節能增效的潛力,因而節能的途徑和手段往往是很寬泛的。 x0dx0a四.結論 x0dx0a污水處理是能源密集(energy intensity)型的綜合技術。一段時期以來,能耗大、運行費用高一定程度上阻礙了我國城市污水處理廠的建設,建成的一些處理廠也因能耗原因處於停產和半停產狀態。在今後相當長的一段時期內,能耗問題將成為城市污水處理的瓶頸。能否解決耗污水廠的能耗問題,合理進行能源分配,已經成為決定污水處理廠運行效益好壞的關鍵因素。能耗是否較低,也是未來新的污水處理廠可行性分析的決定性因素,開發能效較高的污水處理技術,合理設計及運行污水處理廠,必將是未來污水處理廠設計和運行的必由之路。 x0dx0a參考文獻: x0dx0a1.《污水處理能耗與能效》[美]W.F.OWEN,章北平、車武譯,金儒霖校,能源出版社 x0dx0a2.《排水工程》張自傑主編,第四版,中國建築工業出版社 x0dx0a3.城市水工程概論》李圭白、蔣展鵬、范瑾初、龍騰銳主編,中國建築工業出版社 x0dx0a4.《中國給水排水》雜志 x0dx0a5.《給水排水》雜志 x0dx0a6.中華環保互聯網 x0dx0a7.給排水在線網站
『叄』 污水處理 有哪些解決辦法
污水處理,總結出以下幾種方法。
1、物理法
物理法污水處理就是利用物理作用,分離污水中主要呈懸浮狀態的污染物,在處理過程中不改變水的化學性質。
⑴沉澱(重力分離)
污水流入池內由於流速降低,污水中的固體物質在中立的作用下進行沉澱,而使固體物質與水分離。
這種工藝分離效果好,簡單易行,應用廣泛,如污水處理廠的沉砂池和沉澱池。沉砂池主要去除污水中密度較大的固體顆粒物,沉澱池則主要用於去除污水中大量的呈顆粒狀的懸浮固體。
⑵篩選(截流)
利用篩濾介質截流污水中的懸浮物。屬於砂濾處理的設備有格柵、微濾機、砂濾池、真空濾機、壓濾機(後兩種主要用於污泥脫水)等。
⑶氣浮(上浮)
對一些相對密度接近於水的細微顆粒,因其自重難於在水中下沉或上浮,可採用氣浮裝置。此法將空氣打入污水中,並使其以微小氣泡的形勢由水中析出,污水中密度 近於水的微小顆粒狀污染雜質(如乳化油)黏附到氣泡上,並隨氣泡升至水面,形成泡沫浮渣而去除。根據空氣打入方式的不同,氣浮設備有加壓溶汽氣浮法、葉輪氣浮法和射流氣浮法等。為提高氣浮效果,有時需要向污水中投加混凝劑。
⑷離心與旋流分離
使含有懸浮固體或乳化油的污水,由於懸浮固體和廢水的質量不同,受到的離心力也不同,質量大的懸浮固體被拋甩到污水外側,這樣就可使懸浮固體和污水分別通過各自的排出口排出設備之外,從而使污水得以凈化。
2.化學法
污水的化學處理方法就是向污水投加化學物質,利用化學反應來分離回收污水中的污染物,或是其轉化為無害物質。屬於化學處理法的有以下幾種。
⑴混凝法
混凝法是向污水中投加一定量的葯劑,經過脫穩、架橋等反應過程,使污水中的污染物凝聚並沉降。水中呈膠體狀態的污染物質通常帶有負電荷,膠體顆粒之間互相排 斥形成穩定的混合液,若水中帶有相反電荷的電解質(混凝劑)可使污水中的膠體顆粒改變為呈電中性,並在分子引力作用下,凝聚成大顆粒下沉。
⑵中和法
用化學方法消除污水中過量的酸和鹼,使其pH值達到中性左右的過程稱為中和法。處理含酸污水以鹼作為中和劑,處理含鹼污水以酸作為中和劑,也可以吹入含 CO2的煙道氣進行中和。酸和鹼均指無機酸和無機鹼,一般依照「以廢制廢」的原則,亦可採用葯劑中和處理,可以連續進行,也可間歇進行。
⑶氧化還原法
污水中呈溶解狀態的有機物和無機物,在投加氧化劑和還原劑後,由於電子的遷移而發生氧化和還原作用形成無害的物質。常用的氧化劑有空氣中的氧、純氧、漂白 粉、臭氧、氯氣等,氧化法多用於處理含氰含酚廢水。常用的還原劑則有鐵屑、硫酸亞鐵、亞硫酸氫鈉等,還原法多用於處理含鉻、含汞廢水。
⑷電解法
在廢水中插入電極並通過電流,則在陰極板上接受電子。在水的電解過程中,陽極上產生氧氣,陰極上產生氫氣。上述綜合過程使陽極上發生氧化作用,在陰極上發生還原作用。目前電解法主要用於處理含鉻及含氰廢水。
⑸吸附法
污水吸附處理主要是利用固體物質表面對污水中污染物質的吸附,吸附可分為物理吸附和生物吸附等。 物理吸附是吸附劑和吸附質之間在分子力作用下產生的,不產生 化學變化,而化學吸附法則使吸附劑和吸附質在化學鍵力作用下起吸附作用的,因此化學吸附選擇性較強。此外,在生物作用下也可產生生物吸附。在污水處理中常 用的吸附劑有活性炭、磺化煤、硅藻土、焦炭等。
⑹化學沉澱法
向污水中投加某種化學葯劑,使它和某些溶解物質產生反應,生成難溶鹽沉澱下來。多用於處理含重金屬離子的工業廢水。
⑺離子交換法
離子交換法在污水處理中應用較廣。使用的離子交換劑分為無機離子交換法(天然沸石和合成沸石)、有機離子交換樹脂(強酸性陽離子樹脂、弱酸性陽離子樹脂、強 鹼性陰離子樹脂、弱鹼性陰離子樹脂、鰲和樹脂等)。採用離子交換法處理污水時,必須考慮樹脂的選擇性。樹脂對各種離子的交換能力是不同的,這主要取決於各 種離子對該種樹脂親和力的大小,又稱選擇性的大小,另外還要考慮到樹脂的再生方法等。
⑻膜分離法
滲析、電滲析、超濾、微濾、反滲透等通過一種特殊的半滲透膜分離水中的離子和分子的技術,統稱為膜分離法。電滲析法主要用於水的脫鹽,回收某些金屬離子等。 反滲透作用主要是膜表面化學本性所起的作用,他分離的溶質粒徑小,除鹽率高,所需的工作壓力大;超濾所用的材質和反滲透相同,但超濾是篩濾作用,分離溶質 粒徑大,透水率高,除鹽率低,工作壓力小。
3、生物法
污水的生物膜法就是採取一定的人工措施,創造有利於微生物生長、繁殖的環境,使微生物大量增殖,以提高微生物氧化、分解有機污染物被降解並轉化為無害物質,使污水得以凈化。
生物處理法可分為好氧處理法和厭氧處理法兩類。前者處理效率高,效果好,使用廣泛,是生物處理的主要方法。屬於生物處理法的工藝有以下幾種。
⑴活性污泥法
是當前應用最廣泛的一種生物處理技術。將空氣連續鼓入含有大量溶解有機污染物的污水中,經過一段時間,水中既形成繁殖有大量好氧型微生物的絮凝體—活性污 泥,
活性污泥能夠吸附水中的有機物,生活污水在活性污泥上的微生物以有機物為食料,獲得能量,並不斷省長增殖,有機物被分解、去除,使污水得以凈化。 一般經曝氣池處理的出水是含有大量活性污泥的污水—混合液,經沉澱分離,水被凈化排放,沉澱分離後的污泥作為種泥,部分迴流到曝氣池。活性污泥法自出現以來,經過80多年的演變,出現了各種
活性污泥法的變法,但其原理和工藝過程沒有根本性的改變。
(2)普通活性污泥法
這種方法已被廣泛使用,是許多污水處理廠的常用工藝。傳統活性污泥法是將污水和迴流污泥從曝氣池首段引入,呈推流式至曝氣池末端流出,此法適用於處理要求高、水質較穩定的污水,但對負荷的變動適應性較弱,後來在此基礎上產生了一些改良形式。
⑶多點進水法
為了使槽內有機負荷接近一定值,把污水從幾個點分開流入,有利於解決超負荷問題。
⑷吸附再生法
接觸槽內活化的活性污泥吸附污染物質,污泥與水分離後,在曝氣槽內把吸附的污染物質進行氧化。該法有利於增加污水處理量,有一定的抗擊沖擊負荷能力。
⑸延時曝氣法
污水在曝氣池內延長曝氣時間,有利於完全氧化,污泥量少,該法適用於小型污水處理廠。
⑹厭氧-缺氧
- 好氧活性污泥法 在常規活性污泥法去除有機污染物的同時,為了能有效的去除氮磷等營養物質,人們把厭氧、缺氧、好氧狀況組合到活性污泥法中,使厭氧-缺氧-好氧狀況在反應曝氣池內同時存在或反復周期實現,形成了厭氧-缺氧-好氧活性污泥法。也有的工藝流程採用厭氧-好氧活性污泥法。
⑺間歇式活性污泥法
污水流至單一反應池中,按時間通過程序控制各過程。在反應池的一個工作周期,運行程序依次為進水、反應、沉澱、出水和待機等過程。該法適用於中小水量和出水水質較高的場合,有利於自動化控制;通過對運行的調整,該法也可進行除磷脫氮和化學處理,有利於污水回用。
近年來,SBR工藝發展很快,尤其隨著儀表和自控技術與裝備的發展,間歇式活性污泥法新工藝不斷涌現,如CASS工藝、CAST工藝、IDEA工藝、MSBR
工藝以及UNITANK工藝等。
⑻ AB法
該法是吸附降解工藝的簡稱,屬超高負荷活性污泥法,它是兩個活性污泥法的串聯系統,兩者各有獨立的二次沉澱池。該法抗沖擊負荷能力強,有利於除磷脫氮和化學處理,特別有利於處理濃度高、水質水量變化大的污水。
⑼氧化溝
氧化溝為連續環形曝氣池,其池較長,深度較淺。氧化溝系統是一種成本低廉、構造簡單易於維護管理的處理技術,其出水水質好,可進行脫氮,有利於延時曝氣。
4、生物膜法
使污水連續流經固體填料,在填料上就能夠形成污泥垢狀的生物膜,生物膜上繁殖大量的微生物,吸附和降解水中的有機污染物,能起到與活性污泥同樣的凈化污水作 用。從填料上脫落下來死亡的生物膜隨污水流入沉澱池,經沉澱池澄清凈化。生物膜有多種處理構築物,如生物濾料、生物轉盤、生物接觸氧化和生物流化床等。
⑴生物濾池
生物濾池是以土壤自凈原理為依據發展起來的,濾池內有固定填料,污水流過時與濾料相接觸,微生物在濾料表面形成生物膜。
凈化污水裝置由提供微生物生長息棲的 濾床、布水系統以及排水系統組成。生物濾池操作簡單,費用低,適用於中小城鎮和邊遠地區。生物濾池分為普通生物濾池、高負荷生物濾池和塔式生物濾池以及曝 氣生物濾池等。
⑵生物轉盤
通過傳動裝置驅動生物轉盤以一定的速度在接觸反應池內轉動,交 替的與空氣和污水接觸,每一周期完成吸附-吸氧-氧化分解的過程,通過不斷轉動,使污水中的污染物不斷分解氧化。生物轉盤流程中除了生物轉盤外,還有初次 和二次沉澱池。生物轉盤的適應范圍廣泛,對生活污水和各種工業廢水都能適用,同時生物轉盤的動力消耗低,抗沖擊負荷能力強,管理維護簡便。
⑶生物接觸氧化
在池內設填料,使已經充氧的污水浸沒全部填料,填料上長滿生物膜,污水與生物膜接觸,水中的有機物被微生物吸附,氧化分解和轉化成新的生物膜。從填料上脫落 的生物膜隨水流到二沉池後被去除,污水得到凈化。生物接觸氧化法對沖擊負荷有較強的適應能力,污泥產量少,可保證出水水質。
⑷生物流化床
採用相對密度大於1的細小惰性顆粒,如砂、焦炭、活性炭、陶粒等作為載體,微生物在載體表面附著生長,形成生物膜,充氧污水自上而下流動使載體處於流化狀體,生物膜與污水充分接觸。生物流化床處理效率高,能適應較大沖擊負荷,佔地小。
5、自然生物處理法
利用自然條件下生長繁殖的微生物來處理污水,形成水體-微生物-植物組成的生態系統,對污染物進行一系列的物理-化學和生物凈化,可對污水中的營養物質充分 利用,有利於綠色植物生長,實現污水的資源化、無害化和穩定化。該法工藝簡單,建設與運行費用都較低,效率高,是一種符合生態原理的污水處理方式,但容易 受自然條件影響,佔地較大。主要有水生植物塘、水生動物塘、土地處理系統以及上述工藝組合系統。穩定塘是利用塘水中自然生長的微生物處理污水,而在塘中生 長的藻類的光合作用和大氣氧作用向塘中供氧。在穩定塘內污水停留時間長,其生化過程和自然水體凈化過程相似。穩定塘按其微生物反應類型 分為好氧塘、兼性塘、厭氧塘和曝氣塘等。土地處理是以土地凈化為核心,利用土壤的過濾截留、吸附、化學反應和沉澱及微生物的分解作用處理污水中的污染物,土地上生長的農作物可充分利用污水中的水分和營養物。如污水農田灌溉就是一種土地處理方式。
6、厭氧生物處理法
利用兼性厭氧菌在無氧條件下降解有機污染物,主要用於處理高濃度難降解的有機工業廢水及有機污泥。主要構築物是消化池,近年來在這個領域有很大的發展,開創 了一系列的新型高效厭氧處理構築物,如厭氧濾池、厭氧轉盤、上流式厭氧污泥床、厭氧流化床等高效反應裝置,該法能耗低且能產生能量,污泥量少。
『肆』 污水處理措施
1、改進城市污水處理方法
首先,我們應該掌握一些污染源治理技術和城市污水處理技術的最新情況,推動我國污水處理方法的發展,大力開發低耗高效污水處理的科學技術,對我國現有污水處理方法進行分析,根據實際的情況選擇合適的技術,更高的提高污水處理效率,有力的控制水污染。創新並優化污水處理工藝,從實際情況出發,通過各種技術的綜合運用,使其達到現階段城市污水處理回收再利用的標准,提高水資源的重發利用率。其次,是加大人才和資金的投入,建立專門的研究和開發機構,提高技術水平,積極開發、研製和應用城市污水回用技術和新設備,提高污水處理和回用能力;引進和開發新技術,通過積極推廣各種膜分離技術、臭氧化技術以及安全消毒技術的應用,將污水中的廢物分離,提高城市污水處理標准,完善處理系統,達到再生水的指標,提高水的重發利用率。最後就是排水合理分區和合理布局,分析當地的實際情況,考慮其規模和對污水利用的方便程度,對城市污水的排水范圍進行規劃,污水處理廠要適度集中,合理劃分,進行統籌規劃,合理布局,對選址和方案進行合理規劃,促進城市污水處理工作的合理進行,盡量做到最低投入成本獲得最大化的經濟效益、環境效益和社會效益。保證污水處理設施的正常運轉,強化一級污水處理法,根據自身條件適時選擇二級處理法,降低城市污水處理設備的負荷和處理成本,將水處理由原來單一模式轉變成綜合利用處理模式,轉變我國水資源缺乏的局面。
2、完善污水處理管理機制
改革污水處理單位的考核制度,對處理後的水質、水量同時監管,將處理後的水體指標納入考核范圍,有效改善污水處理工作的質量水平,提高處理後水質的標准。政府加強對污水處理的管理,明確分工,將責任落實到每個人,採用問責制度,並對出現問題的責任人進行懲治,保障污水處理系統的建設。政府將傳統的城市排水體制分為分流制和合流制兩種,明確各個部門責任,各個部門互相監督。分流制適合於新建區、擴建區、新建開發區,並不受歷史因素影響;合流制適合具有歷史因素的大中型城市。政府根據具體情況,採用不同的管理制度,對城市污水處理進行多元化管理,引進投資模式,保證城市污水處理的持續發展。借鑒城市污水處理較好國家和地區的經驗和做法,改進自身的技術,政府應該建立一系列的監管體系,全方位的展開工作,並且要通過政府、企業和公民「三位一體」,強化監督機制,提高員工的監管水平和監管素質,依法對污水處理全過程進行監督,提高污水治理的徹底性,促使污水處理設施充分發揮改善環境質量的效能。
3、提高民眾認識,樹立環保觀念
積極利用各種媒介,提高全民的水資源危機意識以及綜合利用意識,倡導建立節水型社會,其次就是樹立污染者收費意識,同時應該做到「誰污染,誰治理」,同時可以用來加大對城市污水處理的資源投入,改進設備,加大技術投入。
4、污水處理的資源化 和產業化
城市污水處理之後也是一種水資源,成為城市的第二種水源,回用之後,可以很大的節約水資源的供應量,同時還能減少生活污水直接排放的污染,既解決了供水緊張又改善了環境,還可以就近處理利用,節省管道投資和運輸消耗,實現水源的可持續發展。分類供水,從而實現對水資源的回收利用,並且鼓勵中水回用,對廢水回用之後的污泥進行研究,將它變廢為寶,真正的提高污泥的資源程度。對於那些排放污水的企業要繳納相應的費用,為城市污水處理設施提供資金,加強污水處理的能力,採用市場化的方式來發展污水處理行業。
『伍』 探析污水處理廠建設項目實施方法
探析污水處理廠建設項目實施方法是非常重要的,方法的制定是為了更好的解決實際問題,每個細節的處理都非常關鍵。中達咨詢就探析污水處理廠建設項目實施方法和大家說明一下。
新時期可持續發展觀成為了社會的指導思想,解決環境污染問題是實現經濟持續運作的基本保障。目前我國水資源污染的加重已直接影響到社會經濟的可持續發展,關繫到子孫後代的可持續生存。 近年國家意識到保護環境是實施我國可持續發展的關鍵,並將防治水污染作為全國性重點。所以,建設城市污水處理廠已是刻不容緩的事。
一、污水處理廠建設質量的指標
污水處理廠是解決水污染的關鍵設施,處理廠內配備了專用的處理設備及配套設施,使污水資源在短時間內得到凈化處理,滿足了城市污水、廢水凈化後循環利用的要求。新時期科學發展觀對城市環保工程提出了先進的指導,環境改造項目作業流程有了更多的指導方向。污水處理廠作為污水處理的主要設施,其在建設期間也要注重工程質量的控制。筆者認為,污水處理廠建設指標應包括:
1、功能指標。衡量污水處理廠建設質量的高低,主要體現於廠內設施運行後的功能價值,功能指標是建設期間應當重點控制的標准。當前,一般分為城市集中污水處理廠和各污染源分散污水處理廠,處理後排入水體或城市管道,需考察這一過程污水處理廠除污功能的好壞。如:有時為了回收循環利用廢水資源,需要提高處理後出水水質時,需考察污水回用或循環利用的功能特性。
2、工藝指標。施工工藝方案是指導污水處理廠建設的總指導,通過檢查污水處理廠工藝標准也可反映項目的建造質量。行業標准規定處理廠的處理工藝流程是有各種常用的或特殊的水處理方法優化組合而成的,包括各種物理法、化學法和生物法[2]。為了更好地發揮出污水處理工藝標准,工藝指標要求處理廠符合技術先進、經濟合理、費用最省等指標,以判斷廠內設施的應用價值。
3、處理指標。城市污水輸送至污水處理廠後,應按照不同級別要求對污水實施凈化處理,實際建設環節要考慮廠內處理指標的控制,從局部上把握處理廠的作業質量。污水處理廠建設指標要求設計時必須貫徹當前國家的各項建設方針和政策,結合城市地區污水現狀的特點執行標准規定,保障水資污水資源的有效處理。因此,從處理深度上,污水處理廠可能是一級、二級、三級或深度處理。
4、建築指標。污水處理廠建造對象包括各種不同處理的構築物、附屬建築物、管道的平面和高程等,並進行道路、綠化、管道綜合、廠區給排水、污泥處置及處理系統管理自動化等改造,以保證污水處理廠達到處理效果穩定[3]。建築指標要求污水處理廠固有設施能滿足實際除污操作的要求,該標準的具體內容:設計方案切實可行,運行管理方便,技術先進,投資運行費用省等。
二。 污水處理廠建設項目實施方法
只有在項目啟動前期做好充分准備工作,才能把控污水廠的規模、投資成本,選定優秀的設計工藝、合適的機電設備,保證項目工程施工質量。
1.立項前要做充分調研。城市污水處理廠是城市排水系統的重要組成部分,恰當地選擇污水處理廠的位置,進行合理的規劃,關繫到城市排水系統的總投資,關繫到城市環境保護、水源保護、再生水的利用以及整個排水系統的經營維護和管理費用。一般情況下需要對城市排水管網現狀、廠址選擇、結合投資能力、投資效益、近期實現的可能性和城市總體規劃的要求通盤考慮。
2.重視環境評價報告。由於缺乏必要的監管機制,現在的環評企業良莠不齊。為了節省監測成本,往往一個地區一份多年前的監測數據被該地區數十個項目環評報告引用,甚至為了迎合立項需求而憑空捏造數據等情況比比皆是。如廣東某工業園區的污水處理廠的環評報告中,為了迎合其生態工業園的定位,把工業污水設定為一般生活污水標准,其後果是設計出來的工程項目不符合實際,污水處理廠實際滿足不了現實的負荷,嚴重影響運營。為了真實反映當地環境質量現狀,為了項目設計提供真實依據,也為了項目建成後的運營正常,保證環境評價報告的真實性及合理性非常必要。
3設備訂貨與初步設計。城市污水處理廠其設備投資約占投資的25%~45%,由專用設備、通用設備、自控設備投資及安裝工程費組成。污水處理設備的質量是污水處理廠能否正常運行的關鍵。據有關報告指出:「近20年來,國家僅對石油、化工、冶金、造紙、機械、染料等幾個待業廢水處理設施的投資就超過了20億元人民幣,建立處理裝置5000多套。根據調查結果表明處理設施的正常運行率不到30%。」造成這種現象的原因是多方面的,但設備本身的質量問題是重要原因之一。另外,市政工程往往一旦立項,急於建成,設備尚未落實,土建就先開工,以應付上級要求,這樣情況為數不少。實際程序是,主要設備應在初步設計批准後進行訂貨,以要求施工圖設計按所訂設備進行設計,避免施工圖設計完成後所訂購的主要設備與設計不符,造成土建設計(尤其是預留、預埋設計)、設備安裝設計乃至電氣與自控設計的大量返工。此類變更設計極易影響設計質量,在資金到位的情況下應該可以避免。
4.管網與廠區建設
污水處理工程所需要的資金可分為2個方面:一是污水處理廠的費用,這部分資金比較容易獲得外國政府的貸款、民間資本和採用bot等形式。二是污水收集系統,即污水管道與污水泵站的建設費用,這部分基本都在地下進行,工程面積達到城市的各個角落,而且有可能會破壞道路,干擾交通的正常進行,影響周圍居民的生活、企業的營運,而且地下管線較多還會起沖突,還會影響城市行道樹綠化。大部分管線需要埋深,定會影響附近建築物和大型建築物的基礎,沿河道的管線極有可能影響防洪設施的安全,給附近居民造成難以估量的損失。管線不僅量大而廣,工期持續很長,耗資巨大,工程完成後不僅看不見,摸不著,沒有合理的形象,政績也難以顯現,而且不被重視。因此,污水管道工程往往比污水處理廠的工程要慢、要難。導致污水處理廠不能最大的發揮其應有的效益。所以,污水管網應與廠區建設同步進行,特別是各個城市的新區開發中。在實際工程的安排中,應當先地下後地上,與道路工程同步進行,盡量避免影響交通、環境的現象,減少不必要的額外投資。因此,在工程建設技術政策中提出「優先安排城市污水收集系統的建設」,這樣才能最大程度保護環境,解決居民用水問題,創建美麗城市。
5.污水處理廠的運行
建設污水處理廠的主要目的是保護水資源,保護水環境,解決部分居民的用水問題。因此,污水處理廠的安全運行是至關重要的。因此,城市污水處理廠的建設,不能只考慮建設資金的來源,同時要關注運行費用的來源。比如,建設一座處理量為10×104m3/d的城市污水處理廠,其投資大約為1.0億元,而且每年的運行經費大約需要1500萬元,所以要確保污水處理廠的財務承受能力,即便污水處理廠不是以盈利為目標,但也必須保證有一定的利潤,只有有利可圖,污水處理工程才能進入市場化運作,才能使污水工程朝氣蓬勃,蒸蒸日上。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
『陸』 【污水治理新工藝解讀】污水治理方案
現階段,我國小城鎮污水處理設施建設在工藝技術路線選擇上,大多仍採用與大、中城市污水處理類似的傳統工藝技術,如活性污泥法、生物膜法等處理工藝,而針對小城鎮社會經濟發展狀況與管理水平、污水水量水質特點、地形地勢條件等具體特點的經濟適用型處理工藝的技術開發和應用仍較為滯後,這一方面導致工程投資大、運行費用高,加劇了小城鎮原本就緊張的財政資金狀況;另一方面,增加了污水處理設施的運行與維護管理難度,不利於設施的正常運行和處理效益的充分發揮。
與大、中城市相比較,小城鎮污水主要為生活污水(佔50%以上),污水中懸浮物濃度較高,特別是一些小城鎮排水系統不完善,大多採用明渠排水,雨水和地下水入滲現象嚴重,降低了污水中的有機物濃度。由於小城鎮人口規模小,污水水量、水質都呈現出較為突出的時間不均勻性和水質不穩定性。
針對我國小城鎮污水產生特點及小城鎮自身經濟發展特性,污水處理工藝技術的選擇既不能完全照搬目前在大、中城市中廣泛採用的城市污水處理工藝技術,也耐衡信不能完全採用村莊居民點的污水處理方式,而必須按照經濟、高效、簡便、易行的原則進行選擇。具體地說,即適宜小城鎮採用的污水處理工藝應基建投資省、運行費用低、節能降耗明顯;處理工藝具有較強的耐沖擊負荷能力,去除效率高;處理工藝簡便易行、運行穩定、維護管理方便,利用當地小城鎮現有的技術與管理力量就能滿足設施正常運行的需要;處理工藝具有一定的靈活性,能較好地適應現階段達標處理排放要求與將來考慮進行再生利用需要的變化。
膜生物技術在豬糞廢水處理中應用
項目簡介:集約化畜禽糞便廢水的污染量已經超過工業廢水及生活污水,逐漸成為上海市地面水主要污染源。奉賢蘆涇飼養場豬糞廢水具有典型的高濃度、高SS、高NH3-N等特點,採用膜生物技術作為主要處理工藝,不僅避免了常規厭氧處理方法操作管理不便、系統酸化以及存在沼氣爆炸安全隱患等弊病,而且從調試結果看,以膜生物反應器為主的整套廢水處理設施處理能力大、凈化功能好、脫氮效果穩定,且不會出現污泥膨脹等影響正常運行的現象。膜生物技術作為處理該類廢攔敬水的一種有效方法值得進一步推廣。
該項目具有以下特點:(1)處理出水水質穩定; (2)處理設備佔地面積小;(3)處理效率高,抗有機負荷沖擊能力強; (4)動力消耗低; (5)由於活性污泥不會流失,因此不會出現污泥膨脹影響正常運行的現象; (6)操作管理簡單。
項目負責:上海荏源公司。
水解酸化-曝氣生物濾池
處理小城鎮污水
項目簡介:中小城鎮污水主要為生活污水和以有機廢水為主的工業廢水的混合污水,其水量較小,一般不超過5萬m3/d,但是水質和水量波動較大。由於資金和技術、管理水平等多方面的原因,決定了在城鎮污水處理廠必須經濟昌輪、高效、節能和操作簡便。目前國內很多中小城鎮仍採用明渠排水,尤其是南方地區,大量雨水流入和地下水滲入,加之城鎮生活水平不高等原因決定了污水中有機物濃度較低。因此,必須結合當地污水的水量、水質以及溫度、氣候、氣象、地理、經濟等實際情況選擇適宜的處理工藝。
水解酸化―曝氣生物濾池工藝在工程投資、佔地和能耗上具有極大的優勢,其可根據進出水水質要求的不同,分別採用的二段或三段處理工藝組合,且可根據水量的大小進行模塊化設計,是適合我國國情的中小城鎮污水處理新技術,具有很大的推廣價值。
城市污水水解-厭氧-微氧
聯合處理工藝
技術簡介:在原位復合尼龍-6/炭納米管(PA6/CNT)過程中,炭納米管將以其外壁上連接的羧基官能團(-COOH)參與尼龍-6(PA6)的加成聚合反應,並阻礙PA6分子的長大。這在很大程度上削弱了基體強度。採用改進原位復合法復合PA6/CNT,可大大提高PA6分子的平均分子量,減輕炭納米管對基體PA6強度的削弱,大幅度提高PA6/CNT復合材料的強度。研究結果表明:在總HRT不超過8.5h(水解2.5h、厭氧4.0h、微氧2.0h),平均溫度為19℃,進水濃度為30050mg/L時,總COD和SS的去除率分別可達75%和80%以上。總出水COD、BOD、SS完全達到國家二級排放標准。微氧單元對厭氧出水中殘余有機物去除效果良好,HRT不超過2h,DO控制在0.2"0.5mg/L左右,進水為150mg/L時,去除率可達53%以上。微氧污泥沉降性能良好,SVI=38.8ml/g。水解-厭氧-微氧工藝在突出低能耗的前提下,達到了較高的有機物去除率,與現有的城市污水處理工藝相比有一定的優越性。
該工藝與「水解-好氧」、「厭氧-好氧」工藝相比,在總停留時間相當的情況下,微氧工藝的氣水比為1:4左右,DO為0.2~0.5mg/L,減少好氧階段的曝氣量。在實驗室條件下,整個系統每日僅從微氧池排出少量的污泥,污泥產率VSS/COD約為0.018,更進一步降低了能耗與污泥的處理費用。
技術負責:中國輕工局。
滴流床反應器處理有機廢水研究
項目簡介:滴流床用在濕式氧化工藝上處理廢水的研究國內處在剛起步階段。廢水處理的對象主要是單一的模型廢水如酚、取代酚、環已醇、琥珀酸和乙醒等。提出和廣泛使用的反應器數學模型主要是一維恬塞流模型和一維軸向混合模型。滴流床反應器催化濕式氧化處理實際廢水、滴流床反應器的流體力學、傳質、傳熱對反應效果的影響、實際廢水滴流床催化濕式氧化的反應器模型和清流床催化濕式氧化工業化放大等方面的研究還有待於深入進行。
大量研究已經證明濕式氧化(WO)是處理高濃度難降解有機廢水的最佳方法之一,但WO過程中需要的高溫高壓以及對設備材質的高要求限制了它的推廣應用。為了降低反應溫度與壓力,非均相催化劑的催化濕式氧化(Catalyticwetoxidation,簡記CWO)技術研究與開發成為研究的熱點。適合非均相催化濕式氧化的氣液固三相反應器主要有滴流床(TBRs)、三相流化床和漿料反應器。
項目負責:同濟大學污染控制與資源化國家重點實驗室。
小城鎮生活污水處理新技術
項目簡介:小城鎮生活污水低成本處理及回用是困擾新農村建設的難題之一,此前一直沒有適合小城鎮處理污水的合適技術。新出現的一體化地下厭氧耗氧處理裝置,在工藝和設備方面有多項創新,佔地面積小,整個設施為一體化地下構築物,既克服了冬季運行中氣溫偏低造成的影響,又可在覆土後綠化或建設相應的管理用房。
該項目有耗能小、低投入、低運行費用、不產生二次污染、不使用任何化學葯物、簡易可行的自動操作等突出優點,平均消耗1度電可以處理約30噸的生活污水,直接運行費用僅0.05元/噸,適宜在廣大小城鎮和農村地區推廣。
項目負責:天津科技大學化工學院龐金釗教授。
硅藻精土處理污水技術
項目簡介:硅藻精土水處理劑工藝可適用於城市污水及垃圾滲濾液和各類工業廢水處理。該技術在雲南、貴州、廣西、內蒙古建成污水處理工程,在各省環境監測中心站等部門的監測下,成功地把城市污水、多種工業廢水處理達到國家排放標准或實現循環使用。去除率分別是BOD59292.8、CODcr95以上、SS99.9、TN78、TP90.7。
該技術既具有傳統工藝的綜合優點,同時彌補了各處理技術的不足的污水處理新工藝、新技術。
項目負責:浙江省水利局。
意義:該工藝提供了既經濟又適用的最佳技術,組成專家組及中國硅藻土協會評定為國內首創。
氯化鈉改性沸石吸附水中苯酚
項目簡介:對於微污染含酚水處理,活性炭吸附有一定效果,但活性炭價格較高,再生費用昂貴,且每次再生損耗高達5%~15%。沸石是一種天然廉價的多孔礦物質,表面粗糙、比表面積大,吸附性能較強,用於處理氟、重金屬離子已有成功案例。該方法根據改性後沸石吸附苯酚的效果確定了合適的改性方法;研究了pH值、苯酚濃度、處理時間、沸石用量等對鈉型沸石吸附苯酚效果的影響;最佳條件下沸石處理低濃度含酚水的靜、動態試驗結果表明,改性沸石對低濃度的含酚水有良好的吸附效果。
項目負責:蘭州鐵道學院副教授王萍。
意義:沸石經氯化鈉改性後,在酸性條件下對苯酚有較好的去除效果,可用於微污染含酚水處理,吸附苯酚後的沸石可用鹼液再生,該方法操作簡單,原料豐富,有較好的實際應用價值。
垃圾衛生填埋滲濾水控制與處理
技術簡介:土地處理是利用土壤――微生物――植物系統的陸地生態系統的自我調控機制和對污染物的綜合凈化功能來處理污水,使水質得到不同程度的改善,實現廢水資源化和無害化。因此,基於垃圾滲濾水土地處理的垃圾循環准好氧情填埋方式得到了越來越廣泛地關注。垃圾循環准好氧性填埋方式是將收集到的滲濾水循環回到填埋場中利用填埋場自身形成的穩定系統使滲濾水中的有機物經過垃圾層和覆土層來降解,從而加速滲濾水的凈化。在准好氧性填埋場中,有機成分(主要是BOD)能夠很快降解,但是氮化物的降解速度卻較慢。當通過將滲濾水循環到填埋場中,可以促進硝化和反硝化過程的進行,這樣有機成分和氮化物得到更加有效地去除,從而減輕了滲濾水的污染負荷,並且有利於減少滲濾水的最終水量和促進垃圾在填埋場中的穩定化。
調查結果表明,所有的垃圾簡單填埋處理後,在填埋場周圍的地下水均受到污染,許多有毒害物質在一般地下水中不存在,卻在填埋場周圍的地下水中出現。因此,現代意義的垃圾衛生填埋處理已發展成底部密封型結構,或底部和四周都密封的結構,從而防止了滲濾水的流出和地下水的滲入,並且對垃圾滲濾水進行收集和處理,有效地保證了環境的安全。
項目負責:國家給水排水工程技術研究中心范潔。
CASS法處理含鹽廢水研究
項目簡介:採用CASS生化處理系統處理含鹽的海產品加工廢水,處理效果比較理想。試驗出水的COD可以達到《污水綜合排放標准》(CB8987-1996)中的二級標准。因此可將本試驗過程放大,應用於臨海港建設的海產品加工廠的污水處理工程中。進水中Cl-的質量濃度在6300mg/L以下時,CASS系統可穩定運行,在Cl-的質量濃度超過8100mg/L時出水水質變壞,無法穩定運行。進水中Cl-的質量濃度在4500mg/L以下時,CASS生化處理系統的抗海水濃度波動能力比較強,遇見Cl-的質量濃度梯度為3600mg/L的沖擊可以在短的時間(1個運行周期)內恢復正常;當廢水中Cl-的質量濃度超過4500mg/L後,CASS生化處理系統的抗海水濃度波動能力減弱,遇到相同濃度的沖擊時,所需要的恢復時間則較長。對比海水比例上升和下降兩個過程的數據,可以發現相同的濃度梯度沖擊下,對CASS生化處理系統而言,海水比例降低產生的沖擊影響比海水比例升高產生的影響要大。
項目負責:大連機工機械環保研究所李琳琳。
意義:採用魚品加工廠生產廢水摻一定比例的海水作為試驗用水,通過含鹽量的不斷增加研究系統的耐鹽性,通過含鹽量的降低和升高研究系統可以在1個運行周期內恢復正常運行。
水解酸化-接觸氧化法
處理啤酒廢水
項目簡介:啤酒廢水屬中濃度的有機廢水,實踐證明,採用厭氧-好氧生物技術處理啤酒廢水是可行的。啤酒廢水懸浮物濃度較高,如果預處理措施不得當,則容易造成水解酸化池中布水系統發生堵塞或積泥。鑒於廢水中的細小麥糟、麥皮等不溶性有機物佔有相當比重,建議在廢水進入水解酸化池前最好經過網目規格為60-80目的微濾機進行預處理,尤其是設布水器的工程務必如此。水解酸化池設計成池底設多孔布水管的上流式污泥床厭氧反應器,和UASB不同之處在於以彈性填料代替其三相分離器。若後續採用活性污泥法,則建議將好氧處理產生的剩餘污泥排入水解池進行消化處理,這樣不僅可以得到脫水性能良好的污泥,而且總污泥產量比傳統工藝低20%-40%,沒有條件採用強化預處理措施和設置布水器的,建議池底增設泥斗以便及時排除沉澱污泥。
項目負責:山東省輕工業設計院高級工程師周煥祥。
意義:好氧處理若採用階段曝氣措施亦即多點進水方式,就這樣可消除池前端供氧量不足而池後端供氧量過剩的弊病,提高了生物處理效率,同時也降低了處理消耗。
粉煤灰處理含氟廢水
項目簡介:工業生產過程中使用含氟原料的工藝很多,如玻璃製造工業、電子部件製造工業、熔融鹽電解工業、原子有工業、鑄造工業及特種鋼材處理等一些工廠經常會排放出含氟化物的廢水。大量含氟廢水排入水體,將會污染河流,特別是污染了飲用水水源。我國常用的含氟廢水處理多採用加葯和吸附兩種方法,如加入石灰、鎂鹽、鋁鹽處理,或用羥基磷灰石、骨炭、活性氧化鋁等吸附。但這兩種方面多數工藝復雜、勞動條件差、費用較高。而作為工業廢物排出的粉煤灰,侵佔土地,淤塞河道,造成揚塵、嚴重污染環境。其處理通常是採用水力沖灰輸送至貯灰場貯存。採用粉煤達處理含氟廢水,具有以廢治廢和資源綜合利用的好處。
粉煤灰具有一定除氟效果,對於高含氟廢水具有較好的處理效果。影響粉煤灰吸附容量的主要因素依次為:原水氟濃度→粉煤灰投量→攪拌時間。除氟後的粉煤灰可燒製成磚。攪拌時間在生產中可選定30-40min,混合方法宜採用分步混合方法,以降低出水氟濃度,提高粉煤灰吸附容量。
項目負責:航天部第三研究院曹仁堂。
二段法改良工藝處理高濃度
難降解城市污水
項目簡介:工業廢水經過企業內部處理後與生活污水混合,進入城市污水處理廠進行生物處理是可行的,工業廢水內部的難生物降解物質隨同生活污水中易生物降解物質,通過所謂的"協同降解"作用一起降解掉了。高濃度、難降解的城市污水處理的最大問題是硝化菌的難以存活,第二大問題則是有機物的去除,第三個問題是化學除磷的實施。因此,相關的處理工藝應圍繞著這三點進行技術上的突破。
奧貝爾氧化溝、二段法、AB法和延時曝氣法都具有一定的耐沖擊負荷的能力,但經過改進的二段法工藝一方面具有耐沖擊負荷,更適宜於處理城市污水中化工廢水比例高、廢水成分復雜、處理難度大的特點,另一方面在難以生物除磷的條件下,更易於布置成多點投葯,實現化學除磷。
項目負責:中國市政工程華北設計研究院陳立。
意義:在總結高濃度難降解的城市污水處理工程技術的基礎上,通過試驗提出了二段法改良工藝,並在高濃度難降解城市污水處理中硝化菌的難以存活、有機物的去除及化學除磷等技術上有所突破。二段法改良工藝一方面具有耐沖擊負荷,更適宜於處理城市污水中化工廢水比例高、廢水成分復雜、處理難度大的特點,另一方面在難以實施生物除磷的條件下,更易於布置成多點投葯,實現化學除磷。
銅冶煉含砷污水處理
技術簡介:銅冶煉企業含砷污水處理採用硫化法和石灰乳兩段中和加鐵鹽除砷工藝,能夠達到預期目標,但污酸處理存在著處理成本高的問題,有待於新的處理工藝運用,目前國內已有院校試驗電積法處理含砷污酸,其成本低於硫化法,將給企業帶來明顯的經濟效益。目前銅冶煉企業含砷工業污水雖然經處理後做到了達標排放,但在處理水返回使用,降低處理成本方面仍有許多工作可做,這些工作與企業體制,管理水平有著明確的聯系。做好這些工作可明顯提高企業的經濟效益和環境效益。
項目負責:銅陵有色設計研究院龍大祥。
意義:採用此辦法,將對銅冶煉企業含砷工業污水的形成以及如何處理達標排放提出一條新的捷徑,並確保不造成二次污染。
雙功能陶瓷膜生物反應器處理廢水
項目簡介:利用膜生物反應器(MembraneBioreactor,MBR)處理廢水正在受到人們的關注。而無機膜生物反應器(InorganicMembraneBioreactor,IMBR)則是在MBR基礎上興起的。IMBR的核心是採用無機膜,與有機膜比較,無機膜具有化學穩定性好、熱穩定性高、機械性能優異、通量大、壽命長、容易清洗等優點,但也存在著製造成本高,運行費用大等問題,特別是容易堵塞的問題。本研究針對上述陶瓷膜容易堵塞的問題。提出了一種新的膜生物反應器的設計方案。即將陶瓷膜設計成U型管狀,並置於反應器內,成為內置式膜反應器。該陶瓷膜既可以曝氣,又可以進行抽濾,形成一種具有雙重功能的陶瓷膜,在處理廢水的同時不斷地進行曝氣/抽濾的切換。而曝氣的同時又是對陶瓷膜的反吹,以解決陶瓷膜容易堵塞的問題,從而提高反應器處理廢水時的效率。
陶瓷膜的過濾作用主要是通過在陶瓷膜表面形成過濾層實現的。用雙功能陶瓷膜生物反應器處理廢水時,由於可以進行抽濾/曝氣的切換,從而有效地解決了一般膜反應器中普遍存在的膜容易堵塞的問題,提高了膜反應器處理廢水的效率。此外,在該反應器中增加陶瓷載體,既可以增加生物相濃度,又可避免懸浮的微生物堵塞陶瓷膜。廢水經過陶瓷膜的過濾,其出水濁度較低,與傳統的廢水處理方法相比,由於出水的濁度較低,可以縮短廢水的沉清過程,從而提高廢水處理的效率。因此雙功能陶瓷膜生物反應器具有很大的應用價值。
項目負責:南昌航空工業學院環境與化學工程系張永明。