導航:首頁 > 污水知識 > epa廢水排放標准

epa廢水排放標准

發布時間:2023-08-13 05:02:54

1. 啤酒廠排放的氣體主要成分

啤酒廠廢水:

1.1污水來源
根據啤酒生產工藝,廢水主要來源有:麥芽生產過程的洗麥水、浸麥水、發芽降溫噴霧水、麥槽水、洗滌水、凝固物洗滌水;糖化過程的糖化、過濾洗滌水;發酵過程的發酵罐洗滌、過濾洗滌水;罐裝過程洗瓶、滅菌及破瓶啤酒;冷卻水和成品車間洗滌水;以及來自辦公樓、食堂和浴室的生活污水。
生產廢水為每天24小時連續排放。

1.2污水水質
高濃度廢水
CODCr 4000mg/l
BOD 52000mg/l
SS 400mg/l
PH 6-9
中低濃度廢水
CODCr 500mg/l
BOD 5200mg/l
SS 400mg/l
PH 6-9

1.3處理後水質要求
根據要求,外排廢水應達到《污水綜合排放標准》(GB8978-1996)二級標准。其具體指標如下:
CODCr≤150mg/l
BOD5≤60mg/l
SS≤150mg/l
PH6~9
其中CODCr指標不大於100mg/l。

2污水處理工藝簡介
該工程採用厭氧+好氧為主的生化處理工藝。
厭氧生化法是指在無分子氧條件下通過厭氧微生物的作用,將廢水中的各種復雜有機物分解轉化為甲烷和二氧化碳等物質的過程,該工藝可用於中高濃度的有機廢水處理。該工藝在國內外有較多的成功實例。
該厭氧處理工藝採用UASB反應器,底部設布水裝置,頂部設三相分離器和集水排水裝置。
高濃度廢水單獨進行厭氧處理後,與中低濃度廢水混合進行好氧處理。
好氧生化法有較多的工藝,本工程採用CASS生物反應器。
CASS生物反應器是SBR工藝的一種改良型工藝。
在序批式反應器系統(SequencingBatchReactor簡稱SBR法)中,曝氣池、二沉池合二為一,在單一反應池內利用活性污泥完成廢水的生物處理和固液分離,SBR是廢水活性污泥生化處理系統的先驅,然而直到最近幾年隨著監控與測試技術的飛速發展,這一技術才得以完全更新並被美國環境保護署(USEPA)推薦為一項低投資、低操作成本及低維修費用,高效益的環境處理新技術。據EPA調查,在廢水流量一定時,選擇SBR要比傳統的活性污泥法處理費用節省許多,這一點已被大量的工程實例所證實,特別是在啤酒廢水處理工程中得到了廣泛應用。
工藝運行方式
SBR工藝主體構築物由SBR反應池組成,SBR反應池的運行操作由進水、反應、沉澱、潷水和待機五個階段組成。
進水期:廢水進入反應池。
反應期:廢水進入反應池中發生生化反應,在這階段可以只混合不曝氣,或既混合又曝氣,使廢水處在反復的好氧—缺氧中,反應期的長短一般由進水水質及所要求的處理程度而定。
沉降期:在此階段反應器內混合液進行固液分離,因該階段在完全靜止條件下進行,表面水力和固體負荷低,沉澱效率高於一般沉澱池的沉澱效率。
排水期:當沉澱階段結束,設置在反應池末端的潷水器開動,將上清液緩緩潷出池外,當池水位降到低水位時停止潷水。
待機期:在每池潷水後完成了一個運行周期,在實際操作中,潷水所需時間往往小於理論最大時間,故潷水完成後兩周期間閑置時間就是待機期,該階段可視廢水的水質、水量和處理要求決定其長短或取消。在此階段可以從反應池排除剩餘活性污泥。反應池排出的剩餘污泥泥齡長,已基本穩定。
SBR法與其它活性污泥處理技術比較有以下優點:
SBR系統以一組反應池取代了傳統方法及其它變型方法中的初次沉澱池、曝氣池及二次沉澱池,整體結構緊湊簡單,無需復雜的管線傳輸,系統操作簡單且更具有靈活性。
SBR反應池具有調節池均質的作用,可最大限度地承受高峰BOD5濃度及有毒化學物質對系統的影響。
在廢水流量低於設計值時,SBR系統可以調節液位計的設定值使用反應池部分容積,或調節反應時間,從而避免了不必要的電耗。其它生物處理方法則無這樣的功能。
因為對於每個反應單體而言出水是間斷的,在高負荷時活性污泥不會流失,因而可以保持SBR系統在高負荷時的處理效率。而其它的生物處理方法在高流量負荷時經常會出現活性污泥流失的問題。
SBR在固液分離時整體水體接近完全靜止狀態,不會發生短流現象,同時,在沉澱階段整個SBR反應池容積都用於固液分離,較小的活性污泥顆粒都可得到有效的固液分離,因此,SBR的出水質量高於其它的生物處理方法。
易產生污泥膨脹的絲狀細菌在SBR反應池中因反應條件的不斷的循環變化而得到有效的抑制。而污泥膨脹問題是其它活性污泥方法中很常見且很難控制的問題之一。
CASS是利用活性污泥基質再生理論,將生物選擇器與間歇式活性污泥法加以有機結合研究開發的新型高效好氧生物處理技術。
CASS主要具有以下特徵:
根據生物選擇性原理,利用位於反應器前端的預反應區作為生物選擇器對進水中有機物進行快速吸附和吸收作用,提高了去除效率增強了系統運行的穩定性;
可變容積的運行提高了系統對水質水量變化的適應性和操作的靈活性;
根據生物反應動力學原理,使廢水在反應器內的流動呈現出整體推流而在不同區域內為完全混合的復雜流態,不僅保證了穩定的處理效果,而且提高了容積利用率;
通過對反應速率的控制,使反應器以缺氧-好氧狀態周期循環運行,微生物種類多,生化作用強,運行費用低;
在好氧條件下,在機物被降解的同時,污水中有機氮被異養菌氧化為氨氮,在供氧充足的條件下,氨氮再被硝化菌氧化成硝態氮,產生的能量用於合成新的硝化菌細胞。在缺氧條件下,反硝化細菌利用NO3-,通過混和液迴流到缺氧段,在缺氧條件下,反硝化細菌利用NO3-作為最終電子受體,氧化水中有機物,用於產能和增殖。與此同時,硝酸鹽被異化還原成氮氣,從水中逸出,從而達到除氮的目的。
通過同時硝化/反硝化實現脫氮必須連續測定池子主曝氣區的溶解氧數值,並加以控制調節,在曝氣階段需要不斷調節溶解氧水平,在曝氣開始時,溶解氧控制在較低的水平(約0.2-0.5mgO2/L),直到在曝氣階段結束前,才使溶解氧達到最高水平(約2-3mgO2/L)。
這種運行方式無需如前置反硝化系統那樣需要將硝酸鹽氮從硝化區迴流至反硝化區,因此可省去內循環系統,而且在CASS系統中,也不需要單獨設置一個缺氧運行階段以進行反硝化。
在主曝氣區進行上述過程時,在選擇器中,大量吸收的易降解物質得到水解並轉移至細胞內,從而提高了後續主曝氣區內微生物的呼吸速率,加速了整個過程的進行。
工藝結構簡單,投資費用省,而且運行管理方便;
採用組合式模塊結構,布置緊湊,佔地面積小;
可以採用穩定的自動化控制和先進的探測儀器和設備,以保證出水水質達到《污水綜合排放標准》(GB8978-1996)表4二級標准和當地環保部門的要求。

3工藝流程說明
高濃度廢水經格柵、格網攔截大的雜質後進入調節池,在調節池均質均量後,由污水泵提升進入UASB反應器,UASB反應器出水自流至中低濃度廢水調節池,完全混合後用泵提升進入CASS反應器進行好氧處理,出水達標排放。
UASB反應器產生的污泥自流進入污泥濃縮池,CASS反應器產生的生化污泥部分迴流至預反應區,剩餘污泥進入污泥濃縮池,濃縮後的污泥排入污泥干化場處理,上清液迴流至調節池與原水一並處理。4活性污泥的培養

4.1污泥的培養與馴化
活性污泥的培養與馴化可歸納為非同步培馴法、同步培馴法和接種培馴法。非同步培馴法即先培養後馴化;同步法則培養、馴化同時進行或交替進行;接種法則利用其他污水處理廠的剩餘污泥進行培養馴化。本污水處理廠主要採用接種法,這樣既能提高馴化效果,又能縮短培養馴化的時間,從而縮短調試時間。
該工程工藝調試初期主要引進厭氧顆粒污泥,引入好氧剩餘污泥,作為種泥進行培養。同時投加大量的麥麩、尿素等作為調試初期的營養物質,利於污泥的快速生長。
前期UASB反應器採用間歇脈沖進水方式,適當補充高濃度啤酒廢水,提高菌種對啤酒廢水的適應能力。
培養馴化初期在CASS反應池中加入少量的中低濃度廢水進行曝氣,並適當添加營養物質,在培養的過程中逐漸增加進水量,使活性污泥生物群體逐漸適應現有水質狀況,具有較好的生物活性和絮凝性。

啤酒廠廢氣:

啤酒廠那些清理出來的酒糟來不及清運就搞得臭氣熏天.
如果是在冬天發酵得不太完全那些氣味就變得有點象水煮紅薯還基本可以忍受.

廢氣只是氣味難聞,廢水的危害則較大.需要重點治理.

2. 二惡英的國家排放標准

一、二惡英的國家排放標准:

1. 國家標準是《危險廢物焚燒污染控制標准(GB18484-2001)》,
二惡英排放標準是0.5 ng TEQ/Nm3;
《生活垃圾焚燒污染控制標准(GB18485-2014)》
二惡英排放標準是0.1 ng TEQ/Nm3;

2. 歐盟標準是《DIRECTIVE 2000/76/EC OF THEEUROPEAN PARLIAMENT AND OF THE COUNCIL of 4 December 2000 on the incinerationof waste DIRECTIVE》,
二惡英排放標準是0.1 ng TEQ/Nm3;

3. 北京市地方標準是《生活垃圾焚燒大氣污染物排放標准(DB11/502-2007)》、
《危險廢物焚燒大氣污染物排放標准(DB11/503-2007)》,
二惡英排放標準是0.1 ng TEQ/Nm3;

4. 上海市地方標準是《生活垃圾焚燒大氣污染物排放標准(DB31/ xxxx—2013)》,
二惡英排放標準是0.1 ng TEQ/Nm3;
該標准已出意見稿,尚未敲定實施。

5. 廣州標准正在制定當中,其它省份、直轄市未出台該類標准。環測評定時,二惡英依據標准,根據垃圾焚燒單位所在地而定,首先依據地方標准,如無地方標准則依據國家標准。

二、二惡英的檢測標准:
《水質 二惡英類測定 同位素稀釋 高分辨氣相色譜-高分辨質譜法(HJ 77.1-2008 )》
《環境空氣和廢氣 二惡英的測定 同位素稀釋 高分辨氣相色譜-高分辨質譜法(HJ 77.2-2008)》
《固體廢物 二惡英類的測定 同位素稀釋 高分辨氣相色譜-高分辨質譜法(HJ 77.3-2008)》
美國標准《EPA1613》

三、二惡英的簡介:
二惡英(Dioxin),又稱二氧雜芑(qǐ),是一種無色無味、毒性嚴重的脂溶性物質,二惡英實際上是二惡英類(Dioxins)一個簡稱,它指的並不是一種單一物質,而是結構和性質都很相似的包含眾多同類物或異構體的兩大類有機化合物。二惡英包括210種化合物,這類物質非常穩定,熔點較高,極難溶於水,可以溶於大部分有機溶劑,是無色無味的脂溶性物質,所以非常容易在生物體內積累,對人體危害嚴重。

四、污染來源:
大氣環境中的二惡英來源復雜,鋼鐵冶煉,有色金屬冶煉,汽車尾氣,焚燒生產(包括醫葯廢水焚燒,化工廠的廢物焚燒,生活垃圾焚燒,燃煤電廠等)。含鉛汽油、煤、防腐處理過的木材以及石油產品、各種廢棄物特別是醫療廢棄物在燃燒溫度低於300-400℃時容易產生二惡英。聚氯乙烯塑料、紙張、氯氣以及某些農葯的生產環節、鋼鐵冶煉、催化劑高溫氯氣活化等過程都可向環境中釋放二惡英。二惡英還作為雜質存在於一些農葯產品如五氯酚、2,4,5-T等中。
城市生活垃圾焚燒產生的二惡英受到的關注程度最高,焚燒生活垃圾產生二惡英的機理比較復雜,研究的人員最多。
另外,電視機不及時清理,電視機內堆積起來的灰塵中,通常也會檢測出溴化二惡英。而且含量較高,平均每克灰塵中,就能檢測出4.1微克溴化二惡英。
盡管二惡英來源於本地,但環境分布是全球性的。世界上幾乎所有媒介上都被發現有二惡英。這些化合物聚積最嚴重的地方是在土壤、沉澱物和食品,特別是乳製品、肉類、魚類和貝殼類食品中。其在植物、水和空氣中的含量非常低。.
PCB工業廢油的大量儲存,其中許多含有高濃度的PCDFs,這種現象遍及全球。長期儲存以及不當處置這種材料可能導致二惡英泄漏到環境中,導致人類和動物食物污染。PCB廢物很難做到在不污染環境和人類的情況下處理掉。這種材料需要被視為危險廢物並且最好通過高溫焚燒處理。
環境中的二惡英可通過食物鏈(如飼料)富積在動物體中,由於高親脂性,二惡英容易存在於動物脂肪和乳汁中。因此,肉、禽、蛋、魚、乳及其製品最易受到污染。另外,在食品加工過程中,加工介質(如溶劑油、傳熱介質等)的異常泄露也可造成加工食品的二惡英的污染 。

3. 燃煤電廠脫硫廢水排放指標限值的計算方法研究

目前我國燃煤電廠脫硫廢水標准DL/T997—2006的排放指標與限制內容已不符合社會發展需要,為此,本文提出了燃煤電廠脫硫廢水排放指標限值相關計算方法。
論文調研了美國和國內的相關規范,對排放指標確定范圍的具體數值和演算法模型展開深入研究,結合我國行業發展狀況和國情給出了具體的修訂建議,通過計算模型得出脫硫廢水污染物控制參數的直接排放限值,氯化物日最大排放限值≤500mg/L,總溶解固體(TDS)日最大排放限值≤215mg/L,硒≤1.5mg/L,汞≤0.005mg/L等。
2015年國務院印發《水污染防治行動計劃》(以下簡稱「水十條」)明確了我國水環境治理的重點,為中國水污染防治指明了方向。
燃煤電廠濕式石灰石石膏法煙氣脫硫(FGD)產生的脫硫廢水以其污染物組分復雜、不少重金屬含量超標,直接排放將對環境及人體產生多重且長期的危害,因此電力行業2006年首次制定了《火電廠石灰石石膏濕法脫硫廢水水質控制指標》DL/T997,通過濃度控制對相應的污染物排放指標、處理技術提出了無害化要求。
脫硫廢水常規處理方法為化學沉澱、絮凝、中和、沉澱等技術路線,但隨著近年來零排放技術等的逐步出現與成熟,加之現有執行標準的控制指標種類少、不區分技術制定標准限值等問題,原有標准在技術先進性、環境要求方面的適應性越來越低。
為進一步完善國家環境污染物排放標准體系,規范和加強火電行業廢水排放管控,引導電力污染物環保產業可持續健康發展,對脫硫廢水標准進行修標已是大勢所趨尺宏。
本文通過對比我國與美國污染物排放標準的修訂及污染物排放指標濃度限值的計算模型,制定出適用於我國脫硫廢水污染物控制參數的直接排放限值計算方法。
1中美污染物排放標准修訂對比
1.1美國確定基於技術的污染物排放指標的流程
美國確陵鬧冊定水質污染物排放限值的方法基本分為以下3種:①特定化學物質法;②廢水綜合毒性法;③生物基準或生物學評估法。
經研究,美國工業點源水污染物排放限值的確定方法主要為水環境質量的綜合毒性法,該法採用水生生物暴露試驗的方法確定污染物綜合毒性,適用於難確定廢水水質復雜且難提出特定污染物的情況。
這區別於為滿足特定化學物質水質基準的特定化學物質法。根據美國國家污染物排放削減計劃(NPDES),其核心內容即排污許可證的頒發與實施,而該政策的實施內容則為點源水污染物排污許可限值。
美國對於點源污染物排放限值的確定方法依據之一為技術基礎(technology-based),即考慮目前能達到的技術處理能力;之二為水質基礎(water quality-based),即充分考慮以環境生物影響與人體健康為本的水質標准。
圖1給出了美國EPA基於處理技術確定廢水污染物排放指標限值的客觀研究流程。
圖1 美國環保署(EPA)水污染物排放標准限值確定流程
1.2國內常規污染物排放標準的修訂程序
我國的工業污染物排放控制標准通常以對應的污染物去除工藝、技術路線為主要修標依據,以人體健康(即環境效益)為基本要求,標准所控制的技術路線除技術可行外還要充分考慮經濟指標,即投資、運行費用等。
根據以上現有客觀修訂依據,本文作者通過綜合分析各類標準的修訂背景、必要性、計算研究方法等步驟,所確定的標准確定過程分解如圖2。
圖2 脫硫廢水污染物控制標準的修標流程
1.3我國污染物排放指標存在的問題
1.3.1相關指標在標准中體現不夠
我國對於脫硫廢水的控制標准有行業標准《火電廠石灰石-石膏濕法脫硫廢水水質控制指標》(DL/T997—2006),其中指標有對重金屬的控制如總汞、總鉻、總鎘、總鉛、總鎳、懸浮物、化學耗氧量、硫化物、氟化物、硫酸鹽、pH進行了制約。
考慮到目前國內推薦應用的脫硫廢水處理技術路線,如沉澱、混凝、彎汪中和等化學處理後達標排放,即三聯箱技術。此路線對懸浮物與大部分金屬及重
金屬汞、砷去除率很高,但對氯化物、溴化物、硼、硫酸鹽、銨和其他溶解固體(TDS)去除率低[13];並且對某些有害元素如硒等去除效果差。
對於此種處理技術,現有的控制標准種類少,對可溶性鹽及硒等有害物質的排放在標准中體現不夠。
其次我國推薦的脫硫廢水處理技術路線還有化學沉澱、混凝、中和預處理+膜濃縮+煙道余熱蒸發乾燥/蒸發結晶,即脫硫廢水零排放技術。
此技術需要對汞、砷、硒和硝酸鹽/亞硝酸鹽的出水濃度進行限值,以及對總懸浮固體(TSS)進行限制。
我國脫硫廢水控制標准不再符合社會發展需要,需增加現有執行標準的控制指標,更應該關注溶解性總固體TDS、硝酸鹽/亞硝酸鹽,汞、六價鉻、銅、硒等有害物質控制指標。
1.3.2未充分考慮技術經濟可行性
深入研究美國環保署2015年最新修訂的關於點源燃煤電站的污染物排放標准40 CFR Part423,《Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category》;Final Rule,關於FGD廢水的控制標准有兩套BAT(best available technology economically achievable,最佳經濟可行技術)限制,第一套BAT控制標準是對TSS(total suspended solid,總懸浮固體)制定的數值限制標准,該控制方法與EPA先前制定的關於TSS的BPT(best practicable control technology currently available,最佳現有實用控制技術)規范在數值上相同;第二套BAT控制標準是對汞、砷、硒、硝酸鹽/亞硝酸鹽氮制定的數值限制標准,而自願採用先進技術的現存燃煤電廠(ES,existing sources)與新建電廠(NS,new sources)的FGD廢水控制指標為汞、砷、硒、TDS(溶解性總固體)。
但我國還未建立系統的污染物削減技術評估體系,目前我國制訂的BAT僅11個,不足以支撐所有行業的水污染物排放標准制修訂工作。
1.3.3標准在技術先進性、環境要求方面的適應性需提高
在制定標准時應與現今脫硫廢水處理技術及環境要求無縫銜接。行業水污染物排放限值是通過綜合考慮工業排污水平、污染物處理技術、環境質量要求、國內外相關標准等多方面的因素來制訂。
如今零排放技術已在我國部分應用,《火電廠石灰石-石膏濕法脫硫廢水水質控制指標》已遠遠不適用於當今污染控制技術。
美國對於濕法脫硫廢水的排放控制標准,美國EPA根據不同的處理技術分別制定了不同的控制限值。
如只採用化學沉澱法處理脫硫廢水的電廠需要針對汞、砷提出控制標准;採用化學沉澱後續串聯生物處理脫硫廢水的電廠需要提出汞、砷、硒、硝酸鹽/亞硝酸鹽態氮的控制標准;而採用蒸發處理脫硫廢水的電廠則提出控制汞、砷、硒和總溶解性固體的要求。
2相關計算模型
2.1發達國家確定污染物排放指標濃度限值的計算模型
參考美國國家污染物削減計劃(NPDES)中基於BAT技術的水污染物濃度限值計算方法建立計算模型過程。
(1)確定需要控制的污染物指標,根據造成的環境影響即主要矛盾,包括長期/慢性和短期/急性毒性確定。
(2)工業廢水濃度限值分為日最大濃度限值(短期)與30天平均值(長期),分直接排放到自然水體的濃度限值和排放到下游公共污水處理設備的濃度限值,不同濃度的演算法公式也不同。
以工廠排放的某污染物i為例,討論長期平均值(long time average,LTA),如式(1)。
(3)日變異系數和月變異系數VF的確定。
(4)根據計算模型標准濃度限值=LTA×VF,最終確定排污行業不同污染物濃度的濃度限值標准。
(5)可行性驗證。
2.2適用於我國工業廢水排放的標准限值計算模型
(1)某種污染物濃度限值確定行業長期平均值採用算術平均根的計算模型,以企業排放的COD為例,公式如式(2)。
3我國脫硫廢水排放標準的濃度限值計算方法
依據新修訂脫硫廢水排放標準的標准限值依託的技術依據擬採用零排放技術「化學預處理+RO膜濃縮減量+蒸發結晶」技術為主、「化學預處理+RO膜濃縮減量+余熱煙氣旁路蒸發」技術為輔。
已知正常工況下兩種技術的出水指標相當,形成的脫硫廢水零排放系統的主要污染物進出口控制參數如表1,以國內某燃煤電廠大型脫硫廢水零排放工程實例為參考原型。
表1 脫硫廢水零排放系統的主要污染物進出口控制參數
根據燃煤電廠石灰石石膏濕法脫硫廢水的水質特點、主要污染物種類可能造成環境危害以及現有水質標準的主要控制對象的分析,以及環保部推薦的最佳處理技術的結論,確定了脫硫廢水中需要控制的污染物種類,如表2。
表2 基於蒸發結晶/旁路蒸發技術(BAT)的脫硫廢水污染物控制參數確定
下面以10家採用脫硫廢水零排放技術的燃煤電廠出水水質數據為基礎,以具有代表性的污染物硫酸根離子SO42–為例代入數學模型計算,過程和結果如下。
(1)計算長期平均值LTA,如式(8)。
國家規定的化學需氧量的測定方法為重鉻酸鹽法,由GB11914—1989可知,該方法檢出限為0.2mg/L;未檢出比例為p=0。
表1中的其他類型污染物的BAT濃度限值的計算結果同硫酸根,因此最終計算結果如表2。
4結論與展望
(1)以最佳可利用技術(BAT)——脫硫廢水零排放技術蒸發結晶的工藝路線為標准濃度限值確定的技術依據,充分學習我國與美國環保部門制定廢水排放標准限值時藉助的數學模型演算法,確定了該技術方案支持下的脫硫廢水排放控制標準的污染物種類與控制濃度區間。
(2)在深入研究了我國和美國的標准限值確定方法的基礎上,融合了兩國計算模型的共同點,得出了根據脫硫廢水水質水量特點確定的需要污染物種類,包括新增的TDS日最大排放限值、硝酸鹽日最大排放限值、氯化物等無機鹽離子的控制水平、二類污染物銅、硒的控制水平以及一類污染物汞、六價鉻等重金屬控制指標等。
(3)脫硫廢水新的控制指標應更加適應當前及未來的環境發展需要。
希望以上的內容可以幫助到你,更多信息,歡迎登陸中達咨詢進行咨詢。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

閱讀全文

與epa廢水排放標准相關的資料

熱點內容
污水管定額多少錢一個 瀏覽:845
長絲布濾芯是什麼 瀏覽:413
長城坦克300機油濾芯在哪裡 瀏覽:971
augiler飲水機怎麼樣 瀏覽:698
氨氮農葯廢水如何處理 瀏覽:470
澳柯瑪飲水機怎麼拆解 瀏覽:726
成都水處理器公司 瀏覽:316
可樂給水壺除垢方法 瀏覽:186
泰什麼空氣凈化器 瀏覽:123
水箱過濾器濾芯什麼牌子好 瀏覽:840
大型污水泵站設備維修心得 瀏覽:672
凈水器慮芯中最貴的是哪個 瀏覽:975
2019年全國城鎮污水處理能力 瀏覽:619
怎麼安裝本田繽智空調濾芯 瀏覽:392
碳酸氫鈉去水垢原理 瀏覽:111
含醇污水是什麼 瀏覽:67
反滲透出水為什麼偏鹼 瀏覽:670
廢水呈鹼性有什麼離子 瀏覽:401
再生水處理站工藝流程 瀏覽:769
超濾可以自己換成ro嗎 瀏覽:454