導航:首頁 > 污水知識 > 電鍍廢水總鉻數據怎麼來的

電鍍廢水總鉻數據怎麼來的

發布時間:2023-08-11 23:35:48

『壹』 電鍍廢水中重金屬、含氰、含鉻、含鎳、化學鎳、前處理、絡合廢水,各電鍍槽中的廢水的分類

電鍍廢水的來分類如下:
自1、處理廢水:主要為鍍前准備的脫脂、除油工序產生的廢水、其主要污染物為:有機物、懸浮物、石油類、磷酸鹽及一些表面活性劑。
2、含氰廢水:含氰廢水的主要來源為:氰化鍍銅、銅錫合金、氰化物鍍銀、鹼性氰化物鍍金等含氰電鍍工序、其主要污染物為:氰化物及重金屬離子。
3、六價鉻廢水:含鉻廢水主要來源於:鍍鉻及鈍化工序、廢水中主要污染物為六價鉻及總鉻。
4、學鍍銅廢水:化學鍍銅通常以甲醛為還原劑、主要污染物為銅離子及有機物。
6、學鍍鎳廢水:化學鍍銅通常以次磷酸鹽為還原劑、主要污染物為鎳離子、磷酸鹽、亞磷酸鹽及有機物。
7、銅廢水:廢水主要來源於焦磷酸鹽鍍銅、鍍銅錫合金電鍍工序、其主要污染物為:銅離子、磷酸鹽、氨氮及有機物。
8、合廢水:綜合廢水主要污染物為:酸、鹼、重金屬離子及有機物。
9、鍍廢液:電鍍廢液含有較高濃度的酸鹼及重金屬、電鍍廢液應委託有資質的危險物處置單位進行處理貨綜合利用。

『貳』 含鉻電鍍廢水源自哪裡

含鉻電鍍廢水源自:
(1)鍍件清洗水;
(2)廢電鍍液;
(3)其他廢水,包括沖刷車間地面,刷洗專極板洗水,通屬風設備冷凝水,以及由於鍍槽滲漏或操作管理不當造成的 「跑、冒、滴、漏」的各種槽液和排水;
(4)設備冷卻水,冷卻水在使用過程中除溫度升高以外,未受到污染。電鍍廢水的水質、水量與電鍍生產的工藝條件、生產負荷、操作管理與用水方式等因素有關。電鍍廢水的水質復雜,成分不易控制,其中含有鉻、鎘、鎳、銅、鋅、金、銀等重金屬離子和氰化物等,有些屬於致癌、致畸、致突變的劇毒物質。

『叄』 廢水中鉻的來源有哪些

高濃度有機廢水純鉻是一種呈鋼灰色的耐腐蝕金屬硬度較大。隨著工業的發展鉻及其化合物的應用日益廣泛含鉻廢水的排放量隨之日益增加。含鉻系列緩蝕劑是循環冷卻系統非常有效的葯劑之一曾經得到大規模應用。油墨、染料及油漆顏料的製造及鉻法製革、電鍍、鋁陽極化處理和其他金屬的清洗等工業都離不開鉻化合物鉻化合物還可作為木材的防火劑和阻火劑這些工業排放的生產廢水中自然會含有數量不同的鉻。鉻在水中以六價(CrO4 2-)和三價(CrO2-)離子形態存在工業廢水中主要以六價形態存在。六價鉻和三價鉻在一定條件下可以相互轉化比如在有機質和還原劑的作用下六價鉻可以還原為三價鉻。因此在厭氧狀態的水中鉻一般以三價鉻形態存在。在發現六價鉻和三價鉻均可能有致癌作用後鉻成為嚴格控制的環境污染物之一。人飲用被鉻污染的水後可以引起腸胃痛和腸胃功能紊亂等疾病甚至致癌變和致畸形。另外鉻對水體魚類、微生物及某些農作物的生長也有抑製作用從而影響水的利用和水體的自凈功能。 含鉻廢水的處理方法是先將六價鉻還原成三價鉻再使三價鉻生成氫氧化物沉澱後去除。 你可能感興趣的: 有毒重金屬的種類有哪些

『肆』 加工鍍鉻棒的電鍍廢水是如何產生的

鍍鉻棒鍍鉻又稱「鍍硬鉻或耐磨鉻」。鍍鉻層具有很高的硬度,根據鍍液成分和工藝條件不同,其硬度可在很大范圍(HV400MPa~1200MPa)內變化。鍍鉻層有較好的耐熱性,在500℃以下加熱,其光澤性、硬度均無明顯變化。鍍鉻層的摩擦系數小,特別是干摩擦系數,在所有的金屬中是最低的。所以鍍鉻層具有很好的耐磨性。鉻鍍層具有良好的化學穩定性,在鹼、硫化物、硝酸和大多數有機酸中均不發生作用。在可見光范圍內,鉻的反射能力約為65%,介於銀(88%)和鎳(55%)之間,且因鉻不變色,使用時能長久保持其反射能力而優於銀和鎳。由於鍍鉻層具有上述優良的性能,可大大延長工件使用壽命。因此,鍍鉻棒鍍鉻工序一直被廣泛應用至今。電鍍廢水的產生主要分為電鍍前的前處理漂洗廢水和電鍍後的鍍後清洗廢水兩大類。對鍍鉻棒鍍鉻而言,前處理漂洗廢水的主要污染物是pH、COD和石油類,無重金屬污染;鍍後清洗廢水的主要污染物是Cr6+和Cr3+,是造成重金屬污染的主要因素。目前國內含鉻廢水基本是採用末端化學處理法,雖然可達標排放,但無法從源頭減少電鍍料液的用量和廢水的排放量。本次研究的總體思路是將電鍍後工件的「盆浴」改成「淋浴」,通過對工件採用「氣霧噴淋」後,用水量僅為原先的5%~8%。同時,由於洗下來的廢液中電鍍液元素較高,採用大氣蒸發濃縮裝置,使含鉻漂洗水濃縮後全部直接回用至電鍍槽,從而實現含鉻清洗水零排放,有效地避免了環境污染風險。除此之外,與傳統化學法相比最大的區別還在於不形成含鉻污泥和殘渣,避免了此類物質對環境和人類的危害。含鉻廢水零排放是一項系統工作,涉及設備、工藝、管理等方方面面,需要進行全面分析和研究。筆者根據近幾年的鍍鉻生產技術改造和清潔生產審核工作實踐,結合國內電鍍行業技術管理水平現狀,試圖對鍍鉻棒鍍鉻中含鉻廢水零排放的清潔生產措施進行一些研究和分析,通過系統實施污染預防的環境策略,力求改善鍍鉻棒鍍鉻中尚普遍存在的粗放型加工方式,實現「節能、降耗、減污、增效」的預期目標。

1、鍍鉻棒鍍鉻生產中含鉻廢水零排放的可行性分析,電鍍工業是我國重要的加工業,廣泛地分布在各行業中,經統計33.8%的電鍍企業分布在機械製造業、20.2%分布在輕工業、5%~10%分布在電子業,其餘主要分布在航空、航天及儀器儀表業。鍍鉻在電鍍工業中佔有極其重要的地位,是電鍍單金屬中較為特殊的鍍層。鍍鉻層是帶有微藍的銀白色,具有較高的硬度和耐磨性能。對鋼鐵基體來說,鍍鉻層屬於陰極鍍層。由於金屬鉻有很強的鈍化能力,在空氣中很容易生成一層很薄的緻密氧化膜,所以鍍鉻層有較好的耐蝕性,並顯示了貴金屬的特點。鍍鉻的用途可分為裝飾性鍍鉻和鍍硬鉻兩大類。前者往住需要中間鍍層打底,鍍層薄,能使鍍層成為藍白色,外表美觀,起到裝飾作用,因而命名為裝飾性鍍鉻。後者鍍層較厚,具有較高的硬度,因其有良好的耐熱、耐磨和抗腐蝕性,常用來做耐磨鍍層和修復鍍層,稱為鍍硬鉻,被廣泛應用於工程機械、礦用機械、汽車減震器、自卸車舉升油缸以及液壓工具等諸多領域。本次研究主要針對鍍鉻棒鍍鉻,屬鍍硬鉻(也稱「耐磨鉻」)。

2、改進過程式控制制:將人工操作改造為自動(或半自動)生產線,能有效減少廢水的跑、冒、滴、漏現象,避免人工操作引起的回收工序停留時間不足、人工沖洗導致用水浪費等不規范操作現象。

『伍』 電鍍廢水中含重金屬廢水的來源主要是那些

電鍍生產工藝復雜,工序繁多。含重金屬電鍍廢水的來源主要有以下幾方面:

1)前處理廢水。電鍍普遍採用鹽酸、硫酸進行除銹、除氧皮及浸蝕處理,工件基體重金屬離子溶解在清洗液;
2)電鍍工藝過程(包括學拋光和電學拋光)各工序清洗水。清洗水含有重金屬鹽類、表面活性劑、絡合物和光亮劑等。清洗廢水占電鍍廢水的絕大部分;
3)廢棄電鍍液。長期使用的鍍液,雜質不斷積累,當難以去除時,不得不將一部分或全部廢棄;學鍍液超過使用周期也會形成含重金屬廢液;
4)其他廢液。包括不合格的工件退鍍、鍍液分析、清洗濾芯、清洗生產場地、廢氣治理的廢液及各種設備的「跑、冒、滴、漏造成的廢水。



重金屬電鍍廢水

現代醫學研究表明,一些重金屬離子進入人體會使人致癌、致畸、致染色體突變,潛伏期可達數十年,一旦發病後果不堪設想,有人把重金屬危害形容為「慢刀子人」,是「生物定時炸彈」。


推薦閱讀:《重金屬捕捉劑—清源牌》

『陸』 關於電鍍含鎳廢水處理

電鍍廢水的處理與回用對節約水資源以及保護環境起著至關重要的作用。本文綜述了各種電鍍廢水處理技術的優缺點,以及一些新材料在電鍍廢水處理上的應用。
01 化學沉澱法
化學沉澱法是通過向廢水中投入葯劑,使溶解態的重金屬轉化成不溶於水的化合物沉澱,再將其從水中分離出來,從而達到去除重金屬的目的。
化學沉澱法因為操作簡單,技術成熟,成本低,可以同時去除廢水中的多種重金屬等優點,在電鍍廢水處理中得到廣泛應用。
1.鹼性沉澱法
鹼性沉澱法是向廢水中投加NaOH、石灰、碳酸鈉等鹼性物質,使重金屬形成溶解度較小的氫氧化物或碳酸鹽沉澱而被去除。該法具有成本低、操作簡單等優點,目前被廣泛使用。
但是鹼性沉澱法的污泥產量大,會產生二次污染,而且出水pH偏高,需要回調pH。NaOH由於產生污泥量相對較少且易回收利用,在工程上得到廣泛應用。
2.硫化物沉澱法
硫化物沉澱法是通過投加硫化物(如Na2S、NariS等)使廢水中的重金屬形成溶度積比氫氧化物更小的沉澱,出水pH在7~9,無需回調pH即可排放。
但是硫化物沉澱顆粒細小,需要添加絮凝劑輔助沉澱,使處理費用增大。硫化物在酸性溶液中還會產生有毒的HS氣體,實際操作起來存在局限性。
3.鐵氧體法
鐵氧體法是根據生產鐵氧體的原理發展起來的,令廢水中的各種重金屬離子形成鐵氧體晶體一起沉澱析出,從而凈化廢水。該法主要是通過向廢水中投加硫酸亞鐵,經過還原、沉澱絮凝,最終生成鐵氧體,因其設備簡單、成本低、沉降快、處理效果好等特點而被廣泛應用。
pH和硫酸亞鐵投加量對鐵氧體法去除重金屬離子的影響,確定鎳、鋅、銅離子的最佳絮凝pH分別為8.00~9.80、8.00~10.50和10.00,投加的亞鐵離子與它們摩爾比均為2~8,而六價鉻的最佳還原pH為4.00~5.50,最佳絮凝pH則為8.00~10.50,最佳投料比為20。出水的鎳含量小於0.5mg/L,總鉻含量小於1.0mg/L,鋅含量小於1.0mg/L,銅含量小於0.5mg/L,達到《電鍍污染物排放標准》(GB21900—2008)中「表2」的要求。
化學沉澱法的局限性
隨著污水排放標準的提高,傳統單一的化學沉澱法很難經濟有效地處理電鍍廢水,常常與其他工藝組合使用。
採用鐵氧體-CARBONITE(一種具有物理吸附與離子交換功能的材料)聯合工藝處理Ni含量約為4000mg/L的高濃度含鎳電鍍廢水:先以鐵氧體法控制pH為11.0,在Fe/Fe。摩爾比O.55,FeSO4·7H2O/Ni質量比21,反應溫度35℃的條件下攪拌反應15min,出水Ni平均濃度從4212.5mg/L降至6.8mg/L,去除率達99.84%;然後採用CARBONITE處理,在CARBONITE投加量1.5g/L,pH=6.5,溫度35℃的條件下反應6h,Ni去除率可達96.48%,出水Ni濃度為0.24mg/L,達到GB21900-2008中的「表2」標准。
採用高級Fenton一化學沉澱法處理含螯合重金屬的廢水,使用零價鐵和過氧化氫降解螯合物,然後加鹼沉澱重金屬離子,不僅可以去除鎳離子(去除率最高達98.4%),而且可以降低COD化學需氧量。
02 氧化還原法
1.化學氧化法
化學氧化法在處理含氰電鍍廢水上的效果尤為明顯。該方法把廢水中的氰根離子(CN一)氧化成氰酸鹽(CNO-),再將氰酸鹽(CNO-)氧化成二氧化碳和氮氣,可以徹底解決氰化物污染問題。
常用的氧化劑包括氯系氧化劑、氧氣、臭氧、過氧化氫等,其中鹼性氯化法應用最廣。採用Fenton法處理初始總氰濃度為2.0mg/L的低濃度含氰電鍍廢水,在反應初始pH為3.5,H202/FeSO4摩爾比為3.5:1,H202投加量5.0g/L,反應時間60min的最佳條件下,氰化物的去除率可達93%,總氰濃度可降至0_3mg/L。
2.化學還原法
化學還原法在電鍍廢水處理中主要針對含六價鉻廢水。該方法是在廢水中加入還原劑(如FeSO、NaHSO3、Na2SO3、SO2、鐵粉等)把六價鉻還原為三價鉻,再加入石灰或氫氧化鈉進行沉澱分離。上述鐵氧體法也可歸為化學還原法。
該方法的主要優點是技術成熟,操作簡單,處理量大,投資少,在工程應用中有良好的效果,但是污泥量大,會產生二次污染。採用硫酸亞鐵作為還原劑,處理80t/d的含總鉻7O~80mg/L的電鍍廢水,出水總鉻小於1.5mg/L,處理費用為3.1元/t,具有很高的經濟效益。
以焦亞硫酸鈉為還原劑處理含80mg/L六價鉻、pH為6~7的電鍍廢水,出水六價鉻濃度小於0.2mg/L。
03 電化學法
電化學法是指在電流的作用下,廢水中的重金屬離子和有機污染物經過氧化還原、分解、沉澱、氣浮等一系列反應而得到去除。
該方法的主要優點是去除速率快,可以完全打斷配合態金屬鏈接,易於回收利用重金屬,佔地面積小,污泥量少,但是其極板消耗快,耗電量大,對低濃度電鍍廢水的去除效果不佳,只適合中小規模的電鍍廢水處理。
電化學法主要有電凝聚法、磁電解法、內電解法等。
電凝聚法是通過鐵板或者鋁板作為陽極,電解時產生Fe2+、Fe或Al,隨著電解的進行,溶液鹼性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通過絮凝沉澱去除污染物。
由於傳統的電凝聚法經過長時間的操作,會使電極板發生鈍化,近年來高壓脈沖電凝聚法逐漸替代傳統的電混凝法,它不僅克服了極板鈍化的問題,而且電流效率提高20%~30%,電解時間縮短30%~40%,節省電能30%~40%,污泥產生量少,對重金屬的去除率可達96%~99%。
採用高壓脈沖電絮凝技術處理某電鍍廠的電鍍廢水,Cu2十、Ni2、CN一和COD的去除率分別達到99.80%、99.70%、99.68%和67.45%。
電混凝法通常也與其他方法結合使用,利用電凝聚法和臭氧氧化法聯合處理電鍍廢水,以鐵和鋁做極板,出水六價鉻、鐵、鎳、銅、鋅、鉛、TOC(總有機碳)、COD的去除率分別為99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年來內電解法受到廣泛關注。內電解法利用了原電池原理,一般向廢水中投加鐵粉和炭粒,以廢水作為電解質媒介,通過氧化還原、置換、絮凝、吸附、共沉澱等多種反應的綜合作用,可以一次性去除多種重金屬離子。
該方法不需要電能,處理成本低,污泥量少。通過靜態試驗研究了鐵碳微電解法對模擬電鍍廢水的COD及銅離子的去除效果,去除率分別達到了59.01%和95.49%。然而,採用微電解反應柱研究連續流的運行結果顯示,14d後微電解出水的COD去除率僅為10%~15%,銅的去除率降低至45%~50%之間,可見需要定期更換填料或對填料進行再生。
04 膜分離技術
膜分離技術主要包括微濾(MF)、超濾(UF)、納濾(NF)、反滲透(RO)、電滲析(ED)、液膜(Lv)等,利用膜的選擇透過性來對污染物進行分離去除。
該方法去除效果好,可實現重金屬回收利用和出水回用,佔地面積小,無二次污染,是一種很有發展前景的技術,但是膜的造價高,易受污染。
對膜技術在電鍍廢水處理中的應用和效果進行了分析,結果表明:結合常規廢水處理工藝與膜生物反應器(MBR)組合工藝,電鍍廢水被處理後的水質達到排放標准;電鍍綜合廢水經UF凈化、RO和NF兩段脫鹽膜的集成工藝處理後,水質達到回用水標准,RO和NF產水的電導率分別低於100gS/cm和1000gS/cm,COD分別約為5mg/L和10mg/L;鍍鎳漂洗廢水通過RO膜後,鎳的濃縮高達25倍以上,實現了鎳的回收,RO產水水質達到回用標准。
投資與運行費用分析表明:工程運行1年多即可收回RO濃縮鎳的設備費用。
液膜法並不是採用傳統的固相膜,而是懸浮於液體中很薄的一層乳液顆粒,是一種類似溶劑萃取的新型分離技術,包括制膜、分離、凈化及破乳過程。
美籍華人黎念之(NormanN.Li)博士發明了乳狀液膜分離技術,該技術同時具有萃取和滲透的優點,把萃取和反萃取兩個步驟結合在一起。乳化液膜法還具有傳質效率高、選擇性好、二次污染小、節約能源和基建投資少的特點,對電鍍廢水中重金屬的處理及回收利用有著良好的效果。
05 離子交換法
離子交換法是利用離子交換劑對廢水中的有害物質進行交換分離,常用的離子交換劑有腐殖酸物質、沸石、離子交換樹脂、離子交換纖維等。離子交換的運行操作包括交換、反洗、再生、清洗四個步驟。
此方法具有操作簡單、可回收利用重金屬、二次污染小等特點,但離子交換劑成本高,再生劑耗量大。
研究強酸性離子交換樹脂對含鎳廢水的處理工藝條件及鎳回收方法。結果表明:pH為6~7有利於強酸性陽離子交換樹脂對鎳離子的去除。離子交換除鎳的適宜溫度為30℃,適宜流速為15BV/h(即每小時l5倍樹脂床體積)。適宜的脫附劑為10%鹽酸,脫附液流速為2BV/h。前4.6BV脫附液可回用於配製電鍍槽液,平均鎳離子質量濃度達18.8g/L。
Mei.1ingKong等研究了CHS—l樹脂對cr(VI)的吸附能力,發現Cr(VI)在低濃度時,樹脂的交換吸附率是由液膜擴散和化學反應控制的。CHS一1樹脂對Cr(VI)的最佳吸附pH為2~3,在298K下其飽和吸附能力為347.22mg/g。CHS一1樹脂可以用5%的氫氧化鈉溶液和5%氯化鈉溶液來洗脫,再生後吸附能力沒有明顯的下降。
使用鈦酸酯偶聯劑將1一Fe203與丙烯酸甲酯共聚,在鹼性條件下進行水解,制備出磁性弱酸陽離子交換樹脂NDMC一1。
通過對重金屬Cu的吸附研究發現,NDMC—l樹脂粒徑較小、外表面積大,因而具有較快的動力學性能。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。
06 蒸發濃縮法
蒸發濃縮法是通過加熱對電鍍廢水進行蒸發,使液體濃縮達到回用的效果。一般適用於處理含鉻、銅、銀、鎳等重金屬濃度高的廢水,用其處理濃度低的重金屬廢水時耗能大,不經濟。
在處理電鍍廢水中,蒸發濃縮法常常與其他方法一起使用,可實現閉路循環,效果不錯,比如常壓蒸發器與逆流漂洗系統聯合使用。蒸發濃縮法操作簡單,技術成熟,可實現循環利用,但是濃縮後的干固體處置費用大,制約了它的應用,目前一般只作為輔助處理手段。
07 生物處理技術
生物處理法是利用微生物或者植物對污染物進行凈化,該方法運行成本低,污泥量少,無二次污染,對於水量大的低濃度電鍍廢水來說是不二之選。生物法主要包括生物絮凝法、生物吸附法、生物化學法和植物修復法。
1.生物絮凝法
生物絮凝法是一種利用微生物或微生物產生的代謝物進行絮凝沉澱來凈化水質的方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外、具有絮凝活性的代謝物,能使水中膠體懸浮物相互凝聚、沉澱。
生物絮凝劑與無機絮凝劑和合成有機絮凝劑相比,具有處理廢水安全無毒、絮凝效果好、不產生二次污染等優點,但其存在活體生物絮凝劑不易保存,生產成本高等問題,限制了它的實際應用。目前大部分生物絮凝劑還處在探索研究階段。
生物絮凝劑可以分為以下三類:
(1) 直接利用微生物細胞作為絮凝劑,如一些細菌、放線菌、真菌、酵母等。
(2) 利用微生物細胞壁提取物作為絮凝劑。微生物產生的絮凝物質為糖蛋白、黏多糖、蛋白質等高分子物質,如酵母細胞壁的葡聚糖、Ⅳ-乙醯葡萄糖胺、絲狀真菌細胞壁多糖等都可作為良好的生物絮凝劑。
(3) 利用微生物細胞代謝產物的絮凝劑。代謝產物主要有多糖、蛋白質、脂類及其復合物等。
近年來報道的生物絮凝劑主要為多糖類和蛋白質類,前者有ZS一7、ZL—P、H12、DP。152等,後者有MBF—W6、NOC—l等。陶穎等]利用假單胞菌Gx4—1胞外高聚物製得的絮凝劑對cr(Ⅳ)進行了絮凝吸附研究。
其研究結果表明,在適宜條件下Or(Ⅳ)的去除率可達51%。研究枯草芽孢桿菌NX一2制備的生物絮凝劑v一聚谷氨酸(T-PGA)對電鍍廢水的處理效果,實驗證明,T-PGA能有效地去除Cr3+、Ni等重金屬離子。
2.生物吸附法
生物吸附法是利用生物體自身的化學結構或成分特性來吸附水中的重金屬,然後通過固液分離,從水中分離出重金屬。
可以從溶液中分離出重金屬的生物體及其衍生物都叫做生物吸附劑。生物吸附劑主要有生物質、細菌、酵母、黴菌、藻類等。該方法成本低,吸附和解析速率快,易於回收重金屬,具有選擇性,前景廣闊。
研究各種因素對枯草芽胞桿菌吸附電鍍廢水中Cd效果的影響,結果表明:pH為8、吸附劑用量為10g/L(濕重)、攪拌轉數為800r/min、吸附時間為10min的條件下,廢水中鎘的去除率達93%以上。
吸附鎘後的枯草芽胞桿菌細胞膨大,色澤變亮,細胞之間相互粘連。Cd2+與細胞表面的鈉進行了離子交換吸附。
殼聚糖是一種鹼性天然高分子多糖,由海洋生物中甲殼動物提取的甲殼素經過脫乙醯基處理而得到,可以有效地去除電鍍廢水中的重金屬離子。
通過乳化交聯法制備了磁性二氧化硅納米顆粒組成的殼聚糖微球,然後用乙二胺和縮水甘油基三甲基氯化反應的季銨基團改性,所得生物吸附劑具有很高的耐酸性和磁響應。
用它來去除酸性廢水中的cr(VI),在pH為2.5、溫度為25℃的條件下,最大吸附能力為233.1mg/g,平衡時間為40~120min[取決於初始Cr(VI)的濃度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液進行吸附劑再生,解吸率達到95.6%,因此該生物吸附劑具有很高的重復使用性。
3.生物化學法
生物化學法是指微生物直接與廢水中的重金屬進行化學反應,使重金屬離子轉化為不溶性的物質而被去除。
從電鍍廢水中篩選分離出3株可以高效降解自由氰根的菌種,在最佳條件下可以將80mg/L的CN一去除到0.22mg/L。研究發現,有許多可以將cr(VI)還原成低毒cr(III)的微生物,如無色桿菌、土壤細菌、芽孢桿菌、脫硫弧菌、腸桿菌、微球菌、硫桿菌、假單胞菌等,其中除了大腸桿菌、芽孢桿菌、硫桿菌、假單胞菌等可以在好氧條件下還原Cr(VI),其餘大部分菌種只能在厭氧條件下還原cr(VI)。
R.S.Laxman等發現灰色鏈黴菌能在24~48h內把cr(VI)還原成cr(III),並能夠將cr(III)顯著地吸收去除。中科院成都生物研究所的李福、吳乾菁等從電鍍污泥、廢水及下水道鐵管內分離篩選出35株菌種,並獲得了SR系列復合功能菌,該功能菌具有高效去除Cr(VI)和其他重金屬的功效,並在此基礎上進行了工程應用,取得較好的效果。
4.植物修復法
植物修復法是利用植物的吸收、沉澱、富集等作用來處理電鍍廢水中的重金屬和有機物,達到治理污水、修復生態的目的。
該方法對環境的擾動較少,有利於環境的改善,而且處理成本低。人工濕地在這方面起著重要的作用,是一種發展前景廣闊的處理方法。
李氏禾是一種可富集金屬的水生植物,在去除水中重金屬方面具有很大的潛力。在人工濕地種植了李氏禾,用以處理含鉻、銅、鎳的電鍍廢水,使它們的含量分別降低了84.4%、97.1%和94_3%。當水力負荷小於0.3m/(m2·d1時,出水中的重金屬濃度符合電鍍污染物排放標準的要求;當進水鉻、銅和鎳的濃度為5、10和8mg/L時,仍能達標排放。
可見用李氏禾處理中低濃度的電鍍廢水是可行的。質量平衡表明,鉻、銅和鎳大部分保留在人工濕地系統的沉積物中。
08 吸附法
吸附法是利用比表面積大的多孔性材料來吸附電鍍廢水中的重金屬和有機污染物,從而達到污水處理的效果。
活性炭是使用最早、最廣的吸附劑,可以吸附多種重金屬,吸附容量大,但是活性炭價格昂貴,使用壽命短,需要再生且再生費用不低。一些天然廉價材料,如沸石、橄欖石、高嶺土、硅藻土等,也具有較好的吸附能力,但由於各種原因,幾乎沒有得到工程應用。
以沸石作為吸附劑處理電鍍廢水,發現在靜態條件下,沸石對鎳、銅和鋅的吸附容量分別達到5.9、4.8和2.7mg/g.先以磁性生物炭去除電鍍廢水中的Cr(vI),
然後通過外部磁場分離,使得cr(VI)的去除率達到97.11%。而在10rain的磁選後,濁度由4075NTU降至21.8NTU。其研究還證實了吸附過程後,磁性生物炭仍保留原來的磁分離性能。近年來又研製開發了一些新型吸附材料,如文中提到的生物吸附劑以及納米材料吸附劑。
納米技術是指在1~100nm尺度上研究和應用原子、分子現象,由此發展起來的多學科交叉、基礎研究與應用緊密聯系的科學技術。納米顆粒由於具有常規顆粒所不具備的納米效應,因而具有更高的催化活性。
納米材料的表面效應使其具有高的表面活性、高表面能和高的比表面積,所以納米材料在制備高性能吸附劑方面表現出巨大的潛力。雷立等l採用溫和水熱法一步快速合成了鈦酸鹽納米管(TNTs),並應用於對水中重金屬離子Pb(II)、cd(II)和Cr(III)的吸附。
結果表明:pH=5時,初始濃度分別為200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分別為513.04、212.46和66.35mg/L,吸附性能優於傳統吸附材料。納米技術作為一種高效、節能環保的新型處理技術,得到人們的廣泛認同,具有很大的發展潛力。
09 光催化技術
光催化處理技術具有選擇性小、處理效率高、降解產物徹底、無二次污染等特點。
光催化的核心是光催化劑,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化學穩定性好、無毒、兼具氧化和還原作用等諸多特點。TiO:在受到一定能量的光照時會發生電子躍遷,產生電子一空穴對。
光生電子可以直接還原電鍍廢水中的金屬離子,而空穴能將水分子氧化成具有強氧化性的OH自由基,從而把很多難降解的有機物氧化成為COz、H:0等無機物,被認為是最有前途、最有效的水處理方法之一。
以懸浮態的TiO2為催化劑,在紫外光的作用下對絡合銅廢水進行光催化反應。結果表明:當TiO2投加量為2g/L,廢水pH=4時,在300W高壓汞燈照射下,載入60mL/min的空氣反應40rain,對120mg/LEDTA絡合銅廢水中Cu(II)與COD的去除率分別達到96.56%和57.67%。實施了「物化一光催化一膜」處理電鍍廢水的工程實例,出水COD去除率達到70%以上,同時TiO2光催化劑可重復使用。
膜法的引入可大大提高水質,使處理後水質達到中水回用標准,提高了電鍍廢水的資源化利用率,回用率達到85%以上,大大節約了成本。然而光催化技術在實際應用中受到了很多的限制,如重金屬離子在光催化劑表面的吸附率低,催化劑的載體不成熟,遇到色度大的廢水時處理效果大幅下降,等等。不過光催化技術作為高效、節能、清潔的處理技術,將會有很大的應用前景。
10 重金屬捕集劑
重金屬捕集劑又叫重金屬螯合劑,它能與廢水中的絕大部分重金屬離子產生強烈的螯合作用,生成的高分子螯合鹽不溶於水,通過分離就可以去除廢水中的重金屬離子。
重金屬捕集劑處理後的重金屬廢水中剩餘的重金屬離子濃度大部分都能達到國家排放標准。以二硫代氨基甲酸鹽重金屬離子捕集劑XMT探討了不同因素對Cu的捕集效果,對Cu去除率在99%以上,出水Cu濃度小於0.05mg/L,出水遠低於GB21900-2008的「表3」標准。
選取3種市售重金屬捕集劑對實際電鍍廢水中的Cu2+、Zn2+、Ni進行同步深度處理,發現三聚硫氰酸三鈉(簡稱TMT)對Cu的去除效果最為顯著,投加量少且效果穩定,但對Ni的去除效果較差。甲基取代的二硫代氨基甲酸鈉(以Me2DTC表示)的適用性最強,對3種重金屬離子均具有良好的去除效果,可達到GB21900-2008中的「表3」排放標准,且在DH=9.70時處理效果最佳。至於乙基取代的二硫代氨基甲酸鈉(Et2DTC),對Ni的去除效果不佳。
重金屬捕集劑因高效、低能、處理費用相對較低等特點而有很大的實用性。
結語
電鍍廢水成分復雜,應盡量分工段處理。在選擇處理方法時,應充分考慮各種方法的優缺點,加強各種水處理技術的綜合應用,形成組合工藝,揚長避短。
重金屬具有很大的回收價值且毒性大,在電鍍廢水處理過程中應多使用重金屬回收利用的工藝,盡可能地減少排放。
基於化學沉澱法污泥產量大,電化學法能耗高,膜分離技術的膜組件造價高且易受污染等諸多問題,就現有電鍍廢水處理技術而言,應向著節能、高效、無二次污染的方向改進。
同時可與計算機技術相結合,實現智能化控制。還可結合材料學、生物學等學科,開發出更適合處理電鍍廢水的新型材料。

『柒』 電鍍廢水的來源和特點

金屬表面處理廢水的來源
一、金屬表面處理
金屬表面處理包括表面處理前的清理、回電鍍、鈍化答膜保護、機械加工及塗料覆蓋等,主要以電鍍為主。
二、電鍍廢水的分類
從電鍍生產工藝可將電鍍廢水分為前處理廢水、鍍層漂洗廢水、後處理廢水以及廢鍍液、廢退鍍液等四類。
電鍍廢水的特性
更多資訊請看下面鏈接
http://ke..com/view/640285.html?wtp=tt

『捌』 什麼是含鉻電鍍廢水

鉻:Cr
在金屬表面鍍上一層鉻層,電鍍的同時,會有溶液從掛具上攜帶到水槽,這部分水需要排放,此水就是含鉻廢水。

『玖』 廢水含鉻量的活性成分

鉻元素被美國環保署(USEPA)列為最具毒性的污染物之一,含鉻廢水中的鉻主要來源於電鍍、製革、化工、顏料、冶金、耐火材料等行業,它以三價和六價化合物的形式存在。由於六價鉻的高溶解性,它比三價鉻更具有生物毒性。研究表明,六價鉻化合物能夠干擾重要的酶體系,經口、呼吸道或皮膚接觸吸收後能引起「三致」作用。因此,含鉻廢水必須嚴格控制六價鉻的質量濃度,達標後才能允許排放。

處理含鉻廢水的關鍵在於降低六價鉻的含量,一般可以通過兩種途徑實現:(1)通過化學反應使六價鉻轉變為低毒易沉澱的三價鉻,再進一步去除三價鉻;(2)將六價鉻化合物與水分離。現有的處理技術都是通過這兩種途徑達到去除鉻的目的,具體處理方法如下。

1理化處理技術1.1反滲透法反滲透法通過給水體加壓使水分子通過半透膜,實現鉻化合物的濃縮,達到水與鉻分離的目的。

由於其不涉及化學反應和酸鹼的生成,因此,反滲透技術在控制二次污染方面具有一定的優越性。由於要給處理水體加壓,電能的消耗是需要考慮的問題,所以它適合處理鉻質量濃度高的廢水。鉻質量濃度低的廢水採用反滲透技術電能消耗較大,經濟上不合算。

范帥等先採用離子交換法、芬頓氧化、混凝沉澱、電凝聚等技術對含鎳、含鉻、含銅、含氰、前處理、混排等的廢水進行預處理,再用超濾及反滲透膜處理含重金屬、含氰及前處理廢水後回用。王維平分析了反滲透技術在電鍍廢水回用中遇到的問題及對應解決思路。

1.2離子交換法離子交換法利用離子交換劑中的離子和水中的離子進行交換,進而達到去除水中特定離子的目的。

六價鉻在廢水中以鉻酸根形式存在,因此,經常用陰離子交換樹脂進行鉻酸根的吸附交換(式(1)和式(2))去除水中的六價鉻,樹脂可用再生劑進行再生。

2ROH+CrO2-4=R2CrO4+2OH-(1)

2ROH+Cr2O2-7=R2Cr2O7+2OH-(2)

唐樹和等用201×7強鹼性陰離子交換樹脂處理含Cr(Ⅵ)廢水,在實際廢水Cr(Ⅵ)初始質量濃度為1540mg/L時,出水Cr(Ⅵ)質量濃度小於0.5mg/L,達到國家排放標准,且經再生處理後樹脂再生率大於95%。徐靈等分別用pH值靜態試驗和流量動態試驗對201×7強鹼性苯乙烯陰樹脂吸附Cr(Ⅵ)的能力做了研究,在高Cr(Ⅵ)質量濃度的條件下,設定pH值為3、樹脂管流量為3BV/h,在樹脂穿透點之前,鉻的去除率在99.5%以上,加之模擬廢水Cr(Ⅵ)質量濃度遠遠高於工業廢水Cr(Ⅵ)質量濃度,說明離子交換法完全可以使廢水達標排放。考慮到Cr(Ⅲ)的回收再利用,CavacoSA等研究了DiaionCR11和AmberliteIRC86兩種離子交換樹脂對Cr(Ⅲ)的吸附交換特性,研究結果表明,兩種樹脂在去除Cr(Ⅲ)能力上均很有效,DiaionCR11顯示了相對的去除優勢。

1.3電滲析法電滲析法指在直流電的作用下,使陰、陽離子選擇性地透過陰、陽離子膜,形成一個個的濃、稀空間,既達到了鉻水分離的目的,又實現了鉻的濃縮,為鉻的回收再利用提供便利。但值得注意的是高質量濃度的含鉻廢水則不適宜採用電滲析法處理,因為質量濃度越高,消耗電能越大。鄧永光等研究了電滲析法對鉻鈍化清洗廢水的處理效果,結果表明:在其建立的電滲析小試裝置的條件下,進水濃度對淡水水質影響不大;採用濃水循環工藝,淡水產率可提高至約80%,濃室總鉻、錳離子質量濃度超過4000mg/L,為濃水的後續處理處置創造了條件。

1.4吸附法吸附法利用吸附劑與被吸附物質之間的吸附力,使被吸附物質吸附在吸附劑上,達到水體凈化的目的。吸附力可以是分子間引力,也可以是通過相互反應生成化學鍵引起的吸附。前者為物理吸附,後者為化學吸附。在污水處理中,多數情況下,往往是多種吸附的綜合結果。

理化吸附法處理含鉻廢水常用的吸附劑有活性炭、磺化煤、活化煤、沸石和硅藻土等。這些吸附劑在含鉻廢水處理中顯示了較好的吸附性能,鉻去除率均在70%以上,最高可達99%。

唯一的不足之處在於經濟投入問題,有一定花費,尋找低投入高回報的吸附劑成為考慮的主要問題,而以廢治廢成為較佳的方案。作為電廠廢物的粉煤灰和作為煤礦廢物的煤矸石由於顆粒本身的特殊結構和性能,表現出良好的吸附性能和化學穩定性。

秦巧燕等進行了活化煤矸石處理模擬含鉻廢水的試驗,在最優條件下,鉻的去除率在90%以上。白汀汀等通過試驗對比了粉煤灰吸附法和鐵氧體法對Cr6+的去除率,結果表明:在最佳條件下,用粉煤灰處理廢水的最佳除鉻率比鐵氧體法除鉻率高,除鉻效果更好。陳小萍等研究了活性炭纖維對六價鉻的吸附作用,研究結果表明:利用活性炭纖維去除水中的Cr(Ⅵ),其適宜條件為pH值為1~3,吸附時間為1.5h;通過電化學改性可以提高吸附率,並可實現活性炭纖維的現場再生。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。

2化學處理技術2.1化學還原沉澱法該方法是通過化學反應使Cr(Ⅵ)變為Cr(Ⅲ),Cr(Ⅲ)在鹼性條件下生成Cr(OH)3,排出上清液,以實現鉻的去除。因此選擇還原性化學物質將Cr(Ⅵ)還原成容易沉澱的Cr(Ⅲ)是整個技術的關鍵,選擇高效價廉的還原劑是最佳選擇。目前常用的還原劑主要有氣態的SO2、液態的水合肼以及固態的亞硫酸鈉、硫代硫酸鈉、硫酸亞鐵等。此方法常常產生大量污泥,可從污水源頭分流、污泥分類回收等途徑解決污泥帶來的後續處理問題。

蔣小友等研究了用水合肼回收電沉積鉻廢液中鉻的工藝條件,試驗結果表明,在30℃下於25mL含鉻廢液中加入1.6mLH2SO4和0.8mL水合肼,8min可使Cr(Ⅵ)還原為Cr(Ⅲ)。顏家保等用硫酸亞鐵作為還原劑處理Cr(Ⅵ)廢水,處理後出水六價鉻和總鉻的質量濃度分別在0.55及1.5mg/L以下,達到了國家排放標准;而且通過研究pH值對整個工藝的影響,得出Cr(Ⅵ)還原階段pH值應控制為2~3,Cr(Ⅲ)沉澱階段應控制為8~9。用亞硫酸鈉作還原劑與用硫酸亞鐵工藝條件相似,處理出水同樣能達到排放標准。石俊仙等用礦山鐵的硫化物礦物處理皮革廠含鉻廢水,在試驗得到的最佳條件下,直接用礦山鐵的硫化物礦物處理高質量濃度含鉻廢水,去除率達到73%。李秋菊等研究利用晶鍾誘導沉積不銹鋼酸洗廢液中鐵、鉻及鎳的有價金屬,以達到廢酸液進行資源化利用的目的,結果顯示溫度越低,廢酸HF越高,越有利於金屬沉積,且晶鍾添加量對金屬沉積影響不大。

2.2鐵氧體法鐵氧體法同樣是用硫酸亞鐵作為還原劑,與還原沉澱法的區別在於鐵氧體法不是通過生成Cr(OH)3沉澱去除Cr(Ⅲ),而是通過形成有磁性的鐵氧體達到同時去除鐵和鉻的目的。具體操作為:硫酸亞鐵在一定酸度下還原Cr(Ⅵ)為Cr(Ⅲ);然後調節溶液pH值,使Fe3+、Cr3+以及Fe2+共沉澱;加熱,通入壓縮空氣,使剩餘Fe2+被氧化為三價,當Fe2+與Fe3+質量濃度比達到2︰1時,便形成鐵氧體。反應見式(3)~式(9)。

Cr6++3Fe2+→Cr3++3Fe3+(3)

Cr3++3OH-→Cr(OH)3↓(4)

Fe3++3OH-→Fe(OH)3↓(5)

Fe2++2OH-→Fe(OH)2↓(6)

Fe(OH)3→FeOOH+H2O(7)

FeOOH+Fe(OH)2→FeOOH·Fe(OH)2(8)

FeOOH·Fe(OH)2+FeOOH→FeO·Fe2O3↓+2H2O(9)

由於Cr3+與Fe3+具有相同的離子電荷和相近的離子半徑,在鐵氧體形成的過程中,Cr3+取代Fe3+成為鐵氧體的組成部分,從而達到去除Cr(Ⅵ)

的目的。反應見式(10)和式(11)。

2Cr3++Fe2++8OH-→FeO·Cr2O3↓+4H2O(10)

6Fe3++3Fe2++24OH-→3FeO·Fe2O3↓+12H2O(11)

魏振樞分別從FeSO4·7H2O的投加量、反應的酸鹼度控制和加熱與曝氣幾個方面對鐵氧體法處理含鉻廢水的工藝條件進行了探討。來風習等為了克服鐵氧體法的缺陷,用一種復合方法超聲波-鐵氧體法處理含鉻廢水,結果Cr6+去除率達到99.9%以上,這就從節能和經濟的角度讓傳統鐵氧體法得以優化。

2.3電解法電解法使廢水中的有害物質通過電解過程在陽、陰兩極發生氧化和還原反應,或利用電極氧化和還原的產物與廢水中的有害物質發生化學反應,使有害物質轉化為無害物質或生成不溶於水的物質,從水中除去。電解法除鉻用鐵作陰極和陽極,陽極溶解產生的Fe2+將Cr(Ⅵ)還原為Cr(Ⅲ),陰極附近由於H+不斷還原為H2,溶液逐漸顯鹼性,Fe3+和Cr(Ⅲ)生成Cr(OH)3沉澱,從而除去廢水中的Cr(Ⅵ)。發生的化學反應見式(12)~式(17)。

陽極反應:Fe-2e-→Fe2+(12)

Cr6++3Fe2+→Cr3++3Fe3+(13)

陰極反應:2H2O+2e-→H2+2OH-(14)

沉澱反應:Cr3++3OH-→Cr(OH)3↓(15)

Fe3++3OH-→Fe(OH)3↓(16)

Fe2++2OH-→Fe(OH)2↓(17)

趙麗等分別從廢液濃度、pH值、反應時間和換極周期4個因素考慮,利用正交試驗對電解法處理含鉻廢水進行了研究,認為在工業廢水Cr(Ⅵ)初始質量濃度較高(不小於300mg/L)時,單純依靠普通的鐵板陽極溶解的Fe2+還不能夠充分還原Cr(Ⅵ),需加一定的還原劑,當廢水初始質量濃度不高於600mg/L、pH值為3、反應時間為40min和換極周期為10min時,且根據前期正交試驗(Fe2+與Cr2O7質量濃度比為1∶1)確定加入的FeSO4量的反應條件下,去除率可達94%以上。電解法由於有沉澱和絮體的生成,需要過濾工藝,且陰極附近氫氣的生成會影響它們的沉降,GaoP等為了解決這一問題,設計了電絮凝-電浮選聯合工藝,省去了過濾步驟,利用電解-電浮選產生的氣泡有效地使絮體浮出水面,從而達到去除的目的。

3生物處理技術生物法處理廢水一直是水處理領域研究的熱點,因為它具有資源豐富、效率高、投資低、選擇性強以及不產生二次污染等優點。生物法處理含鉻廢水主要包括氧化還原、離子交換、形成配位化合物和靜電吸引等機理,主要以投加生物吸附劑和生物絮凝劑的方式來完成。

3.1生物吸附法大量研究證實,具有生物活性的生物體及非活性的生物質均具有較強的生物吸附性能。應用死的微生物細胞吸附去除污染物具有一定的優越性,它不會受到廢水中毒性物質的影響,不需要持續不斷地提供養分,且可以再生再利用。近幾年國內外對含鉻廢水的處理焦點多集中在生物吸附法上,通過尋找合適的廢生物質材料吸附鉻等重金屬,這些生物質材料包括木屑、玉米芯、板栗殼、咖啡渣、橄欖渣、椰子皮、苔蘚、核桃殼及其改性產品等。

ElNemrA等從反應體系的pH值水平、污染物含量、吸附劑用量及吸附時間幾個方面研究了雞毛菜(海洋紅藻)及其生物質活性炭對廢水中鉻去除效果的影響,結果表明,在溶液pH值為1時吸附量最大,兩者最大的吸附能力為12和66mg/g。

LiuC等利用咖啡渣作為生物吸附劑還原吸附電鍍廢水中的Cr(Ⅵ),在試驗條件下Cr(Ⅵ)被完全還原和吸附,還原生成的少量Cr(Ⅲ)在後續混凝沉澱單元被完全去除,為咖啡渣的廢物利用提供了思路。DehghaniMH等利用經處理後的舊書、舊報紙吸附去除Cr(Ⅵ),研究表明,隨著Cr(Ⅵ)質量濃度和反應溶液pH值的降低以及吸附劑含量的提高,Cr(Ⅵ)去除率增大;在初始Cr(Ⅵ)質量濃度為5~70mg/L、pH值為3、接觸時間為60min及吸附劑投加量為3.0g/L的條件下,Cr(Ⅵ)最大吸附能力可達到59.88mg/g[41]。VieiraMGA等研究用馬尾藻做填料的填料柱對Cr(Ⅵ)的吸附作用,運用因子設計方法研究了運行條件對吸附能力的影響,如進水Cr(Ⅵ)質量濃度、填料柱進液流量和吸附劑量,結果顯示進水Cr(Ⅵ)質量濃度對填料柱吸附能力的影響最大,填料柱進液流量次之;在最佳運行條件下得到的吸附能力為19.06mg/g。木屑作為建築和傢具等行業的固體廢物,主要由質量分數為45%~50%的纖維素和質量分數為23%~30%的木質素組成,這些成分由於結構上含有羥基、羧基和酚基等基團,使它具有綁定金屬的能力,因此,大量的試驗和實際工程研究應用木屑、改性木屑吸附去除廢水中的鉻,且去除效果明顯。

3.2生物絮凝劑法生物絮凝劑是利用生物技術通過生物發酵、抽提、精製而得到的一種具有生物分解性和安全性的新型、高效、無毒、廉價的水處理劑。與傳統絮凝劑相比,生物絮凝劑具有高效、無毒、易降解且不產生二次污染的特點。

馬軍等通過試驗分析得出了微生物絮凝法處理含鉻工業廢水的最佳工藝條件為:pH值為7.5~8.0,水溫在10℃以上,最高進水Cr(Ⅵ)質量濃度為100mg/L,活性菌體積分數為0.8‰~1.2‰,反應時間為13~16min[48]。楊思敏等用微生物絮凝劑處理Cr(Ⅵ)溶液時,結果顯示黑麴黴分泌微生物絮凝劑對低質量濃度Cr(Ⅵ)還原效果較好,在pH值為1~5時,還原能力均較高,對質量濃度為20mg/L的Cr(Ⅵ)的還原率均大於99%。

4技術展望由於相關工業的快速發展,含鉻廢水排放仍將保持濃度高、排放量大的特徵,為了保護環境,強化含鉻廢水治理,今後治理技術進一步開發與應用應從以下幾個方面加以考慮。

(1)廢物減排和再利用是治理環境污染的一種重要方式,以循環經濟思路為指導,加強以廢治廢的技術開發,充分利用廢棄物資源如煤矸石、粉煤灰及農業廢棄物等,這樣既減少了廢物排放,又治理了其他類型的污染,可以首先從當地可利用資源考慮。

(2)前文中含鉻廢水治理方法各有優缺點,並各有其應用前提條件和最佳條件,應在綜合分析的基礎上建立聯合處理或復合處理技術體系,以使處理方案兼顧社會、經濟和環境綜合效應,達到最佳效果。

(3)文中所述大部分相關研究是在實驗室進行的,條件易於掌控,而實際處理工程則十分復雜,影響因素更為復雜,且有時難於准確控制,應加強中試以使各種方法更符合實際工程需求。

(4)由於化學法將產生大量的污泥,污泥鉻含量很高,應合理進行污泥的處置。

(5)生物處理法的出水含有大量的生物,出水不易進行回收利用,因此,生物處理工藝應考慮後接消毒處理。

『拾』 電鍍鉻企業電鍍廢水中總鉻含量一般比六價鉻高多少

一般最普遍的鍍鉻來工藝是,鉻酐自+硫酸,此類工藝產生的都是6價格;不過隨著環保意識的加強,也出現了鍍三價鉻的,該工藝主要使用三價鉻的化合物和絡合劑,產生的主要是三價鉻。這類問題可以到像環保通之類的平台問問看看,主要是關於水處理方面的,希望對您有幫助。

閱讀全文

與電鍍廢水總鉻數據怎麼來的相關的資料

熱點內容
反滲透膜專用有機物阻垢劑 瀏覽:775
離子筆去汗管瘤 瀏覽:804
純水機的廢水比例是多少 瀏覽:793
ro膜水機組裝接法簡圖 瀏覽:814
鋁鍋的水垢化學式 瀏覽:524
水處理過能喝嗎 瀏覽:142
冷凍污水冷卻塔多少錢 瀏覽:239
污水管線上閘閥和蝶閥 瀏覽:969
廢舊油罐注水處理 瀏覽:426
污水裡有鯽魚 瀏覽:465
排放的污水為什麼需要經過壓濾機過濾 瀏覽:898
原料油的蒸餾圖 瀏覽:760
低溫熱解廢水 瀏覽:584
日本核廢水英語 瀏覽:696
什麼去電離子輻射 瀏覽:413
反滲透膜可去除什麼 瀏覽:818
凈水器的桶裝水怎麼放 瀏覽:907
屈臣氏蒸餾水加電瓶里 瀏覽:984
污水工程做什麼會計科目 瀏覽:717
凈水器出廢水純水不出怎麼回事 瀏覽:891