『壹』 現在國內的污水處理廠主要有哪些經營模式呢
答:對建成污水處理廠的管理方面,除了通過TOT、委託管理等模式引入先進的專管理模式外;大部分還是由屬政府通過專門的管理單位責運營管理,性質是事業單位或國有企業,管理經費來源於政府財政,運行比較平穩,但通常機構龐大、人員多、成本高、水平低和設施運行效率差,沒有建立一套標准化的、行之有效的管理體系。
市政公用設施逐步走向市場化已經是一種迅速擴大的趨勢,而污水處理是近年來發展比較快的行業,其步伐邁得大邁得快。如何適應市場化的形式,加快污水處理廠管理體制的改革,建立精簡有效的管理機構,推行規范化、標准化的管理系統,提高管理水平,提高服務質量,降低成本,是目前污水處理廠運行管理的重要課題。
『貳』 【污水處理廠工藝流程設計計算】 污水處理廠基本流程
1概述
1.1 設計依據
本設計採用的主要規范及標准:
《城市污水處理廠污染物排放標准 (GB18918-2002) 》二級排放標准 《室外排水設計規范》(1997年版) (GBJ 14-87) 《給水排水工程概預算與經濟評價手冊》
1.2 設計任務書(附後)
2原水水量與水質和處理要求
2.1 原水水量與水質
Q=60000m3/胡攜d
BOD 5=190mg/L COD=360mg/L SS=200mg/L NH 3-N=45mg/L TP=5mg/L
2.2處理要求
污水排放的要求執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准:
BOD 5≤30mg/L COD≤100mg/L SS≤30mg/L NH 3-N ≤25(30)mg/L TP≤3mg/L
3污水處理工藝的選擇
本污水處理廠水質執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准,其污染物的最高允許排放濃度為:BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L;TP ≤3mg/L。
城市污水中主要污染物質為易生物降解的有機污染物,因此常採用二級生物處理的方法來進行處理。
二級生物處理的方法很多,主要分兩類:一類是活性污泥法,主要包括傳統活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延時活性污泥法(氧化溝)、AB 工藝、A/O工藝、A 2/O工藝、SBR 工藝等。另一類是生物膜法,主要包括生物濾池、生物轉盤、生物接觸氧化法等工藝。任何工藝都有其各自的特點和使用條件。
活性污泥法是當前使用比較普遍並且有比較實際的參考數據。在該工藝中微生物在處理單元內以懸浮狀態存在,因此與污水充分混合接觸,不會產生阻塞,對進水有機物濃度的適應范圍較大,一般認為BOD 5在150—400 mg/L之間時,都具有良好的處理效果。但是傳統活性污泥處理工藝在處理的多功能性、高效穩定性和經濟合理性方面已經難以滿足不斷提高的要求, 特別是進入90年代以來, 隨著水體富營養化的加劇, 我國明確制定了嚴格的氨氮和硝酸鹽氮的排放標准, 從而各種具有除磷、脫氮功能的污水處理工藝:如 A/O工藝、A 2/O工藝、SBR 工藝、氧化溝等污水處理工藝得到了深入的研究、開發和廣泛的應用, 成為當今污水處理工藝的主流。
該地的污水中BOD 5 在190 mg/L左右, 要求出水BOD 5低於30mg/L。在出水的水質中,
不僅對COD 、BOD 5、SS 去除率都有較高的要求, 同時對氮和磷的要求也進一步提高. 結合具體情況在眾多的污水處理工藝中選擇了具有良好脫氮除磷效果的兩種工藝—CASS 工 藝和Carrousuel 氧化溝工藝進行方案技術經濟比較。
4污水處理工藝方案比選
4.1 Carrousuel氧化溝工藝(方案一)
氧化溝時二十世紀50年代由荷蘭的巴斯維爾開發,後在歐洲、北美迅速推廣,80年代中期,我國部分地區也建造了氧化溝污水處理工程。近幾年來,處理廠的規模也發展到日處理水量數萬立方米的工業廢水及城市污水的大、中型污水處理工程。
氧化溝之所以能在近些年來褲孝伏得到較快的發展,在於它管理簡便、運行穩定、流程簡單、耐慎局沖擊負荷、處理效果好等優點,特別是氧化溝具有特殊的水流混合特徵,氧化
溝中的曝氣裝置只設在某幾段處,溶解氧濃度較高,理NH 3-N 效果非常好,同時由於存在厭氧、好氧條件,對污水中的磷也有一定的去除率。
氧化溝根據構造和運行方式的不同,目前較多採用的型式有「Carrousel 型氧化溝」、「Orbal 型氧化溝」、「一體化氧化溝」和「交替式氧化溝」等,其中,由於交替式氧化溝要求自動化水平較高,而Orabal 氧化溝因水深較淺,佔地面積較大,本報告推選Carrousel 氧化溝作為比選方案之一。
本設計採用的是Carrousel 氧化溝工藝. 其工藝的處理流程圖如下圖4-1所示: `
圖4-1 Carrousel氧化溝工藝流程圖
4.1.1污水處理系統的設計與計算
4.1.1.1進水閘門井的設計
進水閘門井單獨設定, 為鋼筋混凝土結構。設閘門井一座, 閘門的有效面積為1.8m 2, 其具體尺寸為1.2×1.5 m,有效尺寸為1.2 m×1.5 m×4.5 m。設一台矩形閘門。當污水廠正常運行時開啟, 當後序構築物事故檢修時, 關閉某一閘門或者全部關閉, 使污水通過超越管流出污水處理廠。
4.1.1.2 中格柵的設計與計算
其計算簡圖如圖4-2所示
(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.02m,格柵傾角α=60°,建議格柵數為2,一備一用。
Q max sin α0. 652⨯sin 60
=≈68個 n =
Nbhv 0. 02⨯0. 5⨯0. 9
(2)格柵寬度:設柵條寬度S=0.01m,
B=S(n-1)+bn=0.01×(68-1)+0.02×68=2.03≈2.00m
(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.60m,其漸寬部分的展開角
α1=20(進水渠道內的流速為0.82m/s),
l 1=
B -B 12. 0-1. 6
=≈0.56m 2tg α12tg 20
(4)柵槽與出水渠道連接處漸窄部分的長度:
l 2=
l 10. 56==0.28m 22
(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 02⎭
43
=0.103m
(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.103+0.3≈0.9m
(7)柵槽總長度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.8m
tg 60
=0. 56+0. 28+0. 5+1. 0+
(8)每日柵渣量:在格柵間隙為20mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=3. 29m 3/d>0.2 m3/d =
1. 2⨯1000K Z ⨯1000
宜採用機械清渣。
圖4-2 格柵計算示意圖
4.1.1.3細格柵的設計與計算
其計算簡圖如圖4-2所示
(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.006m,格柵傾角α=600,格柵數為2。
Q max 0. 652⨯sin 60
=≈109個 n =
Nbhv 2⨯0. 006⨯0. 5⨯0. 9
(2)格柵寬度:設柵條寬度S=0.01m,
B=S(n-1)+bn=0.01×(109-1)+0.006×109=1.73≈1.75m
(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.6m,其漸寬部分的展開角α1=20
(進水渠道內的流速為0.82m/s),
l 1=
B -B 11. 75-1. 60
=≈0.22m 2tg α12tg 20
(4)柵槽與出水渠道連接處漸窄部分的長度:
l 2=
l 10. 22
==0.11m 22
(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 006⎭
43
=0.51m
(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.3+0.51≈1.3m (7)柵槽總長度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.41m
tg 60
=0. 22+0. 11+0. 5+1. 0+
(8)每日柵渣量:在格柵間隙為6mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=1. 65m 3/d>0.2 m3/d =
2⨯1. 2⨯1000K Z ⨯1000
宜採用機械清渣。
4.1.1.4 曝氣沉砂池的設計與計算
本設計採用曝氣沉砂池是考慮到為污水的後期處理做好准備。建議設兩組沉砂池一備一用。其計算簡圖如圖4-3所示。具體的計算過程如下:
(1)池子總有效容積:設t=2min,
V=Q max t ×60=0.652×2×60=78 m3
(2)水流斷面積:
A=
Q max 0. 652
==9.31m2 0. 07v 1
沉砂池設兩格,有效水深為2.00m ,單格的寬度為2.4m 。
(3)池長:
V 78L===8.38m,取L=8.5 m A 9. 31
(4)每格沉砂池沉砂斗容量:
V 0=0.6×1.0×8.5=5.1 m
(5)每格沉砂池實際沉砂量:設含砂量為20 m3/106 m3污水,每兩天排一次,
3
20⨯0. 652
⨯86400⨯2=1.13〈5.1 m3
6
10⨯2
(6)每小時所需空氣量:設曝氣管浸水深度為2.5 m,查表得單位池長所需空氣量為28 m3/(m·h),
q=28×8.5×(1+15%)×2=547.4 m3
圖4-3 曝氣沉砂池計算示意圖
4.1.1.5 厭氧池的設計與計算
4.1.1.5.1 設計參數
設計流量為60000 m3/d,設計為兩座每座的設計流量為30000 m3/d。 水力停留時間:
T =2h 。
污泥濃度:
X =3000mg/L
污泥迴流液濃度:
V 0"=
X R =10000 mg/L
4.1.1.5.2 設計計算 (1)厭氧池的容積:
V =QT =30000×2/24=2500 m3
(2)厭氧池的尺寸:
水深取為h =5,則厭氧池的面積:
V 2500A ===500 m2。
h 5
厭氧池直徑:
D =
4A
π
=
4⨯500
=25 m。 3. 14
考慮0.3的超高,故池總高為H =h +0. 3=5.3 m。 (3)污泥迴流量的計算 迴流比計算:
R =
X
=0.42
X R -X
污泥迴流量:
Q R =RQ =0.42×30000=12600 m/d
4.1.1.6 Carrousel氧化溝的設計與計算
氧化溝,又被稱為循環式曝氣池,屬於活性污泥法的一種。見圖4-4氧化溝計算示3
4.1.1.6.1設計參數
設計流量Q=30000m3/d設計進水水質BOD 5=190mg/L; COD=360mg/L;SS=200mg/L;NH 3-N=45mg/L;污水水溫T =25℃。
設計出水水質BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L; TP ≤3mg/L。
污泥產率系數Y=0.55; 污泥濃度(MLSS )X=4000mg/L;揮發性污泥濃度(MLVSS )X V =2800mg/L; 污泥齡θc =30d; 內源代謝系數K d =0.055. 4.1.1.6.2設計計算
(1)去除BOD
氧化溝出水溶解性BOD 濃度S 。為了保證沉澱池出水BOD 濃度S e ≤30mg/L,必須控制所含溶解性BOD 濃度S 2,因為沉澱池出水中的VSS 也是構成BOD 濃度的一個組成部分。
S=Se -S 1
S 1為沉澱池出水中的VSS 所構成的BOD 濃度。
S 1=1.42(VSS/TSS)×TSS ×(1-e-0. 23⨯5) =1.42×0.7×20×(1-e-0. 23⨯5)
=13.59 (mg/L)
S=20-13.59=6.41(mg/L)
好氧區容積V 1。好氧區容積計算採用動力學計算方法。
V 1=
Y θc Q (S 0-S )
X V (1+K d θc )
=
0. 55⨯30⨯30000⨯(0. 16-0. 00641)
2. 8⨯(1+0. 055⨯30)
=10247m 3
好氧區水力停留時間:t=剩餘污泥量∆X
Y
∆X=Q (S 0-S ) +Q (X 0-X 1) -QX e
1+K d θc
V 110247⨯24==8.20h
30000Q
=2096(kg/d)
去除每1kgBOD 5所產生的干污泥量=
∆X
=0.499(kgD S /kgBOD5)。
Q (S 0-S )
(2)脫氮
需氧化的氨氮量N 1。氧化溝產生的剩餘污泥中含氮率為12.4%,則用於生物合成的總氮量為:
0. 124⨯769. 93⨯1000N 0==3.82(mg/L)
25000
需要氧化的氨氮量N 1=進水TKN-出水NH 3-N-生物合成所需要的氨N 。
N 1=45-15-3.82=26.18(mg/L)
脫氮量NR=進水TKN-出水TN-生物合成所需要的氨N=45-20-3.82=21.18(mg/L) 脫氮所需要的容積V 2
脫硝率q dn(t)= qdn(20)×1.08(T-20)=0.035×1.08(14-20)=0.022kg 脫氮所需要的容積:
V 2=
脫氮水力停留時間t 2:
QN r 30000⨯21. 18
==10315 m3 q dn X v 0. 022⨯2800
t 2 =
氧化溝總體積V 及停留時間t:
V 2
=8.25 h Q
V=V1+V2=10247+10315= 20562m3
t=V/Q=16.45 h
校核污泥負荷N =
QS 025000⨯0. 16
==0.083[kgBOD 5/(kgMLVSS ∙d )] XV 2. 8⨯17135
(3)氧化溝尺寸:取氧化溝有效水深為5m ,超高為1m ,氧化溝深6m 。
V
=20562/5=4112.4m 2 h
單溝寬10m ,中間隔牆寬0.25m 。則彎道部分的面積為:
2⨯10+0. 2523π()
3⨯10+3⨯0. 252A 1=+() π⨯10=965.63m
22
直線段部分的面積:
氧化溝面積為A=
A 2=A -A 1 =4112.4-965.63=3146.77 m2
單溝直線段長度:
L=
A 23146. 77
==78.67m ,取79m 。 4⨯104⨯b
進水管和出水管:污泥迴流比R=63.4%,進出水管的流量為:Q 1=(1+R ) Q =1.634×
30000m /d=0.568 m /s,管道流速為v =1.0m/s。
3
3
則管道過水斷面:
A=
管徑d=
Q 0. 568==0.568m 2 v 1
4A
π
=0.850m, 取管徑850mm 。
校核管道流速:
v=
(4)需氧量
Q
=0.94m A
實際需氧量:
AOR=D1-D 2-D 3+D4-D 5
去除BOD 5需氧量:
D 1=a "Q (S 0-S ) +b "VX =7754.03(kg/d) (其中a "=0.52,b "=0.12)
剩餘污泥中BOD 5需氧量:
D 2=1. 42⨯∆X 1=1131.64(kg/d)
剩餘污泥中NH 3-N 耗氧量:
D 3=4. 6⨯0. 124⨯∆X =454.57(kg/d) (0.124為污泥含氮率)
去除NH 3-N 的需氧量:
D 4=4.6×(TKN-出水NH 3-N )×Q/1000=3450(kg/d)
脫氮產氧量:
D 5=2.86×脫氮量=1514.37(kg/d)
AOR= D1-D 2-D 3+D4-D 5=8103.45(kg/d)
考慮安全系數1. 2,則AOR=8103.45×1. 2=11344.83(kg/d) 去除每1kgBOD 5需氧量=
AOR
Q (S 0-S )
11344. 83
25000⨯(0. 16-0. 00641)
=
=2.95(kgO 2/kgBOD5)
標准狀態下需氧量SOR
SOR=
AOR ∙C S (20)
α(βρC S (T ) -C ) ⨯1. 024
(T -20)
(C S (20)20℃時氧的飽和度,取9.17mg/L;T=25℃;C S(T)25℃時氧的飽和度,取 8.38mg/L;C 溶解氧濃度,取2 mg/L;α=0.85;β=0.95;ρ=0.909)
SOR=
11344. 83⨯9. 17
=20764.89(kg/d) (25-20)
0. 85⨯(0. 95⨯0. 909⨯8. 38-2) ⨯1. 024
∆SOR
=5.41(kgO 2/kgBOD5)
Q (S 0-S )
去除每1kgBOD 5需氧量=
曝氣設備的選擇:設兩台倒傘形表面曝氣機,參數如下: 葉輪直徑:4000mm ;葉輪轉速:28R/min;浸沒深度:1m ; 電機功率:210KW ;充氧量:≥2.1kgO 2/(kW·h)。
4.1.1.7二沉池的設計與計算
其計算簡圖如圖4-5所示
4.1.1.7.1設計參數
Q max =652 L/s=2347.2 m 3/h;
氧化溝中懸浮固體濃度 X =4000 mg/L;
二沉池底流生物固體濃度 X r =10000 mg/L;
污泥迴流比 R=63.4%。
4.1.1.7.2 設計計算
(1) 沉澱部分水面面積 F 根據生物處理段的特性,選取二沉池表面負荷q=0.9m3 /(m2·h), 設兩座二次沉澱池 n =2.
F =Q max 2347. 22==1304(m) nq 2⨯0. 9
(2)池子的直徑 D
D =4F
π=4⨯1304
π=40. 76(m),取D =40m 。
(3)校核固體負荷G
24⨯(1+R ) QX 24⨯(1+0. 634)⨯30000⨯4000G == F 1304
=141.18 [kg/(m2·d)] (符合要求)
(4) 沉澱部分的有效水深h 2 設沉澱時間為2.5h 。
h 2=qt =0.9×2.5=2.25 (m)
(5) 污泥區的容積V
V =2T (1+R ) QX 2⨯2⨯(1+0. 634) ⨯30000⨯4000 =24⨯(X +X r ) 24⨯(10000+4000)
=1945.2 (m3)
(6)污泥區高度h 4
污泥斗高度。設池底的徑向坡度為0.05,污泥斗底部直徑D 2=1.6m,上部直徑D 1=4.0m,傾角為60°,則:
"= h 4D 1-D 24. 0-1. 6⨯tg 60°=2.1(m) ⨯tg 60°=22
11
V 1=2)πh 1"⨯(D 12+D 1D 2+D 2
12=13.72 (m3)
圓錐體高度
""=h 4D -D 140-4⨯0. 05=0.9(m) ⨯0. 05=22
V 2=
=
豎直段污泥部分的高度 ""πh 412⨯(D 2+DD 1+D 12) ⨯(402+40⨯4+42) =418.25(m3) π⨯0. 912
"""=h 4V -V 1-V 21945. 2-13. 72-418. 25==1.16(m) 1304F
"+h 4""+h 4"""=2.1+0.9+1.16=4.16(m) 污泥區的高度h 4=h 4
沉澱池的總高度H 設超高h 1=0.3m,緩沖層高度h 3=0.5m。
則 H =h 1+h 2+h 3+h 4=0.3+2.25+0.5+4.16=7.21m
取H =7.2 m
4.1.1.8接觸池的設計與計算
採用隔板式接觸反應池。其計算簡圖如圖4-5所示。
水力停留時間:t=30min
12
平均水深:h =2.4m。
隔板間隔:b=1.5m。
池底坡度:3%
排泥管直徑:DN=200mm。
4.1.1.8.2設計計算
接觸池容積:
V =Qt =0.652×30×60=1174 m 3
水流速度:
v =Q 0. 652==0. 18 m/s hb 2. 4⨯1. 5
表面積:
Q 1174==489. 2 m2 h 2. 4
廊道總寬度:隔板數採用10個,則廊道總寬度為B=11×b=11×1.5=16.5m。 接觸池長度:
F 489. 2L ===29.6m取30m 。 B 16. 5
水頭損失,取0.4m 。 F =
13
『叄』 列舉常見污水控制指標及相應檢測方法
PH、COD、SS、氨氮、石油類、BOD5。一般前5項,有的也監測B0D5,污水排入受納水體中是要分級別的。
1.首先確認排放單位類別、收納水體的級別,然後按照如果有行業標準的話,就按行標,沒有的話,按照GB3838-2002,如果還沒涉及到,可以參照國際同類法律。
2.以下是GB3838-2002中的標准:
4.1 標准分級:
4.1.1 排入GB3838皿類水域(劃定的保護區和游泳區除外)和排入GB3097中二類海域的污水,執行一級標准。
4.1.2 排入GB3838中Ⅳ、V類水域和排入GB3097中三類海域的污水,執行二級標准。
4.1.3 排入設置二級污水處理廠的城鎮排水系統的污水,執行三級標准。
4.1.4 排入未設置二級污水處理廠的城鎮排水系統的污水,必須根據排水系統出水受納水域的功能要求,分別執行4.1.1和4.1.2的規定。
4.1.5 GB3838中I、Ⅱ類水域和Ⅲ類水域中劃定的保護區,GB3097中一類海域,禁止新建排污口,現有排污口應按水體功能要求,實行污染物總量控制,以保證受納水體水質符合規定用途的水質標准。
4.2 標准值
4.2.1 本標准將排放的污染物按其性質及控制方式分為二類。
4.2.1.1 第一類污染物,不分行業和污水排放方式,也不分受納水體的功能類別,一律在車間或車間處理設施排放口采樣,其最高允許排放濃度必須達到本標准要求(采礦行業的尾礦壩出水口不得視為車間排放口)。
4.2.1.2 第二類污染物,在排污單位排放口采樣,其最高允許排放濃度必須達到本標准要求。
4.2.2 本標准按年限規定了第一類污染物和第二類污染物最高允許排放濃度及部分行業最高允許排水量,分別為:
4.2.2.1 1997年12月31日之前建設(包括改、擴建)的單位,水污染物的排放必須同時執行表1、表2、表3的規定。
4.2.2.2 1998年1月1日起建設(包括改、擴建)的單位,水污染物的排放必須同時執行表1、表4、表5的規定。
4.2.2.3 建設(包括改、擴建)單位的建設時間,以環境影響評價報告書(表)批准日期為准劃分。
『肆』 如何管好污水處理廠
不知道你說的是哪方面,我先給你個參考。。。。
運行管理的內容
城鎮污水廠的運行管理是指從接納原污水到凈化處理排出「達標」污水的全過程管理。它包括准備、計劃、組織以及控制等四方面的內容。
准備:包括物資、人力、資金、能源及組織等的准備;
計劃:是指編制污水、污泥處理的運行控制方案和執行階段計劃,使企業在生產中有據可依,節能降耗,提高管理效益;
組織:是指合理安排運行過程中操作崗位,制定好崗位操作規程以及崗位責任制,做好各崗位之間的協調;
控制:是指運行計劃的實施,是對運行過程實行包括進度、消耗、成本、質量、故障等全面的控制。
運行管理要求
1. 運行管理人員必須熟悉本廠處理工藝和設施、設備的運行要求與技術指標。
2. 操作人員必須了解本廠處理工藝,熟悉本崗位設施、設備的運行要求和技術指標。
3. 各崗位應有工藝系統網路圖、安全操作規程等,並應示於明星部位。
4. 運行管理人員和操作人員應按要求巡視檢查構築物、設備、電器和儀表的運行情況。
5. 各崗位的操作人員應按時做好運行記錄。數據應准確無誤。
6. 操作人員發現運行不正常時,應及時處理或上報主管部門。
7. 各種機械設備應保持清潔,無漏水、漏氣等。
8. 水處理構築物堰口、池壁應保持清潔、完好。
9. 根據不同機電設備要求,應定時檢查,添加或更換潤滑油或潤滑脂。
安全操作要求
1. 各崗位操作人員和維修人員必須經過技術培訓和生產實踐,並考試合格後方可上崗。
2. 啟動設備應在做好啟動准備工作後進行。
3. 電源電壓大於或小於額定電壓5%時,不宜啟動電機。
4. 操作人員在啟閉電器開工時,應按電工操作規程進行。
5. 各種設備維修時必須斷電,並應在開關處懸掛維修標牌後,方可操作。
6. 雨天或冰雪天氣,操作人員在構築物上巡視或操作時,應注意防滑。
7. 清理機電設備及周圍環境衛生時,嚴禁擦拭設備運轉部位,沖洗水不得濺到電纜頭和電機等帶電部位及潤滑部位。
8. 各崗位操作人員應穿戴齊全勞保用品,做好安全防範工作。
9. 應在構築物的明顯位置配置防護救生設施及用品。
10. 嚴禁非崗位人員啟閉本崗位的機電設備。
維護保養要求
1. 運行管理人員和維修人員應熟悉機電設備的維修規定。
2. 應對構築物的結構及各種閥閘、護欄、爬梯、管道等定期進行檢查、維修及防腐處理,並及時更換被損壞的照明設備。
3. 應經常檢查和緊固各種設備連接件,定期更換聯軸器的易損件。
4. 各種管道閥閘應定期做啟閉實驗。
5. 應定期檢查、清掃電器控制櫃,並測試其各種技術性能。
6. 應定期檢查電動閥閘的限位開關、手動與電動的聯鎖裝置。
7. 在每次停泵後,應檢查填料或油封的密封情況,進行必要的處理。並根據需要填加或更換填料、潤滑油、潤滑脂。
8. 凡設有鋼絲繩的裝置,繩的磨損量大於原直徑10%,或其中的一股已經斷裂時,必須更換。
9. 各種機械設備除應做好日常維護保養外,還應按設計要求或製造廠的要求進行大、中、小修。
10. 檢修各類機械設備時,應根據設備的要求,必須保證其同軸度、靜平衡等技術要求。
11. 不得將維修設備更換出的潤滑油、潤滑脂、實驗室廢水及其他雜物丟入污水處理設施內。
12. 維修機械設備時,不得隨意搭接臨時動力線。
13. 建築物、構築物等的避雷、防爆裝置的測試、維修及其周期應符合電業和消防部門的規定。
14. 應定期檢查和更換消防設施等防護用品。
『伍』 污水處理公司的管理運營有哪些內容
1運行考核的主要指標;
對處理成本、處理總量、處理質量、設備(設施)完好率、設備運轉率、能源(材料)消耗、安全生產等一系列指標進行考核,以便反映和掌握運行系統總體狀況。
2記錄與統計;
在污水處理系統的日常管理中,有系統的記錄與統計分析工作是十分重要的。每年每月乃至每日都要進行及時記錄,並注意檢查原始記錄的准確性與真實性。做好收集、保存、積累分析、整理與匯總等工作。
3管理制度;
在污水處理運行系統的日常管理中,為了運行好各種設施設備,管理好各種運營工作,保證設備正常穩定地發揮作用,保護和調動職工的積極性和責任感,需要污水處理運行系統建立和執行崗位責任制等一系列整套規范化管理制度,並通過獎勵和批評,鼓勵職工貫徹執行規章制度,使污水處理廠的管理人員和操作人員積極、主動、熟練地投入日常運行和維護保養工作之中。
4安全技術管理的基本要求;
安全技術管理是對安全技術工作進行的組織、計劃和控制活動。主要包括:對工藝和設備的管理;對生產環境安全的管理;組織制定和實施安全技術操作規程;加強個人防護用品的管理;組織制定安全技術標准。
5對工藝和設備的管理;
生產工藝過程產生的危險因素,是導致事故發生、造成人員傷亡和財物損失的主要危險源。加強生產工藝過程安全技術管理,是防止發生事故,避免或減少損失的主要環節。生產工藝過程安全技術管理主要包括工藝安全管理和設備安全管理。
6對生產環境的安全管理;
企事業單位的環境安全,是保障生產者安全與健康的基本條件。國務院頒布了《工廠安全衛生規程》其中廠院、道路、坑、壕,原材料、成品、半成品和廢料的堆放,及建築物、電網等的安全衛生要求;工作場所總體布置、危險護欄、地面、牆壁、天花板、採光、降溫、防寒、供水等一般安全衛生要求;特殊環境(如氣體、粉塵和危險品)的勞動條件和安全衛生要求。此外廠房設計、防火單蹄、倉庫堆場安全、電氣線路安全等也才有專門規定或標准。
7組織制定和實施安全技術操作規程;
安全技術操作規程是規定工人操作機器儀表的程序和注意事項的技術文件。制定安全操作規程要根據生產工藝、機械設備、儀器儀表的特性,參考安全操作經驗和事故教訓。安全操作規程的主要內容要合乎生產操作步驟和程序,有安全技術知識、注意事項,正確使用個人防護用品的方法、預防事故的緊急措施和設備維修保養事項等。這些都是從控制人的操作行為上預防作廢事故的有效方法。
8加強個人防護用品的管理;
人個防護是為了保護勞動者在生產過程中的生命安全和身體健康,預防工作事故和各種職業毒害而採取的一種防護性輔助措施。
9防火防爆與壓力宣傳品管理;
(1)火災與爆炸
(2)防火防爆的管理
10事故報告制和調查程序;
國務院最新規定:為了保障安全生產,維護國家財產和人民生命安全,特規定了事故報告制和調查程序規定,以加強事故的管理和防範。
11人員傷亡事故的報告制和調查程序。
職工傷亡事故是指職工在勞動過程中發生的傷害、急性中毒事故。即指職工在本崗位勞動或雖不在本崗位勞動,但由於單位的設施不安全,勞動條件和作業環境不良,所發生的輕傷、重傷、死亡事故。
澤大儀器的污水處理全過程監管系統不錯,
作為污水處理公司的管理運營者可以了解下這個系統。
『陸』 污水處理的基本方法
針對於現階段的污水處理,總結出以下幾點方法。
1、物理法
物理法污水處理就是利用物理作用,分離污水中主要呈懸浮狀態的污染物,在處理過程中不改變水的化學性質。
⑴沉澱(重力分離)
污水流入池內由於流速降低,污水中的固體物質在中立的作用下進行沉澱,而使固體物質與水分離。
這種工藝分離效果好,簡單易行,應用廣泛,如污水處理廠的沉砂池和沉澱池。沉砂池主要去除污水中密度較大的固體顆粒物,沉澱池則主要用於去除污水中大量的呈顆粒狀的懸浮固體。
⑵篩選(截流)
利用篩濾介質截流污水中的懸浮物。屬於砂濾處理的設備有格柵、微濾機、砂濾池、真空濾機、壓濾機(後兩種主要用於污泥脫水)等。
⑶氣浮(上浮)
對一些相對密度接近於水的細微顆粒,因其自重難於在水中下沉或上浮,可採用氣浮裝置。此法將空氣打入污水中,並使其以微小氣泡的形勢由水中析出,污水中密度 近於水的微小顆粒狀污染雜質(如乳化油)黏附到氣泡上,並隨氣泡升至水面,形成泡沫浮渣而去除。根據空氣打入方式的不同,氣浮設備有加壓溶汽氣浮法、葉輪氣浮法和射流氣浮法等。為提高氣浮效果,有時需要向污水中投加混凝劑。
⑷離心與旋流分離
使含有懸浮固體或乳化油的污水,由於懸浮固體和廢水的質量不同,受到的離心力也不同,質量大的懸浮固體被拋甩到污水外側,這樣就可使懸浮固體和污水分別通過各自的排出口排出設備之外,從而使污水得以凈化。
2.化學法
污水的化學處理方法就是向污水投加化學物質,利用化學反應來分離回收污水中的污染物,或是其轉化為無害物質。屬於化學處理法的有以下幾種。
⑴混凝法
混凝法是向污水中投加一定量的葯劑,經過脫穩、架橋等反應過程,使污水中的污染物凝聚並沉降。水中呈膠體狀態的污染物質通常帶有負電荷,膠體顆粒之間互相排 斥形成穩定的混合液,若水中帶有相反電荷的電解質(混凝劑)可使污水中的膠體顆粒改變為呈電中性,並在分子引力作用下,凝聚成大顆粒下沉。
⑵中和法
用化學方法消除污水中過量的酸和鹼,使其pH值達到中性左右的過程稱為中和法。處理含酸污水以鹼作為中和劑,處理含鹼污水以酸作為中和劑,也可以吹入含 CO2的煙道氣進行中和。酸和鹼均指無機酸和無機鹼,一般依照「以廢制廢」的原則,亦可採用葯劑中和處理,可以連續進行,也可間歇進行。
⑶氧化還原法
污水中呈溶解狀態的有機物和無機物,在投加氧化劑和還原劑後,由於電子的遷移而發生氧化和還原作用形成無害的物質。常用的氧化劑有空氣中的氧、純氧、漂白 粉、臭氧、氯氣等,氧化法多用於處理含氰含酚廢水。常用的還原劑則有鐵屑、硫酸亞鐵、亞硫酸氫鈉等,還原法多用於處理含鉻、含汞廢水。
⑷電解法
在廢水中插入電極並通過電流,則在陰極板上接受電子。在水的電解過程中,陽極上產生氧氣,陰極上產生氫氣。上述綜合過程使陽極上發生氧化作用,在陰極上發生還原作用。目前電解法主要用於處理含鉻及含氰廢水。
⑸吸附法
污水吸附處理主要是利用固體物質表面對污水中污染物質的吸附,吸附可分為物理吸附和生物吸附等。 物理吸附是吸附劑和吸附質之間在分子力作用下產生的,不產生 化學變化,而化學吸附法則使吸附劑和吸附質在化學鍵力作用下起吸附作用的,因此化學吸附選擇性較強。此外,在生物作用下也可產生生物吸附。在污水處理中常 用的吸附劑有活性炭、磺化煤、硅藻土、焦炭等。
⑹化學沉澱法
向污水中投加某種化學葯劑,使它和某些溶解物質產生反應,生成難溶鹽沉澱下來。多用於處理含重金屬離子的工業廢水。
⑺離子交換法
離子交換法在污水處理中應用較廣。使用的離子交換劑分為無機離子交換法(天然沸石和合成沸石)、有機離子交換樹脂(強酸性陽離子樹脂、弱酸性陽離子樹脂、強 鹼性陰離子樹脂、弱鹼性陰離子樹脂、鰲和樹脂等)。採用離子交換法處理污水時,必須考慮樹脂的選擇性。樹脂對各種離子的交換能力是不同的,這主要取決於各 種離子對該種樹脂親和力的大小,又稱選擇性的大小,另外還要考慮到樹脂的再生方法等。
⑻膜分離法
滲析、電滲析、超濾、微濾、反滲透等通過一種特殊的半滲透膜分離水中的離子和分子的技術,統稱為膜分離法。電滲析法主要用於水的脫鹽,回收某些金屬離子等。 反滲透作用主要是膜表面化學本性所起的作用,他分離的溶質粒徑小,除鹽率高,所需的工作壓力大;超濾所用的材質和反滲透相同,但超濾是篩濾作用,分離溶質 粒徑大,透水率高,除鹽率低,工作壓力小。
3、生物法
污水的生物膜法就是採取一定的人工措施,創造有利於微生物生長、繁殖的環境,使微生物大量增殖,以提高微生物氧化、分解有機污染物被降解並轉化為無害物質,使污水得以凈化。
生物處理法可分為好氧處理法和厭氧處理法兩類。前者處理效率高,效果好,使用廣泛,是生物處理的主要方法。屬於生物處理法的工藝有以下幾種。
⑴活性污泥法
是當前應用最廣泛的一種生物處理技術。將空氣連續鼓入含有大量溶解有機污染物的污水中,經過一段時間,水中既形成繁殖有大量好氧型微生物的絮凝體—活性污 泥,
活性污泥能夠吸附水中的有機物,生活污水在活性污泥上的微生物以有機物為食料,獲得能量,並不斷省長增殖,有機物被分解、去除,使污水得以凈化。 一般經曝氣池處理的出水是含有大量活性污泥的污水—混合液,經沉澱分離,水被凈化排放,沉澱分離後的污泥作為種泥,部分迴流到曝氣池。活性污泥法自出現以來,經過80多年的演變,出現了各種
活性污泥法的變法,但其原理和工藝過程沒有根本性的改變。
(2)普通活性污泥法
這種方法已被廣泛使用,是許多污水處理廠的常用工藝。傳統活性污泥法是將污水和迴流污泥從曝氣池首段引入,呈推流式至曝氣池末端流出,此法適用於處理要求高、水質較穩定的污水,但對負荷的變動適應性較弱,後來在此基礎上產生了一些改良形式。
⑶多點進水法
為了使槽內有機負荷接近一定值,把污水從幾個點分開流入,有利於解決超負荷問題。
⑷吸附再生法
接觸槽內活化的活性污泥吸附污染物質,污泥與水分離後,在曝氣槽內把吸附的污染物質進行氧化。該法有利於增加污水處理量,有一定的抗擊沖擊負荷能力。
⑸延時曝氣法
污水在曝氣池內延長曝氣時間,有利於完全氧化,污泥量少,該法適用於小型污水處理廠。
⑹厭氧-缺氧
- 好氧活性污泥法 在常規活性污泥法去除有機污染物的同時,為了能有效的去除氮磷等營養物質,人們把厭氧、缺氧、好氧狀況組合到活性污泥法中,使厭氧-缺氧-好氧狀況在反應曝氣池內同時存在或反復周期實現,形成了厭氧-缺氧-好氧活性污泥法。也有的工藝流程採用厭氧-好氧活性污泥法。
⑺間歇式活性污泥法
污水流至單一反應池中,按時間通過程序控制各過程。在反應池的一個工作周期,運行程序依次為進水、反應、沉澱、出水和待機等過程。該法適用於中小水量和出水水質較高的場合,有利於自動化控制;通過對運行的調整,該法也可進行除磷脫氮和化學處理,有利於污水回用。
『柒』 污水廠生化池過程儀表指示作用以及如何控制
污水廠生化池過程儀表指示作用以及如何控制
在了解在線儀表的應用之前,我們先來看看沒有在線的情況下,污水廠能夠掌握的生物池的數據都有哪些。污水廠內建有化驗室,化驗室會對每天的進出水水質、生物池內的活性污泥參數等進行化驗,得出運行數據以供工藝人員調整使用,受到化驗方法的限制,以及化驗人員的工作時間等,一般這些數據每天化驗一次。
污水廠化驗室針對管理重點的生物池的活性污泥控制化驗參數,比較常用的有污泥濃度、揮發性污泥濃度MLVSS、沉降比SV、溶解氧、微生物鏡檢等,受到人工取樣的時間、周期以及生物池內水流的推動流向的限制,一般會選擇生物池的末端進行取樣,這個點位的化驗數據主要監測的是生物池內活性污泥對污水中各種污染物質的最終反應的結果,一般的傳統的專業書籍也在用這個點位的數據對生物池的常規檢測參數進行確定。比如溶解氧常規的說法是2mg/L,但是在整個好氧池中,前段的溶解氧由於進水中的有機物較多,微生物大量的吸附降解有機物,消耗大量的氧氣,這樣就出現了前段的溶解氧遠遠低於2mg/L,但是隨著曝氣區域的延伸,污水中的有機污染物逐步被微生物降解完畢,微生物不再需要氧氣,水中剩餘的溶解氧會逐步增多,為了避免氧氣的浪費,一般在生物池曝氣區的末端控制溶解氧在2mg/L,這樣可以減少不必要的能源消耗,也對活性污泥的老化有良好的控制。
因此在生物池末端的監測,可以以傳統的數據來評判生物池內的活性污泥對污水的處理程度,工藝人員使用這些數據進行日常的工藝調整和管理等。但是在末端檢測和以日為單位的頻次對出水水質結果對整體的工藝調控也存在很大的滯後性,化驗室手工檢測其實也是一種結果檢測,不過是將出水水質的結果檢測提前到了生物池的末端,並沒有形成生物反應的過程檢測,提前預判也就更無能為力,在現階段出水水質的嚴格管控下,對工藝運行的有了更高層次的要求,原有的結果檢測需要向前進入到過程中進行檢測,甚至需要具備預判的能力,在現有的手工檢測的模式下是很難實現這個目標的。
同時數據的檢測密度也帶來了工藝控制的不準確性,污水廠的生物處理流程是一個流動性的過程,流動的處理過程,水質數據,過程數據是一個隨著時間、空間位置實時變化的狀態,而取樣時,僅能取到一個固定地點的瞬時的水樣,瞬時水樣要代表整個生物池內的所有的變化時不可能的。只有當取樣點的密度或者數量足夠大的時候才會有比較貼合實際的數據,所以這需要一個長期的穩定的檢測,並且保證工藝、進水、環境等都處於一個較為穩定的狀態下才會有,但實際上這時不可能的,因此手工取樣的化驗結果,要盡可能積累更多的數據量,在大數據量中消除取樣的偶然性,才會具備判斷的依據。
在線儀表在數據的密集度上,是完全可以取代人工的,那麼工藝管理人員除去具備了更密集的數據以外,通過使用在線儀表,有沒有可能把控制向前移動呢?先前移動的控制需要對工藝運行的各個階段進行監控,把生物池由原來的末端出水監測向前移動到過程中的監測,生物池以空間推流式工藝較多(SBR及其變種以時間變化為主),在不同的流程中的點位監測數值是不一樣的,而且在不同的時段監測的數據也是會發生變化的,在實時變化的工況下,人工檢測的頻次低,周期長的弊病就明顯的顯現出來,而在線儀表的實時監測的優勢就顯而易見。因此希望採取先前進行工藝的過程式控制制污水廠,越來越需要在線儀表在工藝運行中的實時監測的作用。下面以生物池的各項控制點來說明下在線儀表在生物池工藝控制中的應用。
污水處理的生物池形式多樣,不同的工藝要求有不同的工藝池體,下面就以A2O的工藝控制點來進行在線儀表的應用探討。現有的除磷脫氮工藝中A2O及其改良工藝越來越多的在實際中得到應用,A2O工藝中比較重要的特點就是將過量吸附磷的厭氧段(A)和反硝化的缺氧段(A)分離出來單獨的控制區域進行控制,在工藝管理中具有明確的管理參數,便於實際的運行管理。對於工藝管理人員來說,僅僅在出水口安裝的溶解氧和污泥濃度的在線儀表就不再能檢測到除磷脫氮的效果了,這需要更多更新的設備,或者通過一些常用的表徵參數比如溶解氧、ORP、硝態氮儀表等來評估除磷脫氮的效果,以便在後期的管理中進行調控。
『捌』 如何控制污水處理站的運行成本
凈水廠成本控制點有:
1、提高消毒劑濃度,降低葯耗;
2、根據用水高峰調節提升泵房功率(如有);
3、提高凈水處理效率,降低處理負荷。
4、如果來水水質較好,可考慮減少處理環節,當然要注意監督部門的檢查。
污水處理廠運行成本控制點:
在設備選型合理、選用國優合資品牌的前提下,可從以下幾個方面入手:
1、減少曝氣時間,根據污水中含氧量來調節;
2、根據來水情況,調節提升泵運行時間;
3、控制員工數量和工資福利等。
『玖』 污水處理廠的運行管理
城市污水廠的運行管理,同其他行業的運行管理一樣,是 污水處理全流程進行內計劃、組容織、控制和協調等工作的總稱,是企業各種管理活動(例如:行政管理、技術管理、設備管理、「三產」管理)的一部分,是企業各種經營活動中最重要的部分。
城市污水廠的運行管理,指從接納原污水至凈化處理排出「達標」污水的全過程的管理。
污水處理運行管理的基本要求
城市污水處理廠運行管理過程中的基本要求是:
(1)按需生產 首先應滿足城市與水環境對污水廠運行的基本要求,保證干處理量使處理後污水達標。
(2)經濟生產 以最低的成本處理好污水,使其「達標」。
(3)文明生產 要求具有全新素質的操作管理人員,以先進的技術文明的方式,安全的搞好生產運行。
水質管理
污水處理廠(站)水質管理工作是各項工作的核心和目的,是保證「達標」的重要因素。水質管理制度應包括:各級水質管理機構責任制度,「三級」(指環保監測部門、總公司和污水站)檢驗制度,水質排放標准與水質檢驗制度,水質控制與清潔生產制度等。