導航:首頁 > 污水知識 > 污水廠的水平衡圖

污水廠的水平衡圖

發布時間:2023-08-07 07:37:10

1. 污水廠剩餘流量是什麼


污水廠里的計算第三篇—污水廠的水量平衡

梵心4466 >《水》
閱919轉62021.11.02關注
近期國家環保部在各地進行全面的督察,很多污水廠都在做各種准備工作,其中資料的准備是很重要的一個項目,在之前我們污水處理廠的運營人員經常會做的一樣工作就是減排量的匯報,減排量的計算中涉及一個最重要的計算參數就是處理水量,處理水量有提升量,排放量的區別,這兩個數字一般來自於污水廠的進出口安裝的流量計,但是在實際工作中,這兩個數字往往差別很大,這種差別往往讓管理者困惑,更棘手的是如何向外圍主管部門進行解釋。今天我們就通過水量平衡的計算來聊聊這個話題。


我們來看什麼是污水廠里的水平衡,污水廠里的水平衡概念和其他企業內內的水平衡概念有所區別,污水廠里的水平衡主要是對進入和排出污水廠的污水總量的平衡計算,這個計算在有些設計院污水廠提升泵的時候會採用,當然也有忽略的,依靠水泵的流量揚程的轉化把抵消了這個漏洞的。但是在實際運行中,我們運營人員還是要了解一下污水廠里的這部分的水平衡的,並能夠和管理部門解釋清楚這類問題。

為了了解污水廠的水量平衡計算,我們以A2O工藝的污水處理廠對於廠內的各個構築物的流量來進行一下統計和分析。在污水廠內通常會安裝進口流量計和出口流量計,污水處理廠的進口一般是重力流的管路,為了避免因為非滿管流而導致的流量測量不準,污水處理廠的進口流量計一般設置在污水提升泵的後端出水壓力管道上,較多採用管道式的電磁流量計。出口流量計會安裝在最終的出水口的位置,一般環保要求採用開放式的明渠超聲波流量計。

污水處理也是自然界的一種現象的人工強化作用,所以污水處理廠一定遵循大自然的處理規律,那就是物質守恆,無論它變成怎樣的形式,它的總量一定是守恆的,所以我們對於污水廠的水量就有一個基本的守則,那就是無論污水廠內的工藝如何復雜,我們最終的水量(包含轉變成其他形式的)一定是能夠計算到相等的。


但是我們知道在實際運行中,進出口的流量計是不可能相等的,主要的原因是在廠區內有剩餘污泥的排放,吸砂上清液和深度車間反沖洗水,污泥儲池溢流,污泥脫水機上清液等的廠區工藝迴流水,通過廠區工藝管路迴流到污水廠提升泵房的集水井內,而這些又被提升泵提升起來,在進水流量計上顯示出來。有些污水廠還有中水的內部綠化回用,還有敞口的生物池的蒸騰作用等等,這些原因都造成了污水廠的進水和出水流量計上的數據不匹配。為了更好的分析計算這些水量,我們把廠內的水量分別編號,以便統計計算:

1、總進水量QJ(以進口流量計數據為主)。

2、沉砂池的吸砂水量Q1。

2、初沉池污泥排放量Q2。

3、生物處理段的剩餘污泥量Q3。

4、污泥儲池溢流Q4。

5、污泥脫水機上清液Q5。

6、深度處理反沖洗水Q6。

7、中水量Q7。

8、其他損耗水量Q8(包含蒸騰作用,管路跑冒等)

9、總出水量QC(以出口流量計數據為主)。

為了計算方便,我們設定這個污水處理廠每天實際處理水量為10000m3,也就是從外管網每天流入到污水廠內的污水量為10000m3。以此為基礎數據我們來進行廠區的整個水量平衡的計算。

我們假定污水處理廠已經穩定運行,各個構築物都已經按照設計的要求達到了滿負荷運行,所有的排泥,迴流,污泥脫水機都是按照設計要求進行的,而且進水水質也符合設計標准,這樣我們就不考慮實際運行中出現的實際運行中出現的各種干擾因素。下面來逐步計算上述的每一項:

Q1:沉砂池的吸砂水量。這部分由沉砂池的吸砂泵的流量來決定,由於一般在吸砂管路上不會設置流量計,因此吸砂泵流量可以根據吸砂泵的銘牌標稱流量,每日開啟的時間來進行計算。設定吸砂泵流量為20m3/h,每日運行時間為4小時,早晚各兩小時。

Q1=20*4=80m3

Q2:初沉池排泥量。初沉池的排放的污泥量由於管路上沒有流量計,而且一般不是通過提升泵排泥的,所以這部分排泥量大部分採用都是估算,可以簡單的用儲泥池的體積進行測量,排泥一小時,儲泥池液位增加多少,再根據儲泥池面積計算出一小時排泥量,然後根據每天初沉池定期排泥的時間來計算初沉排泥量。當然也可以利用管道的壓力和流量的計算公式進行計算,計算公式在各種專業參考書和網路上都可以找到,對於採用平流式沉澱池的初沉池來說,這個就更簡單了,利用吸泥泵的流量和運行時間來計算就可以了。同時還可以按照初沉池的沉澱效率來校核,即每日進出水的SS的去除量就是每日的排泥量,關於污泥的計算,後面的公眾號會專門討論,今天也不細分析了。

關於Q2,我們設定為:Q2=500m3

Q3:生物處理段的剩餘污泥量。生物處理段的剩餘污泥量一般會根據工藝運行情況進行調整,這個在實際運行中也是沒有設置流量計的,但是一般情況下,剩餘污泥的排放都是採用剩餘污泥泵從污泥迴流泵房提升到污泥儲池的,所以這部分流量可以按照剩餘污泥泵的開啟時間和流量來進行計算。假設剩餘污泥泵標稱流量為:100m3/h,每日運行18小時。

Q3=100*18=1800m3

打開APP查看高清大圖
Q4:污泥儲池溢流。一般污水處理廠的污泥脫水車間每天運行時間在12~18小時,剩餘時間只是排泥,污泥儲池一般不會無限制的設計到足夠大,來保證每天的排泥都能儲存起來,因此,有部分排泥就會在污泥儲池上面的溢流管溢流回廠區工藝回水管路里。但是由於溢流管上不可能裝流量計,也沒有水泵提升,而且也不是壓力流,所以沒有可用的公式計算,那麼這部分流量怎麼來計算呢?

我們來看上面的水量圖,進入儲泥池的主要來自於初沉污泥Q2,生物段剩餘污泥Q3,從儲泥池出去的主要是溢流Q4,通過脫水機的污泥投配泵提升進入脫水機的QT,這樣就可以得出儲泥池的水量平衡關系了:

Q2+Q3=Q4+Qt

所以:Q4=Q2+Q3-Qt

污泥投配泵的流量Qt可以從污泥投配泵銘牌流量和運行時間統計。假設污泥泵的流量為10m3/h,每日工作時間為16小時。則Qt為:

Qt=10*16=160m3

Q4=500+1800-160=2140m3

Q5:脫水機上清液。這部分水量是脫水機通過機械作用把加了絮凝劑以後的污泥的上清液和固體分離後產生的水,主要來自於幾個方面,一個是污泥投配泵的給脫水機的輸送的污泥量,一個是絮凝劑的加葯量,一個反沖洗濾布的反沖洗水(我們這里設定都是用自來水,不用中水)。這幾個數據都可以從現場設備的工作銘牌和運行時間得出。假設污泥泵的流量為10m3/h,絮凝劑泵加葯量為0.3m3/h,反沖洗水泵的流量為10m3/h。脫水機每日工作時間為16小時。

則Q=(10+0.3+10)16=324.8m3

需要說明的是這部分是進入脫水機全部的流量,還要把泥餅的量減去,假設每天生產泥餅10m3,所以最後的上清液計算為

Q5=324.8-10=314.8m3

Q6:深度處理反沖洗水。這部分水水來自於深度處理車間過濾工段的定時反洗產生的反沖洗污水,通過工藝管路迴流到泵房內。反沖洗的流量可以根據反沖洗水泵的銘牌標稱和運行時間進行計算。假設反沖洗銘牌為30m3/h,每日反沖洗時間為4小時,反沖洗流量為:

Q6=30*4=120m3

Q7:中水量。中水主要回供廠外的企業用戶,或者廠內的綠化澆灑等,中水取水管路一般設計在接觸池後的出水段,由於設置位置不一樣,有些中水取水在出水流量計前段,最終的出水量就是中水量加出水流量計水量,有些在出水流量計後段,中水量就不影響出水量。中水量根據廠內的設置的中水回用泵的流量和運行時間進行統計計算。

假設中水泵的銘牌為200m3/h,每天的運行時間為20小時,則:

Q7=200*20=4000m3

Q8:其他水量。其他水量由於都是不可精確測量計算的數值,我們可以進行估算,一般可以按處理水量的5~8‰計算,我們選擇6.5‰的處理水量進行計算,則Q8為:

Q8=10000*6.5‰=65m3

到現在為止,我們就把廠內所有的流量都進行統計分析,要注意生物處理段的內外迴流只是在進出水流量計的中間,沒有跨越流量計,因此這部分水是在系統內部的,不影響進出水流量,所以在水量平衡中不進行計算。

打開APP查看高清大圖
下面我們來看這個設定的污水廠里的水量平衡的計算。

首先來看進水量Qj。Qj是進水流量計的數值,但是由於進水流量計的位置安裝在廠區迴流管之後,它統計的流量數值是廠區外的進水量和廠區內的迴流量之和。而污水廠廠區內的迴流到進水泵的流量主要來源於沉砂池的迴流液Q1,儲泥池的溢流Q4,脫水機房上清液Q5,深度處理車間的反沖洗水Q6,所以Qj的流量為:

Qj=10000+Q1+Q4+Q5+Q6

=10000+80+2140+314.8+120

=12654.8m3

然後我們來看出水量Qc。Qc是污水廠最後流出系統的污水,這部分污水主要是廠外進水10000m3,在各個處理工序中拋掉的工藝迴流水,包括沉砂池的迴流液Q1,初沉排泥量Q2,生物段剩餘污泥量Q3,深度處理的反沖洗水Q6,廠內消耗Q8。而中水Q7,主要來自於清水池,清水池的設置各污水廠有不同的位置,如果在出水流量計前,Q6不包含在出水流量內,如果設置在出水流量計後,Q6包含在出水流量里,在這里我們假設清水池在流量計後,不影響出水流量的統計。所以最後的出水流量就為:

Qc=10000-Q1-Q2-Q3-Q8

=10000-80-500-1800-120-65

=7435m3

計算到這里是不是就是最終穩定的出水量了呢?這里要注意下就是上述計算其實算出來的是第一天穩定運行以後的情況,在第二天運行以後,進水量仍舊保持Qj,但是由於第一天進水提升泵最終提升了Qj的流量,所以第二天的出水量的10000噸就變成了Qj了,所以,穩定運行以後的出水量應該是:

Qc=Qj-Q1-Q2-Q3-Q8

=12654.80-80-500-1800-120-65

=10089.8m3

這里就有疑問了,為什麼最終出水比進水10000噸還多,污水廠不是還有揮發跑冒滴漏的情況么,出水應該比10000噸少啊?為什麼出水反而比進水多?這需要再回看兩個地方,污泥脫水機房的絮凝劑加葯和反沖洗水一共為(10+0.3)*16=164.8m3這部分的水為污水處理系統從外部引進的水量,從系統出去的是蒸發跑冒滴漏和污泥外運部分,所以最後的水量平衡為:

10000+164.8-65-10=10089.8m3

這樣就和上面的Qc核對上了,從上述的整個推算來看,污水廠的水量是保持平衡的,但是我們從流量計的統計差值的數據來看:

Qj-Qc=12654.8-10089.8=2565m3

也就是說在理想的數據統計情況下,進水流量計安裝在廠區的迴流管後方,前後流量計相差2565m3。

當然在污水廠的實際運行中,水量的計算受到現實條件的限制很多,數字應該沒有這么精確到最終完美平衡,但是只要我們每一個運行人員認真分析每一個進出流量,最後的數字還是能夠無限接近水量平衡的。

2. 污水處理構築物的設計水面標高及池底標高怎樣算出來

污水來處理構築物的設自計水面標高及池底標高不是土建計算出來的,是給排水專業根據當地管網條件,確定進口污水泵站(粗格柵)的池底標高,根據選擇的泵的揚程流量等指標和處理工藝依次確定後續構築物的標高。並匯總總圖專業平衡土方等指標。
污水處理 (sewage treatment,wastewater treatment):為使污水達到排水某一水體或再次使用的水質要求對其進行凈化的過程。污水處理被廣泛應用於建築、農業,交通、能源、石化、環保、城市景觀、醫療、餐飲等各個領域,也越來越多地走進尋常百姓的日常生活。

3. 可研,環評中需要提供各車間詳細的水平衡圖嗎

你可以全廠一個水平衡圖。

4. 【污水處理廠工藝流程設計計算】 污水處理廠基本流程

1概述

1.1 設計依據

本設計採用的主要規范及標准:

《城市污水處理廠污染物排放標准 (GB18918-2002) 》二級排放標准 《室外排水設計規范》(1997年版) (GBJ 14-87) 《給水排水工程概預算與經濟評價手冊》

1.2 設計任務書(附後)

2原水水量與水質和處理要求

2.1 原水水量與水質

Q=60000m3/胡攜d

BOD 5=190mg/L COD=360mg/L SS=200mg/L NH 3-N=45mg/L TP=5mg/L

2.2處理要求

污水排放的要求執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准:

BOD 5≤30mg/L COD≤100mg/L SS≤30mg/L NH 3-N ≤25(30)mg/L TP≤3mg/L

3污水處理工藝的選擇

本污水處理廠水質執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准,其污染物的最高允許排放濃度為:BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L;TP ≤3mg/L。

城市污水中主要污染物質為易生物降解的有機污染物,因此常採用二級生物處理的方法來進行處理。

二級生物處理的方法很多,主要分兩類:一類是活性污泥法,主要包括傳統活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延時活性污泥法(氧化溝)、AB 工藝、A/O工藝、A 2/O工藝、SBR 工藝等。另一類是生物膜法,主要包括生物濾池、生物轉盤、生物接觸氧化法等工藝。任何工藝都有其各自的特點和使用條件。

活性污泥法是當前使用比較普遍並且有比較實際的參考數據。在該工藝中微生物在處理單元內以懸浮狀態存在,因此與污水充分混合接觸,不會產生阻塞,對進水有機物濃度的適應范圍較大,一般認為BOD 5在150—400 mg/L之間時,都具有良好的處理效果。但是傳統活性污泥處理工藝在處理的多功能性、高效穩定性和經濟合理性方面已經難以滿足不斷提高的要求, 特別是進入90年代以來, 隨著水體富營養化的加劇, 我國明確制定了嚴格的氨氮和硝酸鹽氮的排放標准, 從而各種具有除磷、脫氮功能的污水處理工藝:如 A/O工藝、A 2/O工藝、SBR 工藝、氧化溝等污水處理工藝得到了深入的研究、開發和廣泛的應用, 成為當今污水處理工藝的主流。

該地的污水中BOD 5 在190 mg/L左右, 要求出水BOD 5低於30mg/L。在出水的水質中,

不僅對COD 、BOD 5、SS 去除率都有較高的要求, 同時對氮和磷的要求也進一步提高. 結合具體情況在眾多的污水處理工藝中選擇了具有良好脫氮除磷效果的兩種工藝—CASS 工 藝和Carrousuel 氧化溝工藝進行方案技術經濟比較。

4污水處理工藝方案比選

4.1 Carrousuel氧化溝工藝(方案一)

氧化溝時二十世紀50年代由荷蘭的巴斯維爾開發,後在歐洲、北美迅速推廣,80年代中期,我國部分地區也建造了氧化溝污水處理工程。近幾年來,處理廠的規模也發展到日處理水量數萬立方米的工業廢水及城市污水的大、中型污水處理工程。

氧化溝之所以能在近些年來褲孝伏得到較快的發展,在於它管理簡便、運行穩定、流程簡單、耐慎局沖擊負荷、處理效果好等優點,特別是氧化溝具有特殊的水流混合特徵,氧化

溝中的曝氣裝置只設在某幾段處,溶解氧濃度較高,理NH 3-N 效果非常好,同時由於存在厭氧、好氧條件,對污水中的磷也有一定的去除率。

氧化溝根據構造和運行方式的不同,目前較多採用的型式有「Carrousel 型氧化溝」、「Orbal 型氧化溝」、「一體化氧化溝」和「交替式氧化溝」等,其中,由於交替式氧化溝要求自動化水平較高,而Orabal 氧化溝因水深較淺,佔地面積較大,本報告推選Carrousel 氧化溝作為比選方案之一。

本設計採用的是Carrousel 氧化溝工藝. 其工藝的處理流程圖如下圖4-1所示: `

圖4-1 Carrousel氧化溝工藝流程圖

4.1.1污水處理系統的設計與計算

4.1.1.1進水閘門井的設計

進水閘門井單獨設定, 為鋼筋混凝土結構。設閘門井一座, 閘門的有效面積為1.8m 2, 其具體尺寸為1.2×1.5 m,有效尺寸為1.2 m×1.5 m×4.5 m。設一台矩形閘門。當污水廠正常運行時開啟, 當後序構築物事故檢修時, 關閉某一閘門或者全部關閉, 使污水通過超越管流出污水處理廠。

4.1.1.2 中格柵的設計與計算

其計算簡圖如圖4-2所示

(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.02m,格柵傾角α=60°,建議格柵數為2,一備一用。

Q max sin α0. 652⨯sin 60

=≈68個 n =

Nbhv 0. 02⨯0. 5⨯0. 9

(2)格柵寬度:設柵條寬度S=0.01m,

B=S(n-1)+bn=0.01×(68-1)+0.02×68=2.03≈2.00m

(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.60m,其漸寬部分的展開角

α1=20(進水渠道內的流速為0.82m/s),

l 1=

B -B 12. 0-1. 6

=≈0.56m 2tg α12tg 20



(4)柵槽與出水渠道連接處漸窄部分的長度:

l 2=

l 10. 56==0.28m 22

(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),

2

⎛S ⎫v h 1=β ⎪sin αK

b 2g ⎝⎭

4

3

0. 92⎛0. 01⎫

sin 600⨯3 =2. 42 ⎪⨯

19. 6⎝0. 02⎭

43

=0.103m

(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,

H =h +h 1+h 2=0.5+0.103+0.3≈0.9m

(7)柵槽總長度:

L =l 1+l 2+0. 5+1. 0+

H 1



tg 60

0. 5+0. 3

=2.8m

tg 60

=0. 56+0. 28+0. 5+1. 0+

(8)每日柵渣量:在格柵間隙為20mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,

W =

Q max W 1⨯864000. 652⨯0. 07⨯86400

=3. 29m 3/d>0.2 m3/d =

1. 2⨯1000K Z ⨯1000

宜採用機械清渣。

圖4-2 格柵計算示意圖

4.1.1.3細格柵的設計與計算

其計算簡圖如圖4-2所示

(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.006m,格柵傾角α=600,格柵數為2。

Q max 0. 652⨯sin 60

=≈109個 n =

Nbhv 2⨯0. 006⨯0. 5⨯0. 9

(2)格柵寬度:設柵條寬度S=0.01m,

B=S(n-1)+bn=0.01×(109-1)+0.006×109=1.73≈1.75m

(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.6m,其漸寬部分的展開角α1=20

(進水渠道內的流速為0.82m/s),

l 1=

B -B 11. 75-1. 60

=≈0.22m 2tg α12tg 20

(4)柵槽與出水渠道連接處漸窄部分的長度:

l 2=

l 10. 22

==0.11m 22

(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),

2

⎛S ⎫v h 1=β ⎪sin αK

b 2g ⎝⎭

4

3

0. 92⎛0. 01⎫

sin 600⨯3 =2. 42 ⎪⨯

19. 6⎝0. 006⎭

43

=0.51m

(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,

H =h +h 1+h 2=0.5+0.3+0.51≈1.3m (7)柵槽總長度:

L =l 1+l 2+0. 5+1. 0+

H 1

tg 60

0. 5+0. 3

=2.41m

tg 60

=0. 22+0. 11+0. 5+1. 0+

(8)每日柵渣量:在格柵間隙為6mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,

W =

Q max W 1⨯864000. 652⨯0. 07⨯86400

=1. 65m 3/d>0.2 m3/d =

2⨯1. 2⨯1000K Z ⨯1000

宜採用機械清渣。

4.1.1.4 曝氣沉砂池的設計與計算

本設計採用曝氣沉砂池是考慮到為污水的後期處理做好准備。建議設兩組沉砂池一備一用。其計算簡圖如圖4-3所示。具體的計算過程如下:

(1)池子總有效容積:設t=2min,

V=Q max t ×60=0.652×2×60=78 m3

(2)水流斷面積:

A=

Q max 0. 652

==9.31m2 0. 07v 1

沉砂池設兩格,有效水深為2.00m ,單格的寬度為2.4m 。

(3)池長:

V 78L===8.38m,取L=8.5 m A 9. 31

(4)每格沉砂池沉砂斗容量:

V 0=0.6×1.0×8.5=5.1 m

(5)每格沉砂池實際沉砂量:設含砂量為20 m3/106 m3污水,每兩天排一次,

3

20⨯0. 652

⨯86400⨯2=1.13〈5.1 m3

6

10⨯2

(6)每小時所需空氣量:設曝氣管浸水深度為2.5 m,查表得單位池長所需空氣量為28 m3/(m·h),

q=28×8.5×(1+15%)×2=547.4 m3

圖4-3 曝氣沉砂池計算示意圖

4.1.1.5 厭氧池的設計與計算

4.1.1.5.1 設計參數

設計流量為60000 m3/d,設計為兩座每座的設計流量為30000 m3/d。 水力停留時間:

T =2h 。

污泥濃度:

X =3000mg/L

污泥迴流液濃度:

V 0"=

X R =10000 mg/L

4.1.1.5.2 設計計算 (1)厭氧池的容積:

V =QT =30000×2/24=2500 m3

(2)厭氧池的尺寸:

水深取為h =5,則厭氧池的面積:

V 2500A ===500 m2。

h 5

厭氧池直徑:

D =

4A

π

=

4⨯500

=25 m。 3. 14

考慮0.3的超高,故池總高為H =h +0. 3=5.3 m。 (3)污泥迴流量的計算 迴流比計算:

R =

X

=0.42

X R -X

污泥迴流量:

Q R =RQ =0.42×30000=12600 m/d

4.1.1.6 Carrousel氧化溝的設計與計算

氧化溝,又被稱為循環式曝氣池,屬於活性污泥法的一種。見圖4-4氧化溝計算示3

4.1.1.6.1設計參數

設計流量Q=30000m3/d設計進水水質BOD 5=190mg/L; COD=360mg/L;SS=200mg/L;NH 3-N=45mg/L;污水水溫T =25℃。

設計出水水質BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L; TP ≤3mg/L。

污泥產率系數Y=0.55; 污泥濃度(MLSS )X=4000mg/L;揮發性污泥濃度(MLVSS )X V =2800mg/L; 污泥齡θc =30d; 內源代謝系數K d =0.055. 4.1.1.6.2設計計算

(1)去除BOD

氧化溝出水溶解性BOD 濃度S 。為了保證沉澱池出水BOD 濃度S e ≤30mg/L,必須控制所含溶解性BOD 濃度S 2,因為沉澱池出水中的VSS 也是構成BOD 濃度的一個組成部分。

S=Se -S 1

S 1為沉澱池出水中的VSS 所構成的BOD 濃度。

S 1=1.42(VSS/TSS)×TSS ×(1-e-0. 23⨯5) =1.42×0.7×20×(1-e-0. 23⨯5)

=13.59 (mg/L)

S=20-13.59=6.41(mg/L)

好氧區容積V 1。好氧區容積計算採用動力學計算方法。

V 1=

Y θc Q (S 0-S )

X V (1+K d θc )

=

0. 55⨯30⨯30000⨯(0. 16-0. 00641)

2. 8⨯(1+0. 055⨯30)

=10247m 3

好氧區水力停留時間:t=剩餘污泥量∆X

Y

∆X=Q (S 0-S ) +Q (X 0-X 1) -QX e

1+K d θc

V 110247⨯24==8.20h

30000Q

=2096(kg/d)

去除每1kgBOD 5所產生的干污泥量=

∆X

=0.499(kgD S /kgBOD5)。

Q (S 0-S )

(2)脫氮

需氧化的氨氮量N 1。氧化溝產生的剩餘污泥中含氮率為12.4%,則用於生物合成的總氮量為:

0. 124⨯769. 93⨯1000N 0==3.82(mg/L)

25000

需要氧化的氨氮量N 1=進水TKN-出水NH 3-N-生物合成所需要的氨N 。

N 1=45-15-3.82=26.18(mg/L)

脫氮量NR=進水TKN-出水TN-生物合成所需要的氨N=45-20-3.82=21.18(mg/L) 脫氮所需要的容積V 2

脫硝率q dn(t)= qdn(20)×1.08(T-20)=0.035×1.08(14-20)=0.022kg 脫氮所需要的容積:

V 2=

脫氮水力停留時間t 2:

QN r 30000⨯21. 18

==10315 m3 q dn X v 0. 022⨯2800

t 2 =

氧化溝總體積V 及停留時間t:

V 2

=8.25 h Q

V=V1+V2=10247+10315= 20562m3

t=V/Q=16.45 h

校核污泥負荷N =

QS 025000⨯0. 16

==0.083[kgBOD 5/(kgMLVSS ∙d )] XV 2. 8⨯17135

(3)氧化溝尺寸:取氧化溝有效水深為5m ,超高為1m ,氧化溝深6m 。

V

=20562/5=4112.4m 2 h

單溝寬10m ,中間隔牆寬0.25m 。則彎道部分的面積為:

2⨯10+0. 2523π()

3⨯10+3⨯0. 252A 1=+() π⨯10=965.63m

22

直線段部分的面積:

氧化溝面積為A=

A 2=A -A 1 =4112.4-965.63=3146.77 m2

單溝直線段長度:

L=

A 23146. 77

==78.67m ,取79m 。 4⨯104⨯b

進水管和出水管:污泥迴流比R=63.4%,進出水管的流量為:Q 1=(1+R ) Q =1.634×

30000m /d=0.568 m /s,管道流速為v =1.0m/s。

3

3

則管道過水斷面:

A=

管徑d=

Q 0. 568==0.568m 2 v 1

4A

π

=0.850m, 取管徑850mm 。

校核管道流速:

v=

(4)需氧量

Q

=0.94m A

實際需氧量:

AOR=D1-D 2-D 3+D4-D 5

去除BOD 5需氧量:

D 1=a "Q (S 0-S ) +b "VX =7754.03(kg/d) (其中a "=0.52,b "=0.12)

剩餘污泥中BOD 5需氧量:

D 2=1. 42⨯∆X 1=1131.64(kg/d)

剩餘污泥中NH 3-N 耗氧量:

D 3=4. 6⨯0. 124⨯∆X =454.57(kg/d) (0.124為污泥含氮率)

去除NH 3-N 的需氧量:

D 4=4.6×(TKN-出水NH 3-N )×Q/1000=3450(kg/d)

脫氮產氧量:

D 5=2.86×脫氮量=1514.37(kg/d)

AOR= D1-D 2-D 3+D4-D 5=8103.45(kg/d)

考慮安全系數1. 2,則AOR=8103.45×1. 2=11344.83(kg/d) 去除每1kgBOD 5需氧量=

AOR

Q (S 0-S )

11344. 83

25000⨯(0. 16-0. 00641)

=

=2.95(kgO 2/kgBOD5)

標准狀態下需氧量SOR

SOR=

AOR ∙C S (20)

α(βρC S (T ) -C ) ⨯1. 024

(T -20)

(C S (20)20℃時氧的飽和度,取9.17mg/L;T=25℃;C S(T)25℃時氧的飽和度,取 8.38mg/L;C 溶解氧濃度,取2 mg/L;α=0.85;β=0.95;ρ=0.909)

SOR=

11344. 83⨯9. 17

=20764.89(kg/d) (25-20)

0. 85⨯(0. 95⨯0. 909⨯8. 38-2) ⨯1. 024

∆SOR

=5.41(kgO 2/kgBOD5)

Q (S 0-S )

去除每1kgBOD 5需氧量=

曝氣設備的選擇:設兩台倒傘形表面曝氣機,參數如下: 葉輪直徑:4000mm ;葉輪轉速:28R/min;浸沒深度:1m ; 電機功率:210KW ;充氧量:≥2.1kgO 2/(kW·h)。

4.1.1.7二沉池的設計與計算

其計算簡圖如圖4-5所示

4.1.1.7.1設計參數

Q max =652 L/s=2347.2 m 3/h;

氧化溝中懸浮固體濃度 X =4000 mg/L;

二沉池底流生物固體濃度 X r =10000 mg/L;

污泥迴流比 R=63.4%。

4.1.1.7.2 設計計算

(1) 沉澱部分水面面積 F 根據生物處理段的特性,選取二沉池表面負荷q=0.9m3 /(m2·h), 設兩座二次沉澱池 n =2.

F =Q max 2347. 22==1304(m) nq 2⨯0. 9

(2)池子的直徑 D

D =4F

π=4⨯1304

π=40. 76(m),取D =40m 。

(3)校核固體負荷G

24⨯(1+R ) QX 24⨯(1+0. 634)⨯30000⨯4000G == F 1304

=141.18 [kg/(m2·d)] (符合要求)

(4) 沉澱部分的有效水深h 2 設沉澱時間為2.5h 。

h 2=qt =0.9×2.5=2.25 (m)

(5) 污泥區的容積V

V =2T (1+R ) QX 2⨯2⨯(1+0. 634) ⨯30000⨯4000 =24⨯(X +X r ) 24⨯(10000+4000)

=1945.2 (m3)

(6)污泥區高度h 4

污泥斗高度。設池底的徑向坡度為0.05,污泥斗底部直徑D 2=1.6m,上部直徑D 1=4.0m,傾角為60°,則:

"= h 4D 1-D 24. 0-1. 6⨯tg 60°=2.1(m) ⨯tg 60°=22

11

V 1=2)πh 1"⨯(D 12+D 1D 2+D 2

12=13.72 (m3)

圓錐體高度

""=h 4D -D 140-4⨯0. 05=0.9(m) ⨯0. 05=22

V 2=

=

豎直段污泥部分的高度 ""πh 412⨯(D 2+DD 1+D 12) ⨯(402+40⨯4+42) =418.25(m3) π⨯0. 912

"""=h 4V -V 1-V 21945. 2-13. 72-418. 25==1.16(m) 1304F

"+h 4""+h 4"""=2.1+0.9+1.16=4.16(m) 污泥區的高度h 4=h 4

沉澱池的總高度H 設超高h 1=0.3m,緩沖層高度h 3=0.5m。

則 H =h 1+h 2+h 3+h 4=0.3+2.25+0.5+4.16=7.21m

取H =7.2 m

4.1.1.8接觸池的設計與計算

採用隔板式接觸反應池。其計算簡圖如圖4-5所示。

水力停留時間:t=30min

12

平均水深:h =2.4m。

隔板間隔:b=1.5m。

池底坡度:3%

排泥管直徑:DN=200mm。

4.1.1.8.2設計計算

接觸池容積:

V =Qt =0.652×30×60=1174 m 3

水流速度:

v =Q 0. 652==0. 18 m/s hb 2. 4⨯1. 5

表面積:

Q 1174==489. 2 m2 h 2. 4

廊道總寬度:隔板數採用10個,則廊道總寬度為B=11×b=11×1.5=16.5m。 接觸池長度:

F 489. 2L ===29.6m取30m 。 B 16. 5

水頭損失,取0.4m 。 F =

13

5. 如何進行污水處理廠的高程計算及平面、高程布置

污水處理廠
平面布置及高程布置
一、污水處理廠的平面布置
污水處理廠的平面布置應包括:
處理構築物的布置污水處理廠的主體是各種處理構築物。作平面布置時,要根據各構築物(及其附屬輔助建築物,如泵房、鼓風機房等)的功能要求和流程的水力要求,結合廠址地形、地質條件,確定它們在平面圖上的位置。在這一工作中,應使:聯系各構築物的管、渠簡單而便捷,避免遷回曲折,運行時工人的巡迴路線簡短和方便;在作高程布置時土方量能基本平衡;並使構築物避開劣質土壤。布置應盡量緊湊,縮短管線,以節約用地,但也必須有一定間距,這一間距主要考慮管、渠敷設的要求,施工時地基的相互影響,以及遠期發展的可能性。構築物之間如需布置管道時,其間距一般可取5-8m,某些有特殊要求的構築物(如消化池、消化氣罐等)的間距則按有關規定確定。
廠內管線的布置污水處理廠中有各種管線,最主要的是聯系各處理構築物的污水、污泥管、渠。管、渠的布置應使各處理構築物或各處理單元能獨立運行,當某一處理構築物或某處理單元因故停止運行時,也不致影響其他構築物的正常運行,若構築物分期施工,則管、渠在布置上也應滿足分期施工的要求;必須敷設接連人廠污水管和出流尾渠的超越管,在不得已情況下可通過此超越管將污水直接排人水體,但有毒廢水不得任意排放。廠內尚有給水管、輸電線、空氣管、消化氣管和蒸氣管等。所有管線的安排,既要有一定的施工位置,又要緊湊,並應盡可能平行布置和不穿越空地,以節約用地。這些管線都要易於檢查和維修。
污水處理廠內應有完善的雨水管道系統,以免積水而影響處理廠的運行。
輔助建築物的布置輔助建築物包括泵房、鼓風機房、辦公室、集中控制室、化驗室、變電所、機修、倉庫、食堂等。它們是污水處理廠設計不可缺少的組成部分。其建築面積大小應按具體情況與條件而定。有可能時,可設立試驗車間,以不斷研究與改進污水處理方法。輔助建築物的位置應根據方便、安全等原則確定。如鼓風機房應設於曝氣池附近以節省管道與動力;變電所宜設於耗電量大的構築物附近等。化驗室應遠離機器間和污泥干化場,以保證良好的工作條件。辦公室、化驗室等均應與處理構築物保持適當距離,並應位於處理構築物的夏季主風向的上風向處。操作工人的值班室應盡量布置在使工人能夠便於觀察各處理構築物運行情況的位置。
此外,處理廠內的道路應合理布置以方便運輸;並應大力植樹綠化以改善衛生條件。
應當指出:在工藝設計計算時,就應考慮它和平面布置的關系,而在進行平面布置時,也可根據情況調整構築物的數目,修改工藝設計。
總平面布置圖可根據污水廠的規模採用1∶200~1∶1000比例尺的地形圖繪制,常用的比例尺為l:500。
圖1為某甲市污水處理廠總平面布置圖、主要處理構築物有:機械除污物格柵井、曝氣沉砂池、初次沉澱池與二次沉澱池(均設斜板)、鼓風式深水中層曝氣池、消化池等及若干輔助建築物。
該廠平面布置特點為:流線清楚,布置緊湊。鼓風機房和迴流污泥泵房位於暖氣池和二次沉澱池一側,節約了管道與動力費用,便於操作管理。污泥消化系統構築物靠近四氯化碳製造廠(即在處理廠西側),使消化氣、蒸氣輸送管較短。節約了基建投資。辦公室。生活住房與處理構築物、鼓風機房、泵房、消化池等保持一定距離,衛生條件與工作條件均較好。在管線布置上,盡量一管多用,如超越管、處理水出廠管都借道雨水管泄入附近水體,而剩餘污泥、污泥水、各構築物放空管等,又都與廠內污水管合並流人泵房集水井。但因受用地限制(廠東西兩惻均為河浜),遠期發展餘地尚感不足。
圖2為乙市污水廠的平面布置圖,泵站設於廠外。主要構築物有:格柵、曝氣沉砂池、初次沉澱池、曝氣池、二次沉澱池及迴流污泥泵房等一些輔助建築物。濕污泥池設於廠外便於農民運輸之處。
該廠平面布置的特點是:布置整齊、緊湊。兩期工程各自成系統,對設計與運行相互干擾較少。辦公室等建築物均位於常年主風向的上風向,且與處理構築物有一定距離,衛生、工作條件較好。在污水流人初次沉澱池、曝氣池與二次沉澱池時,先後經三次計量,為分析構築物的運行情況創造了條件。利用構築物本身的管渠設立超越管線,既節省了管道,運行又較靈活。
第二期工程預留地設在一期工程與廠前區之間,若二期工程改用別的工藝流程或另選池型時,在平面布置上將受一定限制。泵站與濕污泥池均設於廠外,管理不甚方便。此外,三次計量增加了水頭損失。
二、污水處理廠的高程布置
污水處理廠高程布置的任務是:確定各處理構築物和泵房等的標高,選定各連接管渠的尺寸並決定其標高。計算決定各部分的水面標高,以使污水能按處理流程在處理構築物之間通暢地流動,保證污水處理廠的正常運行。
污水處理廠的水流常依靠重力流動,以減少運行費用。為此,必須精確計算其水頭損失(初步設計或擴初設計時,精度要求可較低)。水頭損失包括:
(1)水流流過各處理構築物的水頭損失,包括從進池到出池的所有水頭損失在內;在作初步設計時可按表1估算。
表1 處理構築物的水頭水損失
構築物名稱 水頭損失(cm) 構築物名稱 水頭損失(cm)
格柵 10~25 生物濾池(工作高度為2m時):
沉砂池 10~25
沉澱池: 平流
豎流
輻流 20~40 1)裝有旋轉式布水器 270~280
40~50 2)裝有固定噴灑布水器 450~475
50~60 混合池或接觸池 10~30
雙層沉澱池 10~20 污泥干化場 200~350
曝氣池:污水潛流入池 25~50
污水跌水入池 50~150

(2)水流流過連接前後兩構築物的管道(包括配水設備)的水頭損失,包括沿程與局部水頭損失。
(3)水流流過量水設備的水頭損失。
水力計算時,應選擇一條距離最長、水頭損失最大的流程進行計算,並應適當留有餘地;以使實際運行時能有一定的靈活性。
計算水頭損失時,一般應以近期最大流量(或泵的最大出水量)作為構築物和管渠的設計流量,計算涉及遠期流量的管渠和設備時,應以遠期最大流量為設計流量,並酌加擴建時的備用水頭。
設置終點泵站的污水處理廠,水力計算常以接受處理後污水水體的最高水位作為起點,逆污水處理流程向上倒推計算,以使處理後污水在洪水季節也能自流排出,而水泵需要的揚程則較小,運行費用也較低。但同時應考慮到構築物的挖土深度不宜過大,以免土建投資過大和增加施工上的困難。還應考慮到因維修等原因需將池水放空而在高程上提出的要求。
在作高程布置時還應注意污水流程與污泥流程的配合,盡量減少需抽升的污泥量。污泥干化場、污泥濃縮池(濕污泥池),消化池等構築物高程的決定,應注意它們的污泥水能自動排人污水人流干管或其他構築物的可能性。
在繪制總平面圖的同時,應繪制污水與污泥的縱斷面圖或工藝流程圖。繪制縱斷面圖時採用的比例尺:橫向與總平面圖同,縱向為1∶50-1∶100。
現以圖2所示的乙市污水處理廠為例說明高程計算過程。該廠初次沉澱池和二次沉澱池均為方形,周邊均勻出水,曝氣池為四座方形池,表面機械曝氣器充氧,完全混合型,也可按推流式吸附再生法運行。污水在入初沉池、曝氣池和二沉池之前;分別設立了薄壁計量堰(、為矩形堰,堰寬0.7m,為梯形堰,底寬0.5m)。該廠設計流量如下:
近期 =174L/s 遠期 =348L/s
=300L/s =600L/s
迴流污泥量以污水量的100%計算。
各構築物間連接管渠的水力計算見表2。
處理後的污水排人農田灌溉渠道以供農田灌溉,農田不需水時排人某江。由於某江水位遠低於渠道水位,故構築物高程受灌溉渠水位控制,計算時,以灌溉渠水位作為起點,逆流程向上推算各水面標高。考慮到二次沉澱池挖土太深時不利於施工,故排水總管的管底標高與灌溉渠中的設計水位平接(跌水0.8m)。
污水處理廠的設計地面高程為50.00m。
高程計算中,溝管的沿程水頭損失按表2所定的坡度計算,局部水頭損失按流速水頭的倍數計算。堰上水頭按有關堰流公式計算,沉澱池、曝氣池集水槽系底,且為均勻集水,自由跌水出流,故按下列公式計算:
B= (1)
=1.25B (2)
式中Q--集水槽設計流量,為確保安全,常對設計流量再乘以1.2~1.5的安全系數();
B--集水槽寬(m);
h0--集水槽起端水深(m)。
高程計算:
高程(m)
灌溉渠道(點8)水位 49.25
排水總管(點7)水位
跌水0.8m 50.05
窨井6後水位
沿程損失=0.001×390 50.44
窨井6前水位
管頂平接,兩端水位差0.05m 50.49
二次沉澱池出水井水位
沿程損失=0.0035×100=0.35m 50.84
二次沉澱池出水總渠起端水位
沿程損失=0.35-0.25=0.10m 50.94
二次沉澱池中水位
集水槽起端水深 =0.38m
自由跌落=0.10m
堰上水頭(計算或查表)=0.02m
合計 0.50m 51.44
堰F3後水位
沿程損失=0.002810=0.03m
局部損失==0.28m
合計 0.31m 51.75
堰F3前水位
堰上水頭=0.26m
自由跌落=0.15m
合計 0.41m 52.16
曝氣池出水總渠起端水位
沿程損失=0.64-0.42=0.22m 52.38
曝氣池中水位
集水槽中水位=0.26m 52.64
堰F2前水位
堰上水頭=0.38m
自由跌落=0.20m
合計 0.58m 53.22
點3水位
沿程損失=0.62-0.54=0.08m
局部損失=5.85×=0.14m
合計 0.22m 53.44
初次沉澱池出水井(點2)水位
沿程損失=0.0024×27=0.07m
局部損失=2.46×=0.15m
合計 0.22m 53.66
初次沉澱池中水位
出水總渠沿程損失=0.35-0.25=0.10m
集水槽起端水深 =0.44m
自由跌落 =0.10m
堰上水頭=0.03m
合計 0.67m 54.33
堰F1後水位
沿程損失=0.0028×11=0.04m
局部損失==0.28m
合計 0.32m 54.65
堰F1前水位
堰上水頭=0.30m
自由跌落=0.15m
合計 0.45m 55.10
沉砂池起端水位
沿程損失=0.48-0.46=0.02m
沉砂池出口局部損失=0.05m
沉砂池中水頭損失=0.20m
合計 0.27m 55.37
格柵前(A點)水位
過柵水頭損失0.15m 55.52m
總水頭損失 6.27m
上述計算中,沉澱池集水槽中的水頭損失由堰上水頭、自由跌落和槽起端水深三部分組成,見圖3。計算結果表明:終點泵站應將污水提升至標高55.52m處才能滿足流程的水力要求。根據計算結果繪制了流程圖,見圖4。

圖3 集水槽水頭損失計算示意
-堰上水頭;-自由跌落;-集水槽起端水深;-總渠起端水深

圖4 污水處理流程
污泥流程的高程計算以圖1所示的甲市污水處理廠為例。該廠污泥處理流程為:
二次沉澱池--污水泵站--初次沉澱池--污泥投配(預熱)池--污泥泵站--消化池--貯泥池--運泥船外運
高程計算順序與污水流程同,即從控制性標高點開始計算。
甲市處理廠設計地面標高為4.2m,初次沉澱池水面標高為6.7m。二次沉澱池剩餘活性污泥系利用廠內下水道排至污水泵站,計算從略。從初次沉澱池排出污泥的含水率為97%,污泥消化後經靜澄、撤去上清液,其含水率為96%。初次沉澱池至污泥投配池的管道用鑄鐵管,長150m,管徑300mm。設管內流速為15m/s,按式(3)

式中—輸泥管道沿程壓力損失(m)
L—輸泥管道長度(m)
D—輸泥管管徑(m)
v—污泥流速(m/s)
—海森-威廉(Haren-Williams)系數,其值決定於污泥濃度,見下表:
污泥濃度(%) 值
0.0 100
2.0 81
4.0 61
6.0 45
8.5 32
10.1 25
可求得其水頭損失為:
m
自由水頭1.5m,則管道中心標高為:
6.7-(1.20+1.50)=4.0m
流入污泥投配池的管底標高為:
4.0-0.15=3.85m

圖5 投配池及標高
污泥投配池的標高可據此確定,投配池及標高見圖5。
消化池至貯泥池的各點標高受河水位的影響(即受河中運泥船高程的影響),故以此向上推算。設要求貯泥池排泥管管中心標高至少應為3.0m才能向運泥船排盡池中污泥,貯泥池有效深2.0m。已知消化池至貯泥池的鑄鐵管管徑為200mm,管長70m,並設管內流速為1.5m/s,則根據式(1)可求得水頭損失為1.20m,自由水頭設為1.5m。又,消化池採用間歇式排泥運行方式,根據排泥量計算,一次排泥後池內泥面下降0.5m。則排泥結束時消化池內泥面標高至少應為:
3.0+2.0+0.1+1.2+1.5=7.8m
開始排泥時的泥面標高:
7.8+0.5=8.3m
式中0.1為管道半徑,即貯泥池中泥面與入流管管底平。
應當注意的是:當採用在消化池內撇去上清液的運行方式時,此標高是撇去上清液後的泥面標高,而不是消化池正常運行時的池內泥面標高。
當需排除消化池中下面的污泥時,需用排泥泵排除。
據此繪制的污泥高程圖見圖8-5。

6. 工廠給排水平衡圖如何畫,基本上是從一次水到污水處理廠。

回用
進水--->各用水單元--->排水
損耗

7. 大型污水處理廠水池結構的設計分析

下面是中達咨詢給大家帶來關於大型污水處理廠水池結構的設計相關內容,以供參考。
引言:
當前社會的快速發展,使得人們對環境污染的問題越來越重視,其中,工業污水是造成環境污染的重要因素之一。在瞎凳污水處理過程中,污水處理廠水池結構的建設尤為重要,它不僅直接關系著污水的處理質量,還對處理設施有一定的影響。為此,我們需要加強大型污水處理廠水池結構的設計,保證污水處理效果。下面我們首先來了解一下大型污水處理廠水池結構設計的相關內容,然後針對其相關問題提出有效的解決措施。
一、探討污水處理廠水池結構設計的相關內容
(一)污水處理廠水池荷載及荷載組合
首先,荷載主要包括池內的水壓、土對池壁的壓力、溫度濕度及地下水的壓力,其中水壓的計算大都按照滿水條件進行計算。而土壓力的影響因素較多,它與土質有著密切聯系,為此,我們可以通過朗肯理論對土壓進行計算。由於溫度濕度是隨著環境的變化而變化的,它們一旦變化就會導致結構物體積發生改變,從而產生一定的應力。地下水壓力對底板的影響尤為重要,為了避免水壓對底板造成破壞,需要我們在設計過程中對水壓做好准確的計算。其次,荷載組合包括水壓力與自重的組合、土壓力與自重的組合及水壓力、自重、溫差、濕差三者的組合。在水池結構設計中,水壓力與自重的組合和土壓力與自重的組合是最基礎的兩種組合,而水壓力、自重、溫差、濕差的組合是非常不利的。
(二)污水處理廠水池結構的計算
污水處理廠水池結構的類型有很多種,像敞口水池、有蓋水池、小型水池、大型水池等,對不同的結構類型我們要採取不同的計算模型。首先,對敞口水池要要將其假定為三邊支承,有走道板的需要其設計為橫向深梁,為了更加合理的對其進行計算,需要對敞口水池依據不動鉸支撐來分析。其次,對跨度在六米內的小型水池或有蓋水池,我們需要按照地基反力直接分布進行底板的計算。再就是對大型水池,我們可以利用單位截條來進行底板的計算。
二、分析大型污水處理廠水池結構設計中存在的問題
(一)水池上浮問題的分析
在水池結構設計過程中,一旦出現失誤就會導致水池的上浮問題。例如在對水池結構進行設計時,只考慮到水池整體穩定性,忽略磨亮旅了對水池中局部部分的抗浮驗算,就容易導致水池的上浮問題。而且,在水池結構設計規劃過程中,一旦出現基礎處理失誤、計算失誤、抗浮措施使用不當等問題,都容易導致水池上浮的發生。根據水池上浮問題產生的原因,我們要採取有效的措施避免上浮鍵迅事故。首先,為了避免水池抗浮力過小而導致上浮問題,需要我們採取加大水池抗浮力的措施,也就是說通過增加水池的自重力來與地下浮力相抗衡,具體方法包括增加水池覆蓋土的數量、保證水池填土質量、加大水池底板厚度等。其次,對水池的抗浮力要做到全方位驗算,不僅要對水池整體抗浮性進行驗算,還要對水池中間的多格水池、連接柱子的頂板及底板分別進行抗浮性驗算。這樣就可以根據驗算結果全面做好水池結構的抗浮設計。另外,在對水池結構進行抗浮設計時,要採用恰當的抗浮措施,包括錨桿、抗浮樁等方法,避免水池上浮事故的發生。
(二)水池滲漏問題的分析
在大型污水處理廠的建設中,水池結構多採用鋼筋混凝土結構,根據這一結構特性,一旦混凝土結構發生變形,就會導致水池滲透的問題。水池結構產生裂縫的原因有很多,包括混凝土結構受到外部環境的影響、水池結構設計中荷載組合選用不當、預埋件設計不符合規定、鋼筋使用不合理等。為了解決水池結構的滲透問題,需要我們採取以下措施控制水池裂縫的發生。首先,在進行水池結構設計時,要按照規定選擇混凝土強度等級,嚴格把控水泥用量,從而避免混凝土結構發生變形,控制水池滲透現象。其次,在水池結構設計過程中,要做好水池抗裂度的驗算,對構造配筋的選擇也要按照水池需要進行,並考慮好荷載組合的選擇,合理的進行水池結構設計,從而避免水池壁產生裂縫。再就是對穿牆管套的施工要進行充分的准備,對其使用數量及位置都要做出明確的規定。最後,為了避免混凝土結構受到外界環境的影響,要按照要求設置沉降縫或者伸縮縫,防止混凝土結構發生變形,進一步保證大型污水處理廠水池結構的設計質量。
總結:
綜上所述,我國工業化和城市化進程不斷發展,這也進一步加劇了環境污染問題,並且,工業中產生的大量污水對人們身體的健康造成了一定的威脅,為此,加強污水處理尤為重要。近年來,我國污水處理工程不斷擴大,大型污水處理廠的建設水平逐漸提高。但是,在水池結構設計過程中,仍然存在著一定的問題,像水池沉降不均問題、滲透問題等,需要我們採取相關措施解決這些問題,進一步保證污水處理質量。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

8. 污水處理廠的高程圖怎麼計算怎麼畫

首先要明確污水處理廠高程布置的任務是:

  1. 確定各處理構築物和泵房等的專標高;屬

  2. 選定各連接管渠的尺寸並決定其標高;

  3. 計算決定各部分的水面標高。

以使污水能按處理流程在處理構築物之間通暢地流動,保證污水處理廠的正常運行。


針對以上任務,得到高程圖的基本畫法:

首先高程圖的布局是「直線」的。

  1. 先畫一條地平線;

  2. 將從進水到出水之間的各個構築物的埋地深度和地上高度按比例畫出來;

  3. 將連接各構築物的管線的敷設位置和進出水方式畫清楚;

  4. 最後標出頁面和構築物頂部的標高。

以上為高程圖最基本的畫法,

如有其它問題建議詢問專業的同行從業人員。

閱讀全文

與污水廠的水平衡圖相關的資料

熱點內容
永川區污水處理廠電話 瀏覽:753
純水機進水電磁閥為什麼不出水 瀏覽:86
瓦爾塔免維護電池加蒸餾水 瀏覽:455
空調濾芯積灰怎麼清理 瀏覽:575
圍岩突水處理 瀏覽:614
飲水機怎麼放在水槽 瀏覽:629
釀酒為什麼不能用純凈水 瀏覽:923
污水管路下面能用什麼 瀏覽:842
屠宰養殖廢水處理計劃書 瀏覽:196
bt方式合同污水 瀏覽:734
福克斯原廠汽油濾芯是什麼牌子的 瀏覽:391
浙江環氧樹脂板 瀏覽:48
好美凈水器沒有水怎麼辦 瀏覽:214
優化工廠廢水周邊環境 瀏覽:557
離子交換能力 瀏覽:448
泡茶用礦泉水還是蒸餾水 瀏覽:457
環氧樹脂膠粘玻璃怎麼樣 瀏覽:975
60升萬和熱水器如何排污水 瀏覽:222
蒸餾水是不是完全純潔 瀏覽:714
室內空氣凈化器多少 瀏覽:603