A. 建議收藏!圖解各種廢水處理技術工藝流程
廢水處理(wastewater treatment methods)就是利用物理、化學和生物的方法對廢水進行處理,使廢水凈化,減少污染,以至達到廢水回收、復用,充分利用水資源。圖解17種污水處理工藝詳細流程圖,建議收藏!甘度,專注於解決中小企業污水處理難題。
工藝流程圖
1、電鍍廢水:電鍍廢水主要來源於電鍍生產過程中,電鍍生產過程中會排放大量的工業廢水,其廢水的排量和廢水性質與電鍍工業的生產方式及用水方式有著密切的關系。根據不同的處理方式可以將電鍍廢水分為四大類,分別是鍍件前處理廢水、鍍槽廢液、鍍件漂洗廢水以及生產過程中的「跑、冒、滴、漏」。
2、澱粉廢水:澱粉廢水是以玉米、馬鈴薯、小麥、大米等農產品為原料生產澱粉或澱粉深加工產品(澱粉糖、葡萄糖、澱粉衍生物等)產生的廢水,一般都屬於高濃度有機廢水,是造成環境污染的主要污染源之一。
3、果汁生產廢水:果汁廢水主要來自沖洗水果、粉碎、榨汁等工序,罐裝工段的洗瓶、滅菌、破瓶損耗和地面沖洗等環節。廢水中含有較高濃度的糖類、果膠、果渣及水溶物和纖維素、果酸、單寧、礦物鹽等。在不同季節有一定差別,處於高峰流量時的果汁廢水,有機物含量也處於高峰。
4、含鉛廢水:目前含鉛廢水的處理工藝,應用較多、較成熟可靠的技術有:離子交換法、沉澱法、吸附法、電解法以及以上工藝的組合。
5、合成革加工廢水:合成革以及人造革行業在回收二甲基甲醯胺(dimethylformamide,DMF) 的過程中,會產生含有DMF的廢水。
6、化工廢水:純凈的水在經過使用後改變了原來的物理性質或化學性質,成為了含有不同種類雜質的廢水。化工廢水就是在化工生產中排放出的工藝廢水、冷卻水、廢氣洗滌水、設備及場地沖洗水等廢水。這些廢水如果不經過處理而排放,會造成水體的不同性質和不同程度的污染,從而危害人類的健康,影響工農業的生產。
7、化纖廢水:化纖廢水是指在化纖生產過程中產生的各類廢水, 如PET廢水、PTA廢水、棉漿粕黑液、粘膠廢水等。
8、焦化廢水:焦化廢水是一種典型的有毒難降解有機廢水。主要來自焦爐煤氣初冷和焦化生產過程中的生產用水以及蒸汽冷凝廢水。指煤煉焦、煤氣凈化、化工產品回收和化工產品精製過程中產生的廢水。
9、酒精生產廢水:酒精廢水是高濃度、高溫度、高懸浮物的有機廢水,酒精工業的污染以水的污染最為嚴重,生產過程中的廢水主要來自蒸餾發酵成熟醪後排出的酒精糟,生產設備的洗滌水、沖洗水,以及蒸煮、糖化、發酵、蒸餾工藝的冷卻水等。
10、垃圾滲濾液廢水:垃圾滲濾液是指來源於垃圾填埋場中垃圾本身含有的水分、進入填埋場的雨雪水及其他水分,扣除垃圾、覆土層的飽和持水量,並經歷垃圾層和覆土層而形成的一種高濃度的有機廢水。
11、磷化廢水:磷化廢水是金屬表面處理的前處理,一般有除油除銹、表調、磷化鈍化。有簡單磷化就是用磷酸與硫酸和硝酸,也有要求高的專用磷化劑(有水劑和粉劑產品),粉劑產品相對產泥較多。噴塗有噴粉和噴漆。如果是噴粉則排放的廢水就是前處理廢水包括磷化廢水。
12、農葯廢水:農葯廢水是指農葯廠在農葯生產過程中排出的廢水。廢水水質水量不穩定。主要分為:含苯廢水、含有機磷廢水、高濃度含鹽廢水、高濃度含酚廢水、含汞廢水。
13、啤酒生產廢水:啤酒廠廢水是指啤酒生產過程中排出的廢水。是啤酒廠的主要污染源。
14、生活污水:生活污水所含的污染物主要是有機物(如蛋白質、碳水化合物、脂肪、尿素、氨氮等) 和大量病原微生物(如寄生蟲卵和腸道傳染病毒等)。存在於生活污水中的有機物極不穩定,容易腐化而產生惡臭。細菌和病原體以生活污水中有機物為營養而大量繁殖,可導致傳染病蔓延流行。因此,生活污水排放前必須進行處理。
15、印染廢水:印染廢水是加工棉、麻、化學纖維及其混紡產品為主的印染廠排出的廢水。印染廢水水量較大,每印染加工1噸紡織品耗水100~200噸,其中80~90%成為廢水。紡織印染廢水具有水量大、有機污染物含量高、鹼性大、水質變化大等特點,屬難處理的工業廢水之一,廢水中含有染料、漿料、助劑、油劑、酸鹼、纖維雜質、砂類物質、無機鹽等。
16、制葯廢水:制葯工業廢水主要包括抗生素生產廢水、合成葯物生產廢水、中成葯生產廢水以及各類制劑生產過程的洗滌水和沖洗廢水四大類。其廢水的特點是成分復雜、有機物含量高、毒性大、色度深和含鹽量高,特別是生化性很差,且間歇排放,屬難處理的工業廢水。
17、屠宰廢水:屠宰廢水來自於圈欄沖洗、淋洗、屠宰及其它廠房地坪沖洗、燙毛、剖解、副食加工、動物殘渣,血水等組成。留存在動物體內的糞便和屠宰過程中所產生的血水,所含氨氮的量是很高的,如未被處理掉就會滲入地下或者流入河流中,對人類賴以生存的水自然造破壞,從而引起藍藻滋生,水中的魚蝦大面積死亡的現象發生。
甘度 | 做好菌種 做好服務
B. 污水處理廠工藝流程圖。以及簡單工藝介紹
污水處理工藝
污水處理工藝分三級:一級處理:物理處理,通過機械處理,如格柵、沉澱或氣浮,去除污水中所含的石塊、砂石和脂肪、油脂等。二級處理:生物化學處理,污水中的污染物在微生物的作用下被降解和轉化為污泥。
三級處理:污水的深度處理,它包括營養物的去除和通過加氯、紫外輻射或臭氧技術對污水進行消毒。可能根據處理的目標和水質的不同,有的污水處理過程並不是包含上述所有過程。
1、一級處理
機械(一級)處理工段包括格柵、沉砂池、初沉池等構築物,以去除粗大顆粒和懸浮物為目的,處理的原理在於通過物理法實現固液分離,將污染物從污水中分離,這是普遍採用的污水處理方式。
機械(一級)處理是所有污水處理工藝流程必備工程(盡管有時有些工藝流程省去初沉池),城市污水一級處理BOD5和SS的典型去除率分別為25%和50%。
在生物除磷脫氮型污水處理廠,一般不推薦曝氣沉砂池,以避免快速降解有機物的去除;在原污水水質特性不利於除磷脫氮的情況下,初沉的設置與否以及設置方式需要根據水質特性的後續工藝加以仔細分析和考慮,以保證和改善除磷除脫氮等後續工藝的進水水質。
2、二級處理
污水生化處理屬於二級處理,以去除不可沉懸浮物和溶解性可生物降解有機物為主要目的,其工藝構成多種多樣,可分成活性污泥法、AB法、A/O法、A2/O法、SBR法、氧化溝法、穩定塘法、CASS法、土地處理法等多種處理方法。目前大多數城市污水處理廠都採用活性污泥法。
生物處理的原理是通過生物作用,尤其是微生物的作用,完成有機物的分解和生物體的合成,將有機污染物轉變成無害的氣體產物(CO2)、液體產物(水)以及富含有機物的固體產物(微生物群體或稱生物污泥);多餘的生物污泥在沉澱池中經沉澱池固液分離,從凈化後的污水中除去。
3、三級處理
三級處理是對水的深度處理,是繼二級處理以後的廢水處理過程,是污水最高處理措施。現在的我國的污水處理廠投入實際應用的並不多。
它將經過二級處理的水進行脫氮、脫磷處理,用活性炭吸附法或反滲透法等去除水中的剩餘污染物,並用臭氧或氯消毒殺滅細菌和病毒,然後將處理水送入中水道,作為沖洗廁所、噴灑街道、澆灌綠化帶、工業用水、防火等水源。
由此可見,污水處理工藝的作用僅僅是通過生物降解轉化作用和固液分離,在使污水得到凈化的同時將污染物富集到污泥中,包括一級處理工段產生的初沉污泥、二級處理工段產生的剩餘活性污泥以及三級處理產生的化學污泥。
由於這些污泥含有大量的有機物和病原體,而且極易腐敗發臭,很容易造成二次污染,消除污染的任務尚未完成。污泥必須經過一定的減容、減量和穩定化無害化處理井妥善處置。污泥處理處置的成功與否對污水廠有重要的影響,必須重視。
如果污泥不進行處理,污泥將不得不隨處理後的出水排放,污水廠的凈化效果也就會被抵消掉。所以在實際的應用過程中,污水處理過程中的污泥處理也是相當關鍵的。
4、除臭工藝
其中物理法主要包括稀釋法、吸附法等;化學法包括吸收法、燃燒法等;生物法包括生物制劑法、生物過濾法、填充塔式生物脫臭法和生物洗滌法,植物提取液霧化噴淋法等。
(2)污水廠葯品招標流程圖擴展閱讀
未來發展的趨勢。
1、行業整體的績效提高。內部行業的績效成為當務之急,所以國家十二五重大專項裡面,專門有項目要建立國家范圍的行業管理績效體系。
2、服務成為我們行業的核心任務,成為行業的核心環節。這跟發達國家是一致的,發達國家基本上服務業占整個環保產業,設備、投資、建設大概佔50%左右,我國估計佔10%左右,所以有這么大的空間,內部的結構調整面臨從建設到發展的需求。
沒有哪一個運營主體在一個國家層面上能夠占絕對的主導地位,不論是國有企業也好,外資企業也好,事業單位也好,還是股份制公司也好,都呈現了多樣化形式。
所以以資產為基礎的整合機會,這個不容易。這是我們面臨的一個困難。但是另一方面,又提供了很好的契機。如果看國際上做資產整合的話,早期是英國做的比較成功,它先解決整合的問題,然後再解決市場化的問題。
3、從技術層面上看,水資源問題,本身開始出現流域化的趨勢,過去叫「多龍治水」,越來越強調從流域的層面協調,從流域的尺度上,不僅僅是協調水資源,而且協調再生水。只有從流域角度上考慮這個問題的時候,才能取得最大的效益。
C. 【污水處理廠工藝流程設計計算】 污水處理廠基本流程
1概述
1.1 設計依據
本設計採用的主要規范及標准:
《城市污水處理廠污染物排放標准 (GB18918-2002) 》二級排放標准 《室外排水設計規范》(1997年版) (GBJ 14-87) 《給水排水工程概預算與經濟評價手冊》
1.2 設計任務書(附後)
2原水水量與水質和處理要求
2.1 原水水量與水質
Q=60000m3/胡攜d
BOD 5=190mg/L COD=360mg/L SS=200mg/L NH 3-N=45mg/L TP=5mg/L
2.2處理要求
污水排放的要求執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准:
BOD 5≤30mg/L COD≤100mg/L SS≤30mg/L NH 3-N ≤25(30)mg/L TP≤3mg/L
3污水處理工藝的選擇
本污水處理廠水質執行《城鎮污水處理廠污染物排放標准(GB18918-2002) 》二級排放標准,其污染物的最高允許排放濃度為:BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L;TP ≤3mg/L。
城市污水中主要污染物質為易生物降解的有機污染物,因此常採用二級生物處理的方法來進行處理。
二級生物處理的方法很多,主要分兩類:一類是活性污泥法,主要包括傳統活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延時活性污泥法(氧化溝)、AB 工藝、A/O工藝、A 2/O工藝、SBR 工藝等。另一類是生物膜法,主要包括生物濾池、生物轉盤、生物接觸氧化法等工藝。任何工藝都有其各自的特點和使用條件。
活性污泥法是當前使用比較普遍並且有比較實際的參考數據。在該工藝中微生物在處理單元內以懸浮狀態存在,因此與污水充分混合接觸,不會產生阻塞,對進水有機物濃度的適應范圍較大,一般認為BOD 5在150—400 mg/L之間時,都具有良好的處理效果。但是傳統活性污泥處理工藝在處理的多功能性、高效穩定性和經濟合理性方面已經難以滿足不斷提高的要求, 特別是進入90年代以來, 隨著水體富營養化的加劇, 我國明確制定了嚴格的氨氮和硝酸鹽氮的排放標准, 從而各種具有除磷、脫氮功能的污水處理工藝:如 A/O工藝、A 2/O工藝、SBR 工藝、氧化溝等污水處理工藝得到了深入的研究、開發和廣泛的應用, 成為當今污水處理工藝的主流。
該地的污水中BOD 5 在190 mg/L左右, 要求出水BOD 5低於30mg/L。在出水的水質中,
不僅對COD 、BOD 5、SS 去除率都有較高的要求, 同時對氮和磷的要求也進一步提高. 結合具體情況在眾多的污水處理工藝中選擇了具有良好脫氮除磷效果的兩種工藝—CASS 工 藝和Carrousuel 氧化溝工藝進行方案技術經濟比較。
4污水處理工藝方案比選
4.1 Carrousuel氧化溝工藝(方案一)
氧化溝時二十世紀50年代由荷蘭的巴斯維爾開發,後在歐洲、北美迅速推廣,80年代中期,我國部分地區也建造了氧化溝污水處理工程。近幾年來,處理廠的規模也發展到日處理水量數萬立方米的工業廢水及城市污水的大、中型污水處理工程。
氧化溝之所以能在近些年來褲孝伏得到較快的發展,在於它管理簡便、運行穩定、流程簡單、耐慎局沖擊負荷、處理效果好等優點,特別是氧化溝具有特殊的水流混合特徵,氧化
溝中的曝氣裝置只設在某幾段處,溶解氧濃度較高,理NH 3-N 效果非常好,同時由於存在厭氧、好氧條件,對污水中的磷也有一定的去除率。
氧化溝根據構造和運行方式的不同,目前較多採用的型式有「Carrousel 型氧化溝」、「Orbal 型氧化溝」、「一體化氧化溝」和「交替式氧化溝」等,其中,由於交替式氧化溝要求自動化水平較高,而Orabal 氧化溝因水深較淺,佔地面積較大,本報告推選Carrousel 氧化溝作為比選方案之一。
本設計採用的是Carrousel 氧化溝工藝. 其工藝的處理流程圖如下圖4-1所示: `
圖4-1 Carrousel氧化溝工藝流程圖
4.1.1污水處理系統的設計與計算
4.1.1.1進水閘門井的設計
進水閘門井單獨設定, 為鋼筋混凝土結構。設閘門井一座, 閘門的有效面積為1.8m 2, 其具體尺寸為1.2×1.5 m,有效尺寸為1.2 m×1.5 m×4.5 m。設一台矩形閘門。當污水廠正常運行時開啟, 當後序構築物事故檢修時, 關閉某一閘門或者全部關閉, 使污水通過超越管流出污水處理廠。
4.1.1.2 中格柵的設計與計算
其計算簡圖如圖4-2所示
(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.02m,格柵傾角α=60°,建議格柵數為2,一備一用。
Q max sin α0. 652⨯sin 60
=≈68個 n =
Nbhv 0. 02⨯0. 5⨯0. 9
(2)格柵寬度:設柵條寬度S=0.01m,
B=S(n-1)+bn=0.01×(68-1)+0.02×68=2.03≈2.00m
(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.60m,其漸寬部分的展開角
α1=20(進水渠道內的流速為0.82m/s),
l 1=
B -B 12. 0-1. 6
=≈0.56m 2tg α12tg 20
(4)柵槽與出水渠道連接處漸窄部分的長度:
l 2=
l 10. 56==0.28m 22
(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 02⎭
43
=0.103m
(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.103+0.3≈0.9m
(7)柵槽總長度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.8m
tg 60
=0. 56+0. 28+0. 5+1. 0+
(8)每日柵渣量:在格柵間隙為20mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=3. 29m 3/d>0.2 m3/d =
1. 2⨯1000K Z ⨯1000
宜採用機械清渣。
圖4-2 格柵計算示意圖
4.1.1.3細格柵的設計與計算
其計算簡圖如圖4-2所示
(1)格柵間隙數:設柵前水深h=0.5m,過柵流速v=0.9m/s,柵條間隙寬度b=0.006m,格柵傾角α=600,格柵數為2。
Q max 0. 652⨯sin 60
=≈109個 n =
Nbhv 2⨯0. 006⨯0. 5⨯0. 9
(2)格柵寬度:設柵條寬度S=0.01m,
B=S(n-1)+bn=0.01×(109-1)+0.006×109=1.73≈1.75m
(3)進水渠道漸寬部分的長度:設進水渠道寬B 1=1.6m,其漸寬部分的展開角α1=20
(進水渠道內的流速為0.82m/s),
l 1=
B -B 11. 75-1. 60
=≈0.22m 2tg α12tg 20
(4)柵槽與出水渠道連接處漸窄部分的長度:
l 2=
l 10. 22
==0.11m 22
(5)通過格柵的水頭損失:設柵條斷面為銳邊矩形斷面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 006⎭
43
=0.51m
(6)柵後槽總高度:設柵前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.3+0.51≈1.3m (7)柵槽總長度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.41m
tg 60
=0. 22+0. 11+0. 5+1. 0+
(8)每日柵渣量:在格柵間隙為6mm 的情況下,設柵渣量為每1000m 3污水產0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=1. 65m 3/d>0.2 m3/d =
2⨯1. 2⨯1000K Z ⨯1000
宜採用機械清渣。
4.1.1.4 曝氣沉砂池的設計與計算
本設計採用曝氣沉砂池是考慮到為污水的後期處理做好准備。建議設兩組沉砂池一備一用。其計算簡圖如圖4-3所示。具體的計算過程如下:
(1)池子總有效容積:設t=2min,
V=Q max t ×60=0.652×2×60=78 m3
(2)水流斷面積:
A=
Q max 0. 652
==9.31m2 0. 07v 1
沉砂池設兩格,有效水深為2.00m ,單格的寬度為2.4m 。
(3)池長:
V 78L===8.38m,取L=8.5 m A 9. 31
(4)每格沉砂池沉砂斗容量:
V 0=0.6×1.0×8.5=5.1 m
(5)每格沉砂池實際沉砂量:設含砂量為20 m3/106 m3污水,每兩天排一次,
3
20⨯0. 652
⨯86400⨯2=1.13〈5.1 m3
6
10⨯2
(6)每小時所需空氣量:設曝氣管浸水深度為2.5 m,查表得單位池長所需空氣量為28 m3/(m·h),
q=28×8.5×(1+15%)×2=547.4 m3
圖4-3 曝氣沉砂池計算示意圖
4.1.1.5 厭氧池的設計與計算
4.1.1.5.1 設計參數
設計流量為60000 m3/d,設計為兩座每座的設計流量為30000 m3/d。 水力停留時間:
T =2h 。
污泥濃度:
X =3000mg/L
污泥迴流液濃度:
V 0"=
X R =10000 mg/L
4.1.1.5.2 設計計算 (1)厭氧池的容積:
V =QT =30000×2/24=2500 m3
(2)厭氧池的尺寸:
水深取為h =5,則厭氧池的面積:
V 2500A ===500 m2。
h 5
厭氧池直徑:
D =
4A
π
=
4⨯500
=25 m。 3. 14
考慮0.3的超高,故池總高為H =h +0. 3=5.3 m。 (3)污泥迴流量的計算 迴流比計算:
R =
X
=0.42
X R -X
污泥迴流量:
Q R =RQ =0.42×30000=12600 m/d
4.1.1.6 Carrousel氧化溝的設計與計算
氧化溝,又被稱為循環式曝氣池,屬於活性污泥法的一種。見圖4-4氧化溝計算示3
4.1.1.6.1設計參數
設計流量Q=30000m3/d設計進水水質BOD 5=190mg/L; COD=360mg/L;SS=200mg/L;NH 3-N=45mg/L;污水水溫T =25℃。
設計出水水質BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L; TP ≤3mg/L。
污泥產率系數Y=0.55; 污泥濃度(MLSS )X=4000mg/L;揮發性污泥濃度(MLVSS )X V =2800mg/L; 污泥齡θc =30d; 內源代謝系數K d =0.055. 4.1.1.6.2設計計算
(1)去除BOD
氧化溝出水溶解性BOD 濃度S 。為了保證沉澱池出水BOD 濃度S e ≤30mg/L,必須控制所含溶解性BOD 濃度S 2,因為沉澱池出水中的VSS 也是構成BOD 濃度的一個組成部分。
S=Se -S 1
S 1為沉澱池出水中的VSS 所構成的BOD 濃度。
S 1=1.42(VSS/TSS)×TSS ×(1-e-0. 23⨯5) =1.42×0.7×20×(1-e-0. 23⨯5)
=13.59 (mg/L)
S=20-13.59=6.41(mg/L)
好氧區容積V 1。好氧區容積計算採用動力學計算方法。
V 1=
Y θc Q (S 0-S )
X V (1+K d θc )
=
0. 55⨯30⨯30000⨯(0. 16-0. 00641)
2. 8⨯(1+0. 055⨯30)
=10247m 3
好氧區水力停留時間:t=剩餘污泥量∆X
Y
∆X=Q (S 0-S ) +Q (X 0-X 1) -QX e
1+K d θc
V 110247⨯24==8.20h
30000Q
=2096(kg/d)
去除每1kgBOD 5所產生的干污泥量=
∆X
=0.499(kgD S /kgBOD5)。
Q (S 0-S )
(2)脫氮
需氧化的氨氮量N 1。氧化溝產生的剩餘污泥中含氮率為12.4%,則用於生物合成的總氮量為:
0. 124⨯769. 93⨯1000N 0==3.82(mg/L)
25000
需要氧化的氨氮量N 1=進水TKN-出水NH 3-N-生物合成所需要的氨N 。
N 1=45-15-3.82=26.18(mg/L)
脫氮量NR=進水TKN-出水TN-生物合成所需要的氨N=45-20-3.82=21.18(mg/L) 脫氮所需要的容積V 2
脫硝率q dn(t)= qdn(20)×1.08(T-20)=0.035×1.08(14-20)=0.022kg 脫氮所需要的容積:
V 2=
脫氮水力停留時間t 2:
QN r 30000⨯21. 18
==10315 m3 q dn X v 0. 022⨯2800
t 2 =
氧化溝總體積V 及停留時間t:
V 2
=8.25 h Q
V=V1+V2=10247+10315= 20562m3
t=V/Q=16.45 h
校核污泥負荷N =
QS 025000⨯0. 16
==0.083[kgBOD 5/(kgMLVSS ∙d )] XV 2. 8⨯17135
(3)氧化溝尺寸:取氧化溝有效水深為5m ,超高為1m ,氧化溝深6m 。
V
=20562/5=4112.4m 2 h
單溝寬10m ,中間隔牆寬0.25m 。則彎道部分的面積為:
2⨯10+0. 2523π()
3⨯10+3⨯0. 252A 1=+() π⨯10=965.63m
22
直線段部分的面積:
氧化溝面積為A=
A 2=A -A 1 =4112.4-965.63=3146.77 m2
單溝直線段長度:
L=
A 23146. 77
==78.67m ,取79m 。 4⨯104⨯b
進水管和出水管:污泥迴流比R=63.4%,進出水管的流量為:Q 1=(1+R ) Q =1.634×
30000m /d=0.568 m /s,管道流速為v =1.0m/s。
3
3
則管道過水斷面:
A=
管徑d=
Q 0. 568==0.568m 2 v 1
4A
π
=0.850m, 取管徑850mm 。
校核管道流速:
v=
(4)需氧量
Q
=0.94m A
實際需氧量:
AOR=D1-D 2-D 3+D4-D 5
去除BOD 5需氧量:
D 1=a "Q (S 0-S ) +b "VX =7754.03(kg/d) (其中a "=0.52,b "=0.12)
剩餘污泥中BOD 5需氧量:
D 2=1. 42⨯∆X 1=1131.64(kg/d)
剩餘污泥中NH 3-N 耗氧量:
D 3=4. 6⨯0. 124⨯∆X =454.57(kg/d) (0.124為污泥含氮率)
去除NH 3-N 的需氧量:
D 4=4.6×(TKN-出水NH 3-N )×Q/1000=3450(kg/d)
脫氮產氧量:
D 5=2.86×脫氮量=1514.37(kg/d)
AOR= D1-D 2-D 3+D4-D 5=8103.45(kg/d)
考慮安全系數1. 2,則AOR=8103.45×1. 2=11344.83(kg/d) 去除每1kgBOD 5需氧量=
AOR
Q (S 0-S )
11344. 83
25000⨯(0. 16-0. 00641)
=
=2.95(kgO 2/kgBOD5)
標准狀態下需氧量SOR
SOR=
AOR ∙C S (20)
α(βρC S (T ) -C ) ⨯1. 024
(T -20)
(C S (20)20℃時氧的飽和度,取9.17mg/L;T=25℃;C S(T)25℃時氧的飽和度,取 8.38mg/L;C 溶解氧濃度,取2 mg/L;α=0.85;β=0.95;ρ=0.909)
SOR=
11344. 83⨯9. 17
=20764.89(kg/d) (25-20)
0. 85⨯(0. 95⨯0. 909⨯8. 38-2) ⨯1. 024
∆SOR
=5.41(kgO 2/kgBOD5)
Q (S 0-S )
去除每1kgBOD 5需氧量=
曝氣設備的選擇:設兩台倒傘形表面曝氣機,參數如下: 葉輪直徑:4000mm ;葉輪轉速:28R/min;浸沒深度:1m ; 電機功率:210KW ;充氧量:≥2.1kgO 2/(kW·h)。
4.1.1.7二沉池的設計與計算
其計算簡圖如圖4-5所示
4.1.1.7.1設計參數
Q max =652 L/s=2347.2 m 3/h;
氧化溝中懸浮固體濃度 X =4000 mg/L;
二沉池底流生物固體濃度 X r =10000 mg/L;
污泥迴流比 R=63.4%。
4.1.1.7.2 設計計算
(1) 沉澱部分水面面積 F 根據生物處理段的特性,選取二沉池表面負荷q=0.9m3 /(m2·h), 設兩座二次沉澱池 n =2.
F =Q max 2347. 22==1304(m) nq 2⨯0. 9
(2)池子的直徑 D
D =4F
π=4⨯1304
π=40. 76(m),取D =40m 。
(3)校核固體負荷G
24⨯(1+R ) QX 24⨯(1+0. 634)⨯30000⨯4000G == F 1304
=141.18 [kg/(m2·d)] (符合要求)
(4) 沉澱部分的有效水深h 2 設沉澱時間為2.5h 。
h 2=qt =0.9×2.5=2.25 (m)
(5) 污泥區的容積V
V =2T (1+R ) QX 2⨯2⨯(1+0. 634) ⨯30000⨯4000 =24⨯(X +X r ) 24⨯(10000+4000)
=1945.2 (m3)
(6)污泥區高度h 4
污泥斗高度。設池底的徑向坡度為0.05,污泥斗底部直徑D 2=1.6m,上部直徑D 1=4.0m,傾角為60°,則:
"= h 4D 1-D 24. 0-1. 6⨯tg 60°=2.1(m) ⨯tg 60°=22
11
V 1=2)πh 1"⨯(D 12+D 1D 2+D 2
12=13.72 (m3)
圓錐體高度
""=h 4D -D 140-4⨯0. 05=0.9(m) ⨯0. 05=22
V 2=
=
豎直段污泥部分的高度 ""πh 412⨯(D 2+DD 1+D 12) ⨯(402+40⨯4+42) =418.25(m3) π⨯0. 912
"""=h 4V -V 1-V 21945. 2-13. 72-418. 25==1.16(m) 1304F
"+h 4""+h 4"""=2.1+0.9+1.16=4.16(m) 污泥區的高度h 4=h 4
沉澱池的總高度H 設超高h 1=0.3m,緩沖層高度h 3=0.5m。
則 H =h 1+h 2+h 3+h 4=0.3+2.25+0.5+4.16=7.21m
取H =7.2 m
4.1.1.8接觸池的設計與計算
採用隔板式接觸反應池。其計算簡圖如圖4-5所示。
水力停留時間:t=30min
12
平均水深:h =2.4m。
隔板間隔:b=1.5m。
池底坡度:3%
排泥管直徑:DN=200mm。
4.1.1.8.2設計計算
接觸池容積:
V =Qt =0.652×30×60=1174 m 3
水流速度:
v =Q 0. 652==0. 18 m/s hb 2. 4⨯1. 5
表面積:
Q 1174==489. 2 m2 h 2. 4
廊道總寬度:隔板數採用10個,則廊道總寬度為B=11×b=11×1.5=16.5m。 接觸池長度:
F 489. 2L ===29.6m取30m 。 B 16. 5
水頭損失,取0.4m 。 F =
13