導航:首頁 > 污水知識 > 混凝法處理含鉻廢水

混凝法處理含鉻廢水

發布時間:2023-06-19 14:14:31

A. 欲降低廢水中重金屬元素鉻的毒性,可將Cr2O72-轉化為Cr(OH)3沉澱除去.已知: 氫氧化物開始沉

(1)①K2SO4﹒Al2(SO43﹒24H2O為強電解質,在溶液中完全電離,生成Al3+和SO42-、K+,Al3+能水解生成氫氧化鋁膠體:Al3++3H2O=Al(OH)3(膠體)+3H+或Al3++3H2O?Al(OH)3+3H+,氫氧化鋁膠體具有吸附性,能吸附水中的懸浮物,所以能作凈水劑,
故答案為:Al3++3H2O=Al(OH)3(膠體)+3H+或Al3++3H2O?Al(OH)3+3H+
②根據「沉澱法」和「中和法」的原理,向沉澱池中加入NaOH溶液,NaOH會和H+發生反應H++OH-═H2O,Cr3+與NaOH發生反應Cr3++3OH-═Cr(OH)3↓,Cr(OH)3沉澱完全時的pH為8,所以,測定溶液的pH,若pH≥8,則證明Cr3+沉澱完全,
故答案為:Cr3++3OH-═Cr(OH)3↓、H++OH-═H2O;測定溶液的pH,若pH≥8,則證明Cr3+沉澱完全;
(2)亞鐵離子與Cr2O72-發生氧化還原反應,被還原為Cr3+然後生成Cr(OH)3沉澱,重鉻酸根具有強氧化性,能將生成的亞鐵離子氧化為三價,即6Fe2++Cr2O72-+14H+=6Fe3++2Cr3++7H2O;隨著電解進行,溶液中c(H+)逐漸減少,打破了水的電離平衡,促進了水的電離,使溶液中OH-濃度增大,溶液的鹼性增強,生成Fe(OH)3和Cr(OH)3沉澱,金屬陽離子在陰極區可沉澱完全;根據Cr2O72-+6Fe2++14H+═2Cr3++6Fe3++7H2O,Cr3++3OH-═Cr(OH)3↓、Fe3++3OH-═Fe(OH)3↓知0.01molCr2O72-,可生成0.02molCr(OH)3,0.06molFe(OH)3,至少得到沉澱的質量是0.02mol×103g/mol+0.06mol×107g/mol=8.48g,
故答案為:Cr2O72-+6Fe2++14H+═2Cr3++6Fe3++7H2O;陰極反應消耗了水中的H+,打破了水的電離平衡,促進了水的電離,使溶液中OH-濃度增大,溶液的鹼性增強;8.48;

B. 化學混凝沉澱法怎麼處理含鉻廢水

化學來混凝沉澱工藝是一種去除自廢水中懸浮物質和膠體的分離技術.常用於預處理和一級處理.在廢水中投加混凝劑來破壞膠體的穩定性,使廢水中的膠體和細小懸浮物聚集成具有可分離性的絮凝體. 沉澱是對絮凝體進行液固分離

C. 電鍍生產廢水中的鉻.鎳.銅.鋅.氰處理方法


先投加H2SO4及 Na2S2O5進行還原(實際運行中,H2SO4極少加),當PH值為2.5~3.0時,還原反應時間為20min~30min其還原反應為:
2H2Cr2O7+3NaS2O5+3H2SO4-→2Cr2(SO4)3+2Na2SO4+5H2O
還原後的廢水再投加片鹼溶液進行中和,因氫氧化鉻曾兩性,PH值過高時,氫氧化鉻會再度溶解,而PH值過低時,又不能生成沉澱,一般實際運行時,廢水經酸化、還原反應後,加鹼調整PH值,使氫氧化鉻沉澱。一般控制PH值7~8,反應時間為15~20min。並投加有機高分子絮凝劑進行絮凝。形成氫氧化鉻反應為:
Cr2(SO4)3+6NaOH-→2Cr(OH)3↓+3Na2SO4
由於Cr3+的最佳沉澱PH值為7~8,而Cu2+、Ni2+的最佳沉澱PH值為10.5左右,兩者存在沖突,故還原後的含鉻廢水單獨加鹼中和,並進行固液分離。


鎳為貴重金屬具有回收利用價值,在含鎳廢水中加入混凝劑(石灰、鐵鹽、鋁鹽),在pH=10.5~11的鹼性條件下,形成氫氧化物絮凝體,對鎳離子有絮凝作用,而共沉澱析出。當然現在膜法在線回收鎳工藝也非常成熟。


同鎳處理方法



鋅是一種兩性元素,它的氫氧化物不溶於水,並具有弱鹼性和弱酸性,故其化學式可寫作:鹼式:Zn(OH)2,酸式:H2ZnO2。由於它呈兩性、故在強酸或強鹼中能溶解。在鋅酸鹽溶液中加適量的鹼可折出Zn(0H)2 白色沉澱,再加過量的鹼,沉澱又復溶解;但反之,在鋅酸鹽溶液中,加適量酸也可析出Zn(0H)2 白色沉澱,再加過量的酸、沉澱又復溶解。鋅的氫氧化合物為兩性化合物,pH 值過高或過低,均能使沉澱返溶而使出水超標。所以在用化學沉澱法處理含鋅廢水的過程中,要注意pH 值的控制。
混凝沉澱法其原理是在含鋅廢水中加入混凝劑(石灰、鐵鹽、鋁鹽),在pH=8~9的弱鹼性條件下,形成氫氧化物絮凝體,對鋅離子有絮凝作用,而共沉澱析出。



廢水在鹼性條件下,次氯酸鹽將氰根氧化分解為無毒的物質,反應式如下:
2NaOCl+2H2O=NaCl+NaOH+HOCl+2OH-
NaCN+2HOCl+NaOH=NaCNO+NaCl+H2O
2NaCNO+2HOCl=2NaCl+N2↑+2CO2↑+H2↑
氧化反應分兩步進行:
①通過PH控制系統自動控制鹼的加入量,調節廢水的PH值至10~11,同時通過ORP自動控制系統控制氧化劑的加入量,使廢水的ORP值在300~350mV之間;
②通過PH控制系統自動控制酸的加入量,調節廢水的PH值為7~8,同時通過ORP自動控制系統控制氧化劑的加入量,使廢水的ORP值為600~700mV。破氰後的廢水匯入綜合廢水調節池以進行後續處理。

D. 關於污水處理的方法有哪些

按作用來分類:

1、物理性方法

主要用物理原理對污水中的物質進行分離處理的一種方法,主要將污水中非溶解性的物質給分離出來,在處理的過程中是不會改變其化學的性質的。經常用的具體方法包括使用重力進行分離,使用離心力進行分離,反滲透的方法以及氣浮法等。使用無理的方法一般構築比較的簡單且成本低,適合那些容量大且要求處理程度不高的污水。

2、生物性方法

這個方法主要是在污水中加入一些微生物,利用其代謝的功能將污水中那些膠狀或溶解有機物給氧化為比較穩定的無機的物質,這樣就使得污水被凈化,這種方法的污水處理具體包括有活性的污泥法以及生物膜法,其處理的程度比起物理法來要更高。

3、化學性方法

這種方法就是利用化學的反應將污水中膠狀及溶解物來進行處理,大多會用於對工業性污水的處理,其具體的方法包括混凝法,中和法,離子交換以及氧化還原等,這種方法來處理污水會有著很好的效果,但是費用也比較高。

按程度來分類的處理方法

1、一級

一級程度的處理主要需要將污水中那些懸浮的固體物給去除掉,因此一級程度的處理多數使用物理性的方法就能夠達到要求,經過一級程度的處理後,污水BOD只有百分之三十左右,是達不到規定排放的標準的,因此一般還需要經過二級程度的處理,通常會將一級處理作為一種預處理的方式。

2、二級

二級程度的處理主要就是需要去除掉污水中膠狀的溶解的有機物,通常做二級程度的處理時大多會使用生物性的方法,其去除率一般可以達到百分之九十左右,經過了二級程度處理後,一般就能達到規定排放的標准了,並且出水的效果都比較好。

3、三級

在某些污水中可能會含有氮磷等難以降解的特殊物質,這是就需要對污水進行三級程度的處理,三級處理主要使用化學性的方法,比如用生物來脫氮及除磷,用活性炭進行吸附,用混凝法沉澱等,三級處理是更加深度的一種處理方式,能夠進一步去除氮磷等物質。

E. 電鍍廢水處理工藝

電鍍工藝是將金屬通過電解方法鍍到製品表面的過程,常用的鍍種有鍍鎳、鍍銅、鍍鉻、鍍鋅、鍍鎘、鍍鉛、鍍銀、鍍錫、鍍金。
物理法
一般使用下述方法處理電鍍廢水,可高效去除COD、色度的同時,脫除重金屬、六價鉻、氰化物等特有物質,物理法包括:
催化微電解處理技術
微電解技術是處理高濃度有機廢水的一種理想工藝,該工藝用於高鹽、難降解、高色度廢水的處理不但能大幅度地降低cod和色度,還可大大提高廢水的可生化性。
該技術是在不通電的情況下,利用微電解設備中填充的微電解填料產生「原電池」效應對廢水進行處理。當通水後,在設備內會形成無數的電位差達1.2V 的「原電池」。「原電池」以廢水做電解質,通過放電形成電流對廢水進行電解氧化和還原處理,以達到降解有機污染物的目的。在處理過程中產生的新生態[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能與廢水中的許多組分發生氧化還原反應,比如能破壞有色廢水中的有色物質的發色基團或助色基團,甚至斷鏈,達到降解脫色的作用;生成的Fe2+ 進一步氧化成Fe3 +,它們的水合物具有較強的吸附-絮凝活性,特別是在加鹼調pH 值後生成氫氧化亞鐵和氫氧化鐵膠體絮凝劑,它們的絮凝能力遠遠高於一般葯劑水解得到的氫氧化鐵膠體,能大量絮凝水體中分散的微小顆粒、金屬粒子及有機大分子.其工作原理基於電化學、氧化- 還原、物理以及絮凝沉澱的共同作用。該工藝具有適用范圍廣、處理效果好、成本低廉、處理時間短、操作維護方便、電力消耗低等優點,可廣泛應用於工業廢水的預處理和深度處理中。
陽極: Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V陰極: 2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
當有氧存在時,陰極反應如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V
新型微電解填料是針對當前有機廢水難降解難生化的特點而研發的一種多元催化氧化填料。它由多元金屬合金融合催化劑並採用高溫微孔活化技術生產而成,屬新型投加式無板結微電解填料。作用於廢水,可高效去除COD、降低色度、提高可生化性,處理效果穩定持久,同時可避免運行過程中的填料鈍化、板結等現象。本填料是微電解反應持續作用的重要保證,為當前化工廢水的處理帶來了新的生機。
吸附法
活性炭具有非常多的微孔結構和巨大的同比表面積,通常1g活性炭的表面積達700~1700m2,因而具有極強的物理吸附力,能有效地吸附廢水中的六價鉻離子(Cr6+)等重金屬離子。當活性炭達到吸附平衡後,還可以採用加熱、酸浸泡、鹼浸泡等方式除去吸附物,使活性炭再生。
生物法
生物法是處理電鍍廢水的高新生物技術。利用人工培養的脫硫孤菌、生枝動膠菌、鉻酸鹽還原菌、硫酸鹽還原菌等功能菌,對電鍍廢水產生靜電吸附作用、酶的催化轉化作用、絡合作用、絮凝作用、包藏共沉澱作用和對pH值的緩沖作用。有害金屬沉澱於污泥中回收利用,排放水用於培菌及其他使用。生物法處理電鍍廢水成本低、效益高、容易管理、不給環境造成二次污染、有利於生態環境的改善,是未來電鍍廢水處理的主流方向。
化學法
一般用下述方法處理電鍍廢水:向廢水中投加葯劑,使其中的有毒物質轉化成為無毒物質或毒性大為降低的沉澱物。化學法包括:
中和沉澱法
如酸性廢水用鹼性廢水或投加鹼性物質進行中和,形成沉澱物。
中和混凝沉澱法
例如在離子交換法除鉻工藝中,陽離子交換柱再生廢液是含有重金屬離子 (Zn2+、Cr3+、Fe3+等)的強酸性廢液,可用去除酸根後陰離子交換柱的再生廢鹼液或加鹼中和,使之以氫氧化物形式沉澱。如投加高分子絮凝劑可改變這種沉澱物的沉降性能和分離性能。
氧化法
如處理含氰廢水時,常用次氯酸鹽在鹼性條件下氧化其中的氰離子,使之分解成低毒的氰酸鹽,然後再進一步降解為無毒的二氧化碳和氮。
還原法
如含鉻廢水用亞硫酸氫鈉或硫酸亞鐵加石灰處理,使Cr6+還原成毒性低的Cr3+,並形成氫氧化鉻沉澱。
鋇鹽法
如含鉻廢水用鋇鹽處理,使鉻酸根成為鉻酸鋇沉澱。
鐵氧體法
電鍍廢水經過處理產生氫氧化鐵或其他重金屬氫氧化物沉澱,通過氧化反應使重金屬轉入強磁性的鐵氧體結晶中。此法可用於含鉻廢水的處理。 化學法設備簡單,投資較少,應用較廣。但常留下污泥需要進一步處理,而且電鍍廢水分散,污泥不易集中處理和利用。
物理法
主要包括電解法、離子交換法和膜分離法,提銀機處理法。
提銀機處理法
guowei型本設備特點:
1、使用純物理方法的雙電解方式,只使用少量電力,無二次污染之憂。
2、提銀深度在99%以上,提取銀純度高達 98%以上。
3、可以處理離子交換法、氣浮法處理不了的葯品濃度很高的廢定影液。
4、可以處理目前國內外電解法都無法處理的含有很高漂白液成分的彩擴漂定液。
5、殘留廢液銀含量可達到0.02克/升,經過後續環保處理後,可以將廢液銀含量降
至0.2ppm以下,滿足最為嚴格的歐洲排放標准。
6、運行實現微機全自動化控制,無需專人看管,耗能低。
7、設備體積小巧緊湊,佔地面積少,處理量大,可達1500-1800升/月。
8、本設備不需任何耗材和電解促進劑,運營及維護成本低。
技術參數:
1.提銀後殘留廢液含銀量低於0.01克\升
2.提銀純度:99.5%
3.尺寸360*280*800mm
4.工作電壓:交流電220V
5.功率20w
6.處理量(月)30升—30,000升
-
電解法
以處理含鉻廢水為例,利用可溶性鐵陽極,在直流電場作用下,產生亞鐵離子,在酸性條件下使廢水中以CrO厈和Cr2O崼存在的Cr6+離子還原成為Cr3+離子,隨著電解過程中廢水pH值升高,形成Cr(OH)3沉澱。採用不同材料的陽極可處理含有其他各種金屬離子的廢水。電解法操作管理簡單,除能夠處理鍍鉻漂洗水外,還可以處理鈍化、陽極化、磷化等漂洗水,並有成套設備;但消耗鋼材、電能較多,對產生的污泥還沒有妥善的處理方法。
離子交換法
利用離子交換樹脂活性基團上的可交換離子(H+、Na+、OH-等),去除廢水中的陽、陰離子。此法處理電鍍廢水不僅可回用水,還可回收金屬離子溶液。這種方法已用於處理含有金、鎳、銅、鎘、鉻等廢水。人工合成的專門用於處理電鍍廢水的弱酸、弱鹼大孔樹脂,可分別用於去除鉻、鎳和銅,以及一些金屬的氰化絡合陰離子(見廢水離子交換處理法)。一般說來,離子交換法初次投資較大,操作管理水平要求較高,但處理效果穩定,由於能回用金屬和水,是當前電鍍廢水實現閉路循環的主要治理方法之一。存在的主要問題是再生廢液會有鈉、鐵、氯根等雜質離子不能直接回用於鍍槽中,排入環境會造成污染。
膜分離法
利用半透膜或離子交換膜等膜材料,在外加推動力下,使廢水中的溶解物和水分離濃縮,以凈化廢水。在膜分離法中,反滲透法用於含鎳、含鎘廢水的濃縮處理已應用於生產。隔膜電解法用於再生鍍鉻廢液。擴散滲析法可用於酸液回收。膜分離方法成本較高。
蒸發濃縮法 利用熱源和蒸發器在常壓或負壓下直接濃縮廢水。用這種方法處理高濃度廢水比較經濟,常同三級逆流漂洗、氣-水噴淋,或同離子交換法聯合使用。生產中廣泛採用鈦管薄膜蒸發器和蒸發釜來濃縮含鉻廢水、含氰廢水等,也是閉路循環的主要處理流程之一。
展望電鍍廢水處理技術的發展前景,首先是壓縮水量,普遍推廣逆流漂洗和噴淋技術;其次,對化學法產生的污泥和離子交換再生廢液進行綜合利用,以及研製適用於處理電鍍廢水的各種優質樹脂和膜,以及進一步研究和完善閉路循環系統,以實現資源的充分利用。

F. 含鉻廢水處理時出現問題應該怎麼調試

加石灰試試看。看描述可能是PAM過量,氯化鐵過量被還原。加石灰能破壞膠體,還能讓鐵離子沉澱。

G. 工業廢水處理方法

1.電解法:利用電解池中的電化學反應處理廢水中的各種污染物。工業廢水中溶解的污染物在電解中通過氧化還原反應形成沉澱或氣體溢出。電解法包括電解氧化還原法、電解氣浮法和電解混凝法,主要用於處理含鉻和氰化物的廢水。

2.化學沉澱法:在廢水中加入可溶性化學葯劑(即沉澱劑),與水中離子態的無機污染物發生化學反應,生成不溶或不溶於水的化合物,沉澱凈化廢水。化學沉澱法大多用於去除廢水中的重金屬離子,如汞、鉻、鉛、鋅等。化學沉澱法包括氫氧化物沉澱法、硫化物沉澱法、鋇鹽沉澱法和鐵氧體沉澱法。

3.消毒滅菌:消毒滅菌技術主要用於水的深度處理。消毒主要採用氯、次氯酸鹽、二氧化氯、臭氧、臭氧-紫外線等。用於給水消毒的二氧化氯,近年來受到廣泛關注,主要是因為它不會與水中的腐殖質反應生成鹵代烴。臭氧消毒被認為是水處理過程中替代氯氣的有效消毒方法,因為臭氧首先具有很強的殺菌力,其次是氧化分解有機物的速度,使消毒後的水的致突變性降到最低。

H. 在污水處理中,工藝選擇,什麼時候用混凝沉澱法,什麼時候選混凝+氣浮法

這個要看種類,無機顆粒較多,例如礦井廢水之類的用混凝沉澱,有機顆粒較多,例如含油廢水,就選混凝+氣浮

I. 廢水含鉻量的活性成分

鉻元素被美國環保署(USEPA)列為最具毒性的污染物之一,含鉻廢水中的鉻主要來源於電鍍、製革、化工、顏料、冶金、耐火材料等行業,它以三價和六價化合物的形式存在。由於六價鉻的高溶解性,它比三價鉻更具有生物毒性。研究表明,六價鉻化合物能夠干擾重要的酶體系,經口、呼吸道或皮膚接觸吸收後能引起「三致」作用。因此,含鉻廢水必須嚴格控制六價鉻的質量濃度,達標後才能允許排放。

處理含鉻廢水的關鍵在於降低六價鉻的含量,一般可以通過兩種途徑實現:(1)通過化學反應使六價鉻轉變為低毒易沉澱的三價鉻,再進一步去除三價鉻;(2)將六價鉻化合物與水分離。現有的處理技術都是通過這兩種途徑達到去除鉻的目的,具體處理方法如下。

1理化處理技術1.1反滲透法反滲透法通過給水體加壓使水分子通過半透膜,實現鉻化合物的濃縮,達到水與鉻分離的目的。

由於其不涉及化學反應和酸鹼的生成,因此,反滲透技術在控制二次污染方面具有一定的優越性。由於要給處理水體加壓,電能的消耗是需要考慮的問題,所以它適合處理鉻質量濃度高的廢水。鉻質量濃度低的廢水採用反滲透技術電能消耗較大,經濟上不合算。

范帥等先採用離子交換法、芬頓氧化、混凝沉澱、電凝聚等技術對含鎳、含鉻、含銅、含氰、前處理、混排等的廢水進行預處理,再用超濾及反滲透膜處理含重金屬、含氰及前處理廢水後回用。王維平分析了反滲透技術在電鍍廢水回用中遇到的問題及對應解決思路。

1.2離子交換法離子交換法利用離子交換劑中的離子和水中的離子進行交換,進而達到去除水中特定離子的目的。

六價鉻在廢水中以鉻酸根形式存在,因此,經常用陰離子交換樹脂進行鉻酸根的吸附交換(式(1)和式(2))去除水中的六價鉻,樹脂可用再生劑進行再生。

2ROH+CrO2-4=R2CrO4+2OH-(1)

2ROH+Cr2O2-7=R2Cr2O7+2OH-(2)

唐樹和等用201×7強鹼性陰離子交換樹脂處理含Cr(Ⅵ)廢水,在實際廢水Cr(Ⅵ)初始質量濃度為1540mg/L時,出水Cr(Ⅵ)質量濃度小於0.5mg/L,達到國家排放標准,且經再生處理後樹脂再生率大於95%。徐靈等分別用pH值靜態試驗和流量動態試驗對201×7強鹼性苯乙烯陰樹脂吸附Cr(Ⅵ)的能力做了研究,在高Cr(Ⅵ)質量濃度的條件下,設定pH值為3、樹脂管流量為3BV/h,在樹脂穿透點之前,鉻的去除率在99.5%以上,加之模擬廢水Cr(Ⅵ)質量濃度遠遠高於工業廢水Cr(Ⅵ)質量濃度,說明離子交換法完全可以使廢水達標排放。考慮到Cr(Ⅲ)的回收再利用,CavacoSA等研究了DiaionCR11和AmberliteIRC86兩種離子交換樹脂對Cr(Ⅲ)的吸附交換特性,研究結果表明,兩種樹脂在去除Cr(Ⅲ)能力上均很有效,DiaionCR11顯示了相對的去除優勢。

1.3電滲析法電滲析法指在直流電的作用下,使陰、陽離子選擇性地透過陰、陽離子膜,形成一個個的濃、稀空間,既達到了鉻水分離的目的,又實現了鉻的濃縮,為鉻的回收再利用提供便利。但值得注意的是高質量濃度的含鉻廢水則不適宜採用電滲析法處理,因為質量濃度越高,消耗電能越大。鄧永光等研究了電滲析法對鉻鈍化清洗廢水的處理效果,結果表明:在其建立的電滲析小試裝置的條件下,進水濃度對淡水水質影響不大;採用濃水循環工藝,淡水產率可提高至約80%,濃室總鉻、錳離子質量濃度超過4000mg/L,為濃水的後續處理處置創造了條件。

1.4吸附法吸附法利用吸附劑與被吸附物質之間的吸附力,使被吸附物質吸附在吸附劑上,達到水體凈化的目的。吸附力可以是分子間引力,也可以是通過相互反應生成化學鍵引起的吸附。前者為物理吸附,後者為化學吸附。在污水處理中,多數情況下,往往是多種吸附的綜合結果。

理化吸附法處理含鉻廢水常用的吸附劑有活性炭、磺化煤、活化煤、沸石和硅藻土等。這些吸附劑在含鉻廢水處理中顯示了較好的吸附性能,鉻去除率均在70%以上,最高可達99%。

唯一的不足之處在於經濟投入問題,有一定花費,尋找低投入高回報的吸附劑成為考慮的主要問題,而以廢治廢成為較佳的方案。作為電廠廢物的粉煤灰和作為煤礦廢物的煤矸石由於顆粒本身的特殊結構和性能,表現出良好的吸附性能和化學穩定性。

秦巧燕等進行了活化煤矸石處理模擬含鉻廢水的試驗,在最優條件下,鉻的去除率在90%以上。白汀汀等通過試驗對比了粉煤灰吸附法和鐵氧體法對Cr6+的去除率,結果表明:在最佳條件下,用粉煤灰處理廢水的最佳除鉻率比鐵氧體法除鉻率高,除鉻效果更好。陳小萍等研究了活性炭纖維對六價鉻的吸附作用,研究結果表明:利用活性炭纖維去除水中的Cr(Ⅵ),其適宜條件為pH值為1~3,吸附時間為1.5h;通過電化學改性可以提高吸附率,並可實現活性炭纖維的現場再生。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。

2化學處理技術2.1化學還原沉澱法該方法是通過化學反應使Cr(Ⅵ)變為Cr(Ⅲ),Cr(Ⅲ)在鹼性條件下生成Cr(OH)3,排出上清液,以實現鉻的去除。因此選擇還原性化學物質將Cr(Ⅵ)還原成容易沉澱的Cr(Ⅲ)是整個技術的關鍵,選擇高效價廉的還原劑是最佳選擇。目前常用的還原劑主要有氣態的SO2、液態的水合肼以及固態的亞硫酸鈉、硫代硫酸鈉、硫酸亞鐵等。此方法常常產生大量污泥,可從污水源頭分流、污泥分類回收等途徑解決污泥帶來的後續處理問題。

蔣小友等研究了用水合肼回收電沉積鉻廢液中鉻的工藝條件,試驗結果表明,在30℃下於25mL含鉻廢液中加入1.6mLH2SO4和0.8mL水合肼,8min可使Cr(Ⅵ)還原為Cr(Ⅲ)。顏家保等用硫酸亞鐵作為還原劑處理Cr(Ⅵ)廢水,處理後出水六價鉻和總鉻的質量濃度分別在0.55及1.5mg/L以下,達到了國家排放標准;而且通過研究pH值對整個工藝的影響,得出Cr(Ⅵ)還原階段pH值應控制為2~3,Cr(Ⅲ)沉澱階段應控制為8~9。用亞硫酸鈉作還原劑與用硫酸亞鐵工藝條件相似,處理出水同樣能達到排放標准。石俊仙等用礦山鐵的硫化物礦物處理皮革廠含鉻廢水,在試驗得到的最佳條件下,直接用礦山鐵的硫化物礦物處理高質量濃度含鉻廢水,去除率達到73%。李秋菊等研究利用晶鍾誘導沉積不銹鋼酸洗廢液中鐵、鉻及鎳的有價金屬,以達到廢酸液進行資源化利用的目的,結果顯示溫度越低,廢酸HF越高,越有利於金屬沉積,且晶鍾添加量對金屬沉積影響不大。

2.2鐵氧體法鐵氧體法同樣是用硫酸亞鐵作為還原劑,與還原沉澱法的區別在於鐵氧體法不是通過生成Cr(OH)3沉澱去除Cr(Ⅲ),而是通過形成有磁性的鐵氧體達到同時去除鐵和鉻的目的。具體操作為:硫酸亞鐵在一定酸度下還原Cr(Ⅵ)為Cr(Ⅲ);然後調節溶液pH值,使Fe3+、Cr3+以及Fe2+共沉澱;加熱,通入壓縮空氣,使剩餘Fe2+被氧化為三價,當Fe2+與Fe3+質量濃度比達到2︰1時,便形成鐵氧體。反應見式(3)~式(9)。

Cr6++3Fe2+→Cr3++3Fe3+(3)

Cr3++3OH-→Cr(OH)3↓(4)

Fe3++3OH-→Fe(OH)3↓(5)

Fe2++2OH-→Fe(OH)2↓(6)

Fe(OH)3→FeOOH+H2O(7)

FeOOH+Fe(OH)2→FeOOH·Fe(OH)2(8)

FeOOH·Fe(OH)2+FeOOH→FeO·Fe2O3↓+2H2O(9)

由於Cr3+與Fe3+具有相同的離子電荷和相近的離子半徑,在鐵氧體形成的過程中,Cr3+取代Fe3+成為鐵氧體的組成部分,從而達到去除Cr(Ⅵ)

的目的。反應見式(10)和式(11)。

2Cr3++Fe2++8OH-→FeO·Cr2O3↓+4H2O(10)

6Fe3++3Fe2++24OH-→3FeO·Fe2O3↓+12H2O(11)

魏振樞分別從FeSO4·7H2O的投加量、反應的酸鹼度控制和加熱與曝氣幾個方面對鐵氧體法處理含鉻廢水的工藝條件進行了探討。來風習等為了克服鐵氧體法的缺陷,用一種復合方法超聲波-鐵氧體法處理含鉻廢水,結果Cr6+去除率達到99.9%以上,這就從節能和經濟的角度讓傳統鐵氧體法得以優化。

2.3電解法電解法使廢水中的有害物質通過電解過程在陽、陰兩極發生氧化和還原反應,或利用電極氧化和還原的產物與廢水中的有害物質發生化學反應,使有害物質轉化為無害物質或生成不溶於水的物質,從水中除去。電解法除鉻用鐵作陰極和陽極,陽極溶解產生的Fe2+將Cr(Ⅵ)還原為Cr(Ⅲ),陰極附近由於H+不斷還原為H2,溶液逐漸顯鹼性,Fe3+和Cr(Ⅲ)生成Cr(OH)3沉澱,從而除去廢水中的Cr(Ⅵ)。發生的化學反應見式(12)~式(17)。

陽極反應:Fe-2e-→Fe2+(12)

Cr6++3Fe2+→Cr3++3Fe3+(13)

陰極反應:2H2O+2e-→H2+2OH-(14)

沉澱反應:Cr3++3OH-→Cr(OH)3↓(15)

Fe3++3OH-→Fe(OH)3↓(16)

Fe2++2OH-→Fe(OH)2↓(17)

趙麗等分別從廢液濃度、pH值、反應時間和換極周期4個因素考慮,利用正交試驗對電解法處理含鉻廢水進行了研究,認為在工業廢水Cr(Ⅵ)初始質量濃度較高(不小於300mg/L)時,單純依靠普通的鐵板陽極溶解的Fe2+還不能夠充分還原Cr(Ⅵ),需加一定的還原劑,當廢水初始質量濃度不高於600mg/L、pH值為3、反應時間為40min和換極周期為10min時,且根據前期正交試驗(Fe2+與Cr2O7質量濃度比為1∶1)確定加入的FeSO4量的反應條件下,去除率可達94%以上。電解法由於有沉澱和絮體的生成,需要過濾工藝,且陰極附近氫氣的生成會影響它們的沉降,GaoP等為了解決這一問題,設計了電絮凝-電浮選聯合工藝,省去了過濾步驟,利用電解-電浮選產生的氣泡有效地使絮體浮出水面,從而達到去除的目的。

3生物處理技術生物法處理廢水一直是水處理領域研究的熱點,因為它具有資源豐富、效率高、投資低、選擇性強以及不產生二次污染等優點。生物法處理含鉻廢水主要包括氧化還原、離子交換、形成配位化合物和靜電吸引等機理,主要以投加生物吸附劑和生物絮凝劑的方式來完成。

3.1生物吸附法大量研究證實,具有生物活性的生物體及非活性的生物質均具有較強的生物吸附性能。應用死的微生物細胞吸附去除污染物具有一定的優越性,它不會受到廢水中毒性物質的影響,不需要持續不斷地提供養分,且可以再生再利用。近幾年國內外對含鉻廢水的處理焦點多集中在生物吸附法上,通過尋找合適的廢生物質材料吸附鉻等重金屬,這些生物質材料包括木屑、玉米芯、板栗殼、咖啡渣、橄欖渣、椰子皮、苔蘚、核桃殼及其改性產品等。

ElNemrA等從反應體系的pH值水平、污染物含量、吸附劑用量及吸附時間幾個方面研究了雞毛菜(海洋紅藻)及其生物質活性炭對廢水中鉻去除效果的影響,結果表明,在溶液pH值為1時吸附量最大,兩者最大的吸附能力為12和66mg/g。

LiuC等利用咖啡渣作為生物吸附劑還原吸附電鍍廢水中的Cr(Ⅵ),在試驗條件下Cr(Ⅵ)被完全還原和吸附,還原生成的少量Cr(Ⅲ)在後續混凝沉澱單元被完全去除,為咖啡渣的廢物利用提供了思路。DehghaniMH等利用經處理後的舊書、舊報紙吸附去除Cr(Ⅵ),研究表明,隨著Cr(Ⅵ)質量濃度和反應溶液pH值的降低以及吸附劑含量的提高,Cr(Ⅵ)去除率增大;在初始Cr(Ⅵ)質量濃度為5~70mg/L、pH值為3、接觸時間為60min及吸附劑投加量為3.0g/L的條件下,Cr(Ⅵ)最大吸附能力可達到59.88mg/g[41]。VieiraMGA等研究用馬尾藻做填料的填料柱對Cr(Ⅵ)的吸附作用,運用因子設計方法研究了運行條件對吸附能力的影響,如進水Cr(Ⅵ)質量濃度、填料柱進液流量和吸附劑量,結果顯示進水Cr(Ⅵ)質量濃度對填料柱吸附能力的影響最大,填料柱進液流量次之;在最佳運行條件下得到的吸附能力為19.06mg/g。木屑作為建築和傢具等行業的固體廢物,主要由質量分數為45%~50%的纖維素和質量分數為23%~30%的木質素組成,這些成分由於結構上含有羥基、羧基和酚基等基團,使它具有綁定金屬的能力,因此,大量的試驗和實際工程研究應用木屑、改性木屑吸附去除廢水中的鉻,且去除效果明顯。

3.2生物絮凝劑法生物絮凝劑是利用生物技術通過生物發酵、抽提、精製而得到的一種具有生物分解性和安全性的新型、高效、無毒、廉價的水處理劑。與傳統絮凝劑相比,生物絮凝劑具有高效、無毒、易降解且不產生二次污染的特點。

馬軍等通過試驗分析得出了微生物絮凝法處理含鉻工業廢水的最佳工藝條件為:pH值為7.5~8.0,水溫在10℃以上,最高進水Cr(Ⅵ)質量濃度為100mg/L,活性菌體積分數為0.8‰~1.2‰,反應時間為13~16min[48]。楊思敏等用微生物絮凝劑處理Cr(Ⅵ)溶液時,結果顯示黑麴黴分泌微生物絮凝劑對低質量濃度Cr(Ⅵ)還原效果較好,在pH值為1~5時,還原能力均較高,對質量濃度為20mg/L的Cr(Ⅵ)的還原率均大於99%。

4技術展望由於相關工業的快速發展,含鉻廢水排放仍將保持濃度高、排放量大的特徵,為了保護環境,強化含鉻廢水治理,今後治理技術進一步開發與應用應從以下幾個方面加以考慮。

(1)廢物減排和再利用是治理環境污染的一種重要方式,以循環經濟思路為指導,加強以廢治廢的技術開發,充分利用廢棄物資源如煤矸石、粉煤灰及農業廢棄物等,這樣既減少了廢物排放,又治理了其他類型的污染,可以首先從當地可利用資源考慮。

(2)前文中含鉻廢水治理方法各有優缺點,並各有其應用前提條件和最佳條件,應在綜合分析的基礎上建立聯合處理或復合處理技術體系,以使處理方案兼顧社會、經濟和環境綜合效應,達到最佳效果。

(3)文中所述大部分相關研究是在實驗室進行的,條件易於掌控,而實際處理工程則十分復雜,影響因素更為復雜,且有時難於准確控制,應加強中試以使各種方法更符合實際工程需求。

(4)由於化學法將產生大量的污泥,污泥鉻含量很高,應合理進行污泥的處置。

(5)生物處理法的出水含有大量的生物,出水不易進行回收利用,因此,生物處理工藝應考慮後接消毒處理。

J. 皮革廢水中鉻處理方法有哪些

一.還原沉澱法

化學還原法是利用硫酸亞鐵、亞硫酸鹽、二氧化硫等還原劑將廢水中六價鉻還原成三價鉻離子,加鹼調整pH值,使三價鉻形成氫氧化鉻沉澱除去。這種方法設備投資和運行費用低,主要用於間歇處理。

常用處理工藝為在第一反應池中先將廢水用硫酸調pH值至2~3,再加入還原劑,在下一個反應池中用NaOH或Ca(OH)2調pH值至7~8,生成Cr(OH)3沉澱,再加混凝劑,使Cr(OH)3沉澱除去。改良的工藝為在第一反應池中直接投加硫酸亞鐵,用NaOH或Ca(OH)2調pH值至7~8,生成Cr(OH)3沉澱,再加混凝劑,使Cr(OH)3沉澱除去。使用該技術後,含鉻廢水日處理量為1000M3,廢水中鉻含量為10mg/l。該技術適用於含鉻工業廢水處理。

在一些報道中也有提到利用聚合氯化鋁鐵處理電鍍含鉻廢水。聚合氯化鋁鐵兼有傳統絮凝劑PAC ,PFC的優點,形成的絮凝體大而重,沉降速度快。其出水色度比聚合氯化鐵好,除濁效果和絮凝體沉降性能又優於聚合氯化鋁。具體報道內容附於文後。

二.電解法沉澱過濾

1.工藝流程概況

電鍍含鉻廢水首先經過格柵去除較大顆粒的懸浮物後自流至調節池, 均衡水量水質, 然後由泵提升至電解槽電解, 在電解過程中陽極鐵板溶解成亞鐵離子, 在酸性條件下亞鐵離子將六價鉻離子還原成三價鉻離子, 同時由於陰極板上析出氫氣, 使廢水pH 值逐步上升, 最後呈中性。此時Cr3+ 、Fe3+ 都以氫氧化物沉澱析出, 電解後的出水首先經過初沉池,然後連續通過(廢水自上而下) 兩級沉澱過濾池。一級過濾池內有填料: 木炭、焦炭、爐渣; 二級過濾池內有填料: 無煙煤、石英砂。污水中沉澱物由過濾池填料過濾、吸附, 出水流入排水檢查井。而後通過泵進入循環水池作為冷卻用水。過濾用的木炭、焦炭、無煙煤、爐渣定期收集在鍋爐房摻燒。

2.主要設備

調節池1 座; 初沉池1 座、沉澱過濾池2 座; 循環水池1 座; 電源控制櫃、電解槽、電解電源、電解電壓1 套; 水泵5 台。

3.結果與分析

某電鍍廠電鍍廢水處理設備在正常工況條件下, 間隔不同的時間多次取樣,。

電鍍含鉻廢水採用電解法沉澱過濾工藝處理後全部回用, 過濾池內填料定期集中於鍋爐房摻燒, 達到了綜合治理電鍍含鉻廢水的目的。

該處理技術雖然運行可靠, 操作簡單, 但應注意幾個方面: a) 需要定期更換極板; b) 在一定的酸性介質中, 氫氧化鉻有被重新溶解的可能; c) 沉澱過濾池內的填料必須定期處理, 焚燒徹底, 否則會引起二次污染。由此可見, 對處理設施加強管理非常重要。

4.結論

1) 該處理工藝對電鍍含鉻廢水治理徹底, 過濾池內填料定期統一處理, 不會引起二次污染; 處理後清水全部回用, 可節省水資源, 具有明顯的經濟效益。

2) 該工藝投資較小, 技術成熟, 運行穩定可靠,操作方便, 易於管理, 適應於不同規模的電鍍生產企業。

三. 其他國內外含鉻廢水處理方法的研究進展

1.1 生物法

生物法治理含鉻廢水,國內外都是近年來開始的。生物法是治理電鍍廢水的高新生物技術,適用於大、中、小型電鍍廠的廢水處理,具有重大的實用價值,易於推廣。國內外對SRB菌(硫酸鹽還原菌)[1]、SR系列復合功能菌[2]、SR復合能菌[3]、脫硫孤菌[4]、脫色桿菌(Bac.Dechromaticans)、生枝動膠菌(Zoolocaramiger a)[5]、酵母菌[6]、含糊假單胞菌、熒光假單胞菌[7]、乳鏈球菌、陰溝腸桿菌、鉻酸鹽還原菌[8]等進行研究,從過去的單一菌種到現在多菌種的聯合使用,使廢水的處理從此走向清潔、無污染的處理道路。將電鍍廢水與其它工業廢棄物及人類糞便一起混合,用石灰作為凝結劑,然後進行化學—凝結—沉積處理。研究表明,與活性的淤泥混合的生物處理方法,能除去Cr6+和Cr3+,NO3氧化成NO3-。已用於埃及輕型車輛公司的含鉻廢水的處理[9]。

生物法處理電鍍廢水技術,是依靠人工培養的功能菌,它具有靜電吸附作用、酶的催化轉化作用、絡合作用、絮凝作用、包藏共沉澱作用和對pH值的緩沖作用。該法操作簡單,設備安全可靠,排放水用於培菌及其它使用;並且污泥量少,污泥中金屬回收利用;實現了清潔生產、無污水和廢渣排放。投資少,能耗低,運行費用少。

1.2 膜分離法

膜分離法以選擇性透過膜為分離介質,當膜兩側存在某種推動力(如壓力差、濃度差、電位差等)時,原料側組分選擇性透過膜,以達到分離、除去有害組分的目的。目前,工業上應用的較為成熟的工藝為電滲析、反滲透、超濾、液膜。別的方法如膜生物反應器、微濾等尚處於基礎理論研究階段,尚未進行工業應用。電滲析法是在直流電場作用下,以電位差為推動力,利用離子交換膜的選擇透過性,從而使廢水得到凈化。反滲透法是在一定的外加壓力下,通過溶劑的擴散,從而實現分離。超濾法也是在靜壓差推動下進行溶質分離的膜過程。液膜包括無載體液膜、有載體液膜、含浸型液膜等。液膜分散於電鍍廢水時,流動載體在膜外相界面有選擇地絡合重金屬離子,然後在液膜內擴散,在膜內界面上解絡,重金屬離子進入膜內相得到富集,流動載體返回膜外相界面,如此過程不斷進行,廢水得到凈化。膜分離法的優點:能量轉化率高,裝置簡單,操作容易,易控制、分離效率高。但投資大,運行費用高,薄膜的壽命短。主要用於回收附加值高的物質,如金等。

電鍍工業漂洗水的回收是電滲析在廢液處理方面的主要應用,水和金屬離子可達到全部循環利用,整個過程可在高溫和更廣的pH值條件下運行,且回收液濃度可大大提高,缺點為僅能用於回收離子組分。液膜法處理含鉻廢水,離子載體為TBP(磷酸三丁酯),Span80為膜穩定劑,工藝操作方便,設備簡單,原料價廉易得。也有選用非離子載體,如中性胺,常用Alanmine336(三辛胺),用2%Span80作表面活性劑,選用六氯代1,3-丁二烯(19%)和聚丁二烯(74%)的混合物作溶劑,分離過程分為:萃取、反萃等步驟[10,11]。近來,微濾也有用於處理含重金屬廢水,可去除金屬電鍍等工業廢水中有毒的重金屬如鎘、鉻等[12,13]。

1.3 黃原酸酯法

70年代,美國研製成新型不溶重金屬離子去除劑ISX[14~16],使用方便,水處理費用低。ISX不僅能脫除多種重金屬離子,而且在酸性條件下能將Cr6+還原為Cr3+,但穩定性差。不溶性澱粉黃原酸酯[17]脫除鉻的效果好,脫除率>99%,殘渣穩定,不會引起二次污染。鍾長庚[18,19]等人用稻草代替澱粉製成稻草黃原酸酯,處理含鉻廢水,鉻的脫除率高,很容易達到排放標准。研究者認為稻草黃原酸酯脫除鉻是黃原酸鉻鹽、氫氧化鉻通過沉澱、吸附幾種過程共同起作用,但黃原酸鉻鹽起主要作用。此法成本低,反應迅速,操作簡單,無二次污染。

1.4 光催化法[20,21]

光催化法是近年來在處理水中污染物方面迅速發展起來的新方法,特別是利用半導體作催化劑處理水中有機污染物方面已有許多報道。以半導體氧化物(ZnO/TiO2)為催化劑,利用太陽光光源對電鍍含鉻廢水加以處理,經90min太陽光照(1182.5W/m2),使六價鉻還原成三價鉻,再以氫氧化鉻形式除去三價鉻,鉻的去除率達99%以上。

1.5 槽邊循環化學漂洗

這一技術由美國ERG/Lancy公司和英國的Ef fluentTreatmentLancy公司開發,故也叫Lancy法。它是在電鍍生產線後設回收槽、化學循環漂洗槽及水循環漂洗槽各一個,處理槽設在車間外面。鍍件在化學循環漂洗槽中經低濃度的還原劑(亞硫酸氫鈉或水合肼)漂洗,使90%的帶出液被還原,然後鍍件進入水漂洗槽,而化學漂洗後的溶液則連續流回處理槽,不斷循環。加鹼沉澱系在處理槽中進行,它的排泥周期很長[22]。廣州電器科學研究所開發了分別適用於各種電鍍廢水的三大類體系的槽邊循環化學漂洗處理工藝,水回用率高達95%、具有投葯少、污泥少且純度高等優點。有時,用槽邊循環和車間循環相結合[23]。

1.6 水泥基固化法處理中和廢渣[24]

對於暫時無法處理的有毒廢物,可以採用固化技術,將有害的危險物轉變為非危險物的最終處置辦法。這樣,可避免廢渣的有毒離子在自然條件下再次進入水體或土壤中,造成二次污染。當然,這樣處理後的水泥固化塊中的六價鉻的浸出率是很低的。

2 電鍍含鉻廢液及污泥的綜合利用

由於電鍍含鉻老化廢液有害物質含量高,成分復雜,在綜合利用之前應對各種廢液進行單獨和分類處理。對於鍍鋅鈍化液、銅鈍化液及含磷酸的鋁電解拋光液均用酸鹼調節pH;對於陰離子交換樹脂,只需將它變為Na2CrO4即可。

2.1 利用鉻污泥生產紅礬鈉[25]

在高溫鹼性條件介質Na2CrO4中三價鉻可被空氣氧化為Na2Cr2O7,同時污泥中所含的鐵、鋅等轉化為相應的可溶鹽NaFeO2、Na2ZnO2。用水浸取鹼熔體時,大部分鐵分解為Fe(OH)3沉澱而除去。將濾液酸化至pH<4,Na2CrO4即轉變為Na2Cr2O7,利用Na2SO4與Na2Cr2O7溶解度差異,分別結晶析出。採用高溫鹼性氧化鉻污泥制紅礬鈉的條件是n(Na2CO3)∶n(Cr2O3)=3.0∶1.0,溫度780℃,時間2.5h,鉻的轉化率在85%以上。

2.2 生產鉻黃[26]

利用純鹼作沉澱劑去除電鍍廢液中的雜質金屬離子,再利用凈化後的電鍍廢液替代部分紅礬鈉生產鉛鉻黃。電鍍液加入Na2CO3飽和液後,調整pH至8.5~9.5。進行過濾,濾液備用。在鹼性條件下將濾渣中的Cr3+用H2O2氧化為Cr6+,再經過濾,濾液與上述濾液混合。將濾液與硝酸鉛溶液和助劑,在50~60℃反應1h,然後經過濾、水洗,洗去氯根、硫酸根以及其它部分可溶性雜質,再經乾燥粉碎即得成品鉛鉻黃。利用電鍍廢液生產鉛鉻黃,不僅解決了污染問題,而且使電鍍廢液中的鉻得到了回收利用。據估算,按年處理電鍍廢液200t,年平均回收18t紅礬鈉,可實現年創收4萬余元。效益可觀。

2.3 生產液體鉻鞣劑及皮革鞣劑鹼式硫酸鉻[27,28]

含鉻廢液先用氫氧化鈉去除金屬離子雜質,控制pH=5.5~6.0,然後過濾,濾液待用,污泥用鐵氧體無害化處理。然後,在濾液中投加還原劑葡萄糖,使Na2Cr2O7還原為Cr(OH)SO4,在100℃條件下,進一步聚合,當鹼度為40%時,分子式為4Cr(OH)3 3Cr2(SO4)3,即為鉻鞣劑。河北省無極縣某皮革廠就是利用電鍍含鉻廢水生產液體鉻鞣劑。按每天生產5t液體鉻鞣劑,每天可得利潤為6000餘元。可見利用含鉻廢液生產鉻鞣劑的經濟效益是十分顯著的。另外,可將含鉻的污泥與碳粉混合,在高溫下煅燒,從而可製得金屬鉻[29]。因為含鉻污泥是電鍍車間污泥的主要品種,根據電鍍處理方法不同,污泥的回收利用也不同[30]。電解法污泥:(1)做中溫變換催化劑的原料;(2)做鐵鉻紅顏料的原料。化學法的污泥:(1)回收氫氧化鉻;(2)回收三氧化二鉻拋光膏。鐵氧體污泥做磁性材料的原料等等。

閱讀全文

與混凝法處理含鉻廢水相關的資料

熱點內容
含油量對超濾膜通量的影響 瀏覽:336
福建古巴膠樹脂 瀏覽:909
陶壺燒水會有水垢嗎 瀏覽:80
西寧印染污水聚丙烯醯胺多少錢 瀏覽:709
污水處理如何降低水中色度 瀏覽:371
蒸餾水什麼行業需求大 瀏覽:626
吳川市的污水 瀏覽:10
csm反滲透膜價格 瀏覽:780
含煤廢水氯根 瀏覽:934
回力聯名鞋防盜扣有什麼用 瀏覽:529
雪鐵龍濾芯用的什麼品牌的 瀏覽:803
南京電熱水器除垢 瀏覽:568
污水處理設備醫用空氣消毒機 瀏覽:587
污水泵廠工資多少 瀏覽:900
輝騰30的機油濾芯在哪裡 瀏覽:950
別克威朗用的什麼機油濾芯 瀏覽:439
三溢濾芯是什麼牌子的 瀏覽:627
使電鍍廢水成果凍狀加什麼 瀏覽:903
磷化工廢水治理服務方案多少錢 瀏覽:764
水分子可以半透膜 瀏覽:491