『壹』 廢水中油類污染物的來源有哪些
石油開采、煉制、復儲存、運輸或制使用石油製品的過程中均會產生含有石油類污染物的廢水肉類加工、牛奶加工、洗衣房、汽車修理等過程排放的廢水中都含有油或油脂.一般的生活污水中油脂占總有機質的10%左右每人每天產生的油脂約15g左右.含油廢水的含油量及其特徵隨工業種類的不同而有很大差異同一種工業也會因為生產工藝流程、設備和操作條件的不同而相差很大.廢水中所含的油類除了重焦油的相對密度可達1.1以上外其餘都小於1污水處理含油廢水的重點就是去除其中相對密度小於1的油類.高濃度有機廢水就產生的污水量和對水體環境產生的污染程度來看油類污染物主要是石油類物質.
『貳』 含油廢水特點有哪些,如何進行治理
含油污水主要來源於石油、石油化工、鋼鐵、焦炭、煤氣發生站、機械加工版等工業部門。權
廢水中油類污染物的相對密度小於1,但重焦油除外,重焦油的相對密度大於1.1。油通常以三種狀態存在於廢水中。
(1)浮上油。油滴粒徑大於100μm,易於與廢水分離。
(2)分散油。油滴的粒徑在10到100μm之間,它們漂浮在水中。
(3)乳化油。油滴粒徑小於10μm,難以從廢水中分離出來。
由於不同工業部門排放的廢水(如煉油過程中產生的廢水)中油的濃度差異很大,含油量約為150-1000毫克/升,焦化廢水中焦油含量約為500-800毫克/升,發氣站排放的廢水中焦油含量可達2000-3000毫克/升.
因此,含油廢水的處理應首先利用隔油池回收浮油或重油,處理效率為60%-80%,出水含油量約為100-200毫克/升;廢水中乳化油和分散油難以處理,應防止或減少乳化現象。方法之一是減少生產過程中廢水中油的乳化。其次,在處理過程中,應盡量減少泵提升廢水的次數,以避免增加乳化程度。處理方法通常採用氣浮法和破乳。
『叄』 如何去除含油廢水中的油
用破乳劑(脫水劑、脫穩劑、油水分離劑),這種水處理葯劑就是把含油回污水的水和油脂絮凝答下來,就可以把水做干凈了。可以用在很多行業的,切削液廢水、日化廢水、焦化廢水、食品廠廢水、五金含油廢水、油田廢水等,都OK。
點清破乳劑
『肆』 含油廢水怎樣處理。。。
油類物質在廢水中通常以三種狀態存在。
(1)浮上油,油滴粒徑大於100μm,易於從廢水中分離出來。油品在廢水中分散的顆粒較大, 含油廢水處理設施粒徑大於100微米,易於從廢水中分離出來。在石油污水中,這種油占水中總含油量60~80%。
(2)分散油.油滴粒徑介於10一100μm之間,懸浮於水中。
(3)乳化油,油滴粒徑小於10μm,油品在廢水中分散的粒徑很小,呈乳化狀態,不易從廢水中分離出來。
主要處理方法
上浮法
主要用於隔油池出水的高級處理,去除細小油珠和乳化油。經過上浮處理後,出水含油量 含油廢水處理設施
可降至30毫克/升。其方法是:將適量的空氣通入含油廢水中,形成許多微小氣泡,在氣泡作用下構成水、氣、油珠三相非均一體系。在界面張力、氣泡上浮力和靜水壓力差的作用下形成氣-油珠結合體上浮而實現油水分離。上浮法按氣泡產生的方法,可分為布氣上浮法、溶氣上浮法和電解上浮法三種。
布氣上浮法
這種方法主要是藉助於機械剪力將混入水中的氣泡破碎,或將空氣先分散成細小氣泡後進入廢水,進行氣水混合上浮。常用方法有葉輪上浮法、射流上浮法以及多孔材料(如擴散板、微孔管、帆布管等)曝氣上浮法。布氣上浮法的優點是設備簡單,管理方便,電耗較低。缺點是氣泡破碎不細,一般不小於1000微米,上浮效果因而受到限制。此外,採用多孔材料曝氣上浮法,多孔材料容易堵塞,影響運行。
溶氣上浮法
是從含過飽和空氣的廢水中析出氣體,產生氣泡以實現上浮。常用的有加壓溶氣上浮法和真空上浮法,前者應用較普遍。加壓溶氣上浮法是用水泵將廢水送入溶氣罐加壓到3~5.5千克力/厘米2,同時注入空氣使其在壓力下溶解於廢水。一般溶氣時間為2~4分鍾。然後廢水通過減壓閥進入上浮池。 含油廢水處理設施
溶入廢水中的空氣由於突然減到常壓,便形成許多細小的氣泡逸出,從而實現上浮。上浮池內的上浮時間一般不小於 1小時。目前常採用將經過上浮處理的部分廢水(30~50%)加壓迴流進入未經加壓上浮處理的廢水中實現上浮的方法。其優點是加壓廢水量小,可減少電耗,同時可以防止未處理的廢水中油品在加壓溶氣時進一步乳化。真空上浮法是使廢水中的氣泡在減壓(真空)條件下逸出的。 溶氣上浮法的主要優點是產生的氣泡直徑可小到30~120微米。氣泡直徑小,在供氣量相同時,氣泡吸附時的比表面積就大,氣泡上浮速度減慢,與吸附質點的接觸時間增加,可以提高上浮效果。因此,溶氣上浮法獲得廣泛應用。
電解上浮法
利用電能在含油廢水中的電解氧化還原效應,以及由此在電極上產生的微小氣泡的上浮作用來凈化含油廢水。如採用可溶性陽極材料,還可以同時發生電解混凝作用以凈化廢水(見廢水電解處理法)。
混凝法
可用鋁鹽或鐵鹽作混凝劑,構築物可採用加速澄清池,處理效果與上浮法基本相同。含油廢水處理設施採用上浮法時,往往也投加混凝劑,以提高凈化效果。
『伍』 含油污泥的含油污泥的來源主要有以下幾種途徑及特點
(1) 原油開采產生含油污泥:
原油開采過程中產生的含油污泥主要來源於地面處理系統,採油污水處理過程中產生的含油污泥,污水凈化處理中投加的凈水劑形成的絮體、設備及管道腐蝕產物和垢物、細菌(屍體)等組成了含油污泥。此種含油污泥一般具有含油量高、粘度大、顆粒細、脫水難等特點,它不僅影響外輸原油質量,還導致注水水質和外排污水難以達標。
(2) 油田集輸過程產生含油污泥
油田集輸過程產生的含油污泥的主要來源於接轉站、聯合站的油罐、沉降罐、污水罐、隔油池底泥、煉廠含油水處理設施、輕烴加工廠、天然氣凈化裝置清除出來的油沙、油泥,鑽井、油田作業、管線穿孔而產生的落地原油及含油污泥。油品儲罐在儲存油品時,油品中的少量機械雜質、沙粒、泥土、重金屬鹽類以及石蠟和瀝青質等重油性組分沉積在油罐底部,形成罐底油泥。這些含油污泥本身成分復雜,含有大量的老化原油、蠟質、瀝青質、膠體和固體懸浮物、細菌、鹽類、酸性氣體、腐蝕產物等,在污水處理過程中還加入了大量的凝聚劑、緩蝕劑、阻垢劑、殺菌劑等水處理葯劑,也混於含油污泥中。
在3-6年的油罐定期清洗中,罐底含油污泥量約占罐容的1%左右。罐底含油污泥的特點是碳氫化合物(油)含量極高,典型的油罐底泥分析結果,其中大約25%為水,5%的無機沉澱物如泥沙,70%左右為碳氫化合物,其中瀝青質佔7.8%,石蠟佔6%,污泥灰分含量4.8%。
(3)煉油廠污水處理場產生的含油污泥:煉油廠污水處理場的含油污泥主要來源於隔油池底泥、浮選池浮渣、原油罐底泥等,俗稱「三泥」,這些含油污泥組成各異,通常含油率在10%~50%之間,含水率在40%~90%之間,同時伴有一定量的固體。
(4)鋼鐵冶煉等行業用油所導致的污染的泥土
(5)海上油田開采,造船修船使用重油烴所污染的海岸線、河流邊際,海底含油污泥,石油油罐車船事故導致的油品泄漏造成的水體、地表含油污泥等。
『陸』 中國核電站的廢水怎麼處理
田灣核電站含油廢水處理系統是該電站的重要配套工程,擔負著處理核島及常規島區所排放含油廢水的任務。其設備主要安裝在BOP南區污水處理站含油廢水處理廠房內,該廠房為磚混結構,面積約150m2(包括除油調節池面積),工程總造價約40萬元,其中設備造價約30萬。
設計布置了兩套含油廢水處理設備,每套設備的處理能力為15m3/h,單套系統可獨立運行,互為備用。含油廢水經過該套設備處理後直接達標排放,分離出的廢油收集至廢油箱,定期清理。
1、含油廢水的來源及特點
1.1含油廢水的來源
本項目含油廢水的來源為:(1)汽輪機、發電機及補水泵的油系統,以及汽輪機廠房內的凝汽器泵房油系統;(2)柴油發電機組、燃料及潤滑油系統;(3)有可能發生油噴濺和泄漏的房間地面排水;(4)應急排油以及室外變壓器雨水坑的雨水;(5)電纜房間以及阻燃電纜的電纜通道等滅火後排水。
1.2 含油廢水的特點
(1)油種類多:包括有潤滑油、各類機油、盡緣油(如變壓器油、電纜油)等。
(2)水質水量變化大:電站運行時油質量濃度不高,即油≤100mg/L;懸浮物為SS≤200mg/L;大修時,油質量濃度較高,達1000mg/L以上,懸浮物濃度也較高。正常工況下,含油廢水最大日排水量為100m3;極限情況(電器廠房火災),含油廢水最大日排水量為160m3,最大小時排水量為50m3。
2、工藝流程及出水排放標准
2.1 工藝流程
含油廢水處理系統設計工藝流程見圖1。
廢水首先進進格柵以往除廢水中的漂浮物,再匯人調節池,以調節水量和均化水質,後由潛污泵提升至同向流隔油池,往除廢水中的分散油,而後通過加壓泵提升至高效油水分離器,深度除油,分離後的油進進廢油箱,出水則達標排放。
2.2 出水排放標准
出水水質達到《國家污水綜鈉瞰標准》(GB8978--1996)一級標准:SS≤30mg/L,油類≤5mg/L。
3、主要設備及構築物
3.1調節池
主要用於調節水量和均化水質,為鋼混結構,有效容積為160m3,設計水力停留時間為24h,池內置提升泵及迴流設施,單套系統設提升泵2台(1用1備,Q=17m3/h,H=8.0m,N=1.6KW。
3.2 同向流隔油池
主要用於往除廢水中的分散油。其原理為油水在斜板中向上流的過程中,由於油水密度差,油浮在水面上,靠斜板底面,水在下面,這樣通過一系列的集水設備,使下面的水流出設備外,油浮於設備上方。油通過集油管,流人濃縮池中,濃縮後排出,從而達到油水分離的目的。
該套設備由江蘇鵬鷂團體有限公司提供,型號GYT—15(共2台),規格尺寸1.7m×l.05m×l.6m,Q235鋼制。
特點:處理效率較高(對含油廢水含油濃度較高時,即含油質量濃度≥1000mg/L時處理效果較好)、處理量大、無能耗、無運行用度、自動運行、維護簡單、佔地面積小等。
3.3 高效油水分離器
廢水經螺桿泵加壓進進油水分離器,首先經前級過濾裝置過濾,降低廢水懸浮物後進進粗粒化處理和吸附聚結處理。該處理裝置將強化重力分離、粗粒化、吸附聚結處理工藝過程有機地組合在一鋼質圓筒形整體結構中,與輸液泵、過濾器組合成處理裝置。含油廢水'>含油廢水經親油性濾芯過濾,油粒在濾芯上吸附聚集成大油滴上浮至集油腔,定期排出,出水則排放。
該套設備由江蘇鵬鷂團體有限公司提供,型號GJSZ—15B(共2台)。配套4台螺桿泵(型號為1G58—1—Ⅱ,功率為7.5kW),2台進水泵,2台反沖洗泵,以及功率為6.0kW的電加熱裝置。
特點:該套設備具有結構緊湊、佔地少、安裝調試簡單、全自動運行、維護治理簡單、分離效率高、能耗低等優點;同時,由於其處理工藝充分利用了重力分離特性因素,因此,對各種處理難度較高的含油廢水'>含油廢水工況具有較廣泛的適應能力,完全適用於不含表面活性劑的各類機油、盡緣油、潤滑油、動植物油及部分重油等油品的含油廢水處理。
3.4運行控制
該套含油廢水處理系統控制採用PLC作為中心控制器,主要控制提升泵、高效油水分離器進水泵、反沖洗泵以及高效油水分離器等裝置的自動運行。提升泵自動相互切換,在12h內交替運行。
4、運行中出現的題目探討
4.1節能方案改進
實際運行表明,由於含油廢水的原水含油量較低,同向流隔油池處理效果不明顯,且含油廢水經過泵2次加壓提升至油水分離器中,增加電耗,不經濟。因此,決定在調節池與加壓泵間增加一套真空引水器的輔助管路系統,該系統的進水管引自調節池出水管則接人到加壓泵進水管上,即該套系統不經過同向流隔油池,是原工藝的一種旁路補充,對原工藝無影響,其工藝流程變更見圖2。
當含油廢水的含油量較低時,可採用該輔助管路系統,即直接用加壓泵把含油廢水通過該系統送至前級過濾器,減少一級泵提升,達到了運行節能的目的;當含油廢水含油質量濃度>1000mg/L時,則可採用原設計工藝。
4.2 螺桿泵運行噪音及震動偏大
設備運行時,高效油水分離器螺桿泵運行噪音及震動偏大,嚴重影響設備運行及四周工作環境。
(1)分析原因:水泵安裝存在一些缺陷,如水泵基礎不是獨立的,且未加減震墊,水泵進出口管路為硬性連接等,勢必造成水泵運行噪音及震動偏大。對上述缺陷進行相應技術改造後,水泵運行噪音及震動有一定改善。但是,運行一段時間後,水泵噪音及震動又偏大,因此,水泵本身必存在質量題目。
(2)採取措施:廠家現場檢查啟動該水泵後,決定更換水泵。水泵更換完畢後,再啟動水泵,噪音及震動正常,運行一段時間後,噪音及震動仍正常。
5、結語
(1)本系統採用了物化方法(「隔油+粗粒化分離工藝」)來處理核電站'>核電站含油廢水,即選用高效油水分離器作為油的終極處理手段,其中,隔油採用同向流隔油池裝置,粗粒化分離則採用高效油水分離器裝置。實際運行表明,其完全滿足出水排放標准油類<5mg/L)的要求,同時,該系統具有工藝簡單、全自動運行、佔地面積小、投資省和運行維護用度低等優點。
(2)經濟分析。本套系統運行用度較低,主要用度為電耗,分析設備用電消耗如表1所示。
註:加壓泵及提升泵停運時,反沖洗泵啟動,反之則相反;電加熱平時基本不開啟,故不考慮。
以上按1套設備24h連續運行考慮,則處理水量為360m3,每m3廢水處理耗電量0.61KW•h,按0.52元/(KW•h)計,耗電費0.32元/m3。採用節能改造後的方案運行(提升泵及隔油池不運行),則每m3廢水處理耗電量0.51KW•h,按0.52元/(KW•h)計,耗電費為0.27元m3。
(3)該系統自2003年8月投進運行以來,經過必要的技術改造後,各設備運行工況較好,日均勻處理含油廢水量達100m3,廢水中油類及懸浮物均在油水分離器中被有效往除掉(往除率穩定在85%-95%),系統出水水質符合《國家污水綜合排放標准》(GB8978—1996)一級標准要求。
『柒』 船舶含油污水的來源有哪些,各有什麼特性
船舶油污水是指船舶在發動、航行過程中不可避免產生的含油水及廢水。
船舶油污水專產生的來源主要是屬從以下三方面來的
1.含油洗艙水
油船進廠修理或更換運油品種必須清洗貨油艙。採用高壓水清洗船艙產生的污油水稱為船舶洗艙污油水。洗艙水的水量一般為該船載重量的20%左右。洗艙水含油量一般為15000毫克/升左右。洗艙水中層油濃度為30~130毫克/升。很顯然,採用原油洗艙技術洗艙不產生上述大量的油污水。
2.機艙水
船舶機艙水是由於機艙內各種閥件和管路中漏出的水與輪機在運轉過程中誦出的潤滑油、燃燒油等混合在一起的污油水。機艙水年水量一般為該船總噸位的10左右。水質較為復雜,它是多種油類的混合物含油量一般在5000毫克/升左右。機艙水中層平均含油量為250毫克/升左右。
3.含油壓載水
油輪卸完油後,為確保安全航行和提高推進器的效率,需在貨油艙內或壓艙內裝一定量的水,裝入的水和附著在艙壁上的粘油混合就成了壓載油污水。一般壓載水占該輪載重量的25左右,含油量3000毫克/升左右。壓艙水中間層平均含油量一般為12~l5毫克/升。由於壓載水的排放有一定的時限,因此來源極不均勻。顯然,清潔壓載水和專用壓載水不含有污油。
『捌』 什麼是含油污水,什麼是含油污水知識
含油廢水主要包括油田廢水,煉油廠和石油化工廠的廢水,油輪的壓艙水、洗艙水、機艙水,油罐車的清洗水等。為防止含油廢水造成污染和危害,中國規定地面水中石油(包括煤油、汽油)最高容許濃度為0.3毫克/升。
『玖』 含油工業廢水的成分
含油廢水被排到江河湖海等水體後,油層覆蓋水面,阻止空氣中的氧向水中的擴散; 水體中由於溶解氧減少,藻類進行的光合作用受到限制; 影響水生生物的正常生長,使水生動植物有油味或毒性,甚至使水體變臭,破壞水資源的利用價值; 如果牲畜飲了含油廢水,通常會感染致命的食道病; 如果用含油廢水灌溉農田,油分及其衍生物將覆蓋土壤和植物的表面,堵塞土壤的孔隙,阻止空氣透入,使果實有油味,或使土壤不能正常進行新陳代謝和微生物新陳代謝,嚴重時會造成農作物減產或死亡。另外,由於溢油的漂移和擴散,會荒廢海灘和海濱旅遊區,造成極大的環境危害和社會危害。但更主要的危害是石油中含有致癌烴,被魚、貝富集並通過食物鏈危害人體健康。因此,對石油和石化等行業產生的含油廢水進行有效處理是極其必要的。
含油廢水來源廣泛,成分復雜。在石油、化工、鋼鐵、焦化、煤氣發生站、機械製造和食品加工等工業企業中,凡是直接與油類接觸的用水,都含有油。例如,冶金工藝中的有些設備、材料在生產過程中需在冷卻、潤滑、清洗等方面用水,而且在運行中往往與設備或材料直接接觸,水中帶入大量氧化鐵顆粒、金屬粉塵和潤滑油脂,形成含油廢水。
石油在開采、運輸和加工過程中會對環境造成一系列的污染。在採油生產過程中,含油廢水主要來自油田采出水和注水井洗井水。隨著油田的不斷開采,採油技術不斷發展,先後經歷了一次、二次、三次採油。一次採油靠天然能量為動力; 二次採油以人工注水方式來保持地層壓力; 三次採油是通過改變注入水的特性來提高採油率,目前油田主要進行二次、三次採油。隨著油田的發展,三次採油開始得到應用,特別是聚合物驅油得到廣泛應用。其本質是為了改善驅油效果,向水中添加化學試劑,主要是聚合物、表面活性劑和鹼。結果使採油廢水的成分更加復雜,其中含有許多固體顆粒、游離油、乳化油和各種殘余助劑,處理更加困難,不經過處理直接排放的危害更大,會導致非常嚴重的環境污染。若不經處理直接注入地下,則固體微粒和油珠將堵塞油層毛細通道,降低油層滲透率使注水處的吸水能力下降,最終導致採油率的降低。