導航:首頁 > 污水知識 > fenton法印染廢水

fenton法印染廢水

發布時間:2023-04-30 06:11:46

① 芬頓工藝原理

芬頓工藝原理:就是過氧化氫(H2O2)與二價鐵離子的混合溶液具有強氧化性,可以將當時很多已知的有機化合物如羧酸、醇、酯類氧化為無機態,氧化效果十分顯著。具有去除難降解有機污染物的高能力的芬頓試劑,在印染廢水、含油廢水、含酚廢水、焦化廢水、含硝基苯廢水、二苯胺廢水等廢水處理中體現了很廣泛的應用。

芬頓氧化法主要適用於含難降解有機物廢水的處理,如造紙工業廢水、染整工業廢水、煤化工廢水、石油化工廢水、精細化工廢水、發酵工業廢水、垃圾滲濾液等廢水及工業園區集中廢水處理廠廢水等的處理。

芬頓氧化法用於生化處理預處理時,可設置粗、細格柵、沉砂池、沉澱池或混凝沉澱池,去除漂浮物、砂礫和懸浮物等易去除污染物;芬頓氧化法用於廢水深度處理時,宜設置混凝沉澱或/和過濾工序進行預處理。用於生化處理的預處理時,若進水水質水量變化較大,芬頓氧化工藝前應設置調節池。

芬頓氧化法廢水處理工程工藝流程主要包括調酸、催化劑混合、氧化反應、中和、固液分離、葯劑投配及污泥處理系統,工藝流程。

② fenton試劑處理印染廢水時雙氧水和硫酸亞鐵的比例是多少

針對不同的廢水,芬頓的加葯配比是不同的。這個沒有靠譜的計算公式,只能通過小試版確定大概的葯劑權投加比例,然後到工程調試時還需要再進行調節。
印染廢水難降解的污染物主要是PVA和苯胺等。芬頓降解能力有限,運行成本較高。建議使用微電解聯合芬頓來進行處理。
由於印染行業利潤較低,現在印染企業較少有使用微電解+催化氧化工藝來進行預處理或深度處理的。但微電解+催化氧化相較於單純的芬頓工藝具有投資略大,但無需人工操作、運行成本低的特點。
投資和運行費用就好比是一刀割肉和慢慢凌遲的區別,看企業怎麼來選擇。但對於處理效果來說,微電解+催化氧化處理印染廢水效果是有保證的。

③ 物化法處理印染廢水的研究進展


我國是印染紡織第一大國,而印染行業又是工業廢水排放大戶,據不完全統計,全國印染廢水每天排放量為3.0×106~4.0×106t。印染廢水具有水量水質變化大、有機污染物含量高、色度深、pH波動大等特點,過去常採用成本較低的生化法處理即可滿足較低的排放標准。
1處理印染廢水的物理方法
常用的處理印染廢水的物理方法主要包括吸附、混凝、膜處理等。通常地,吸附和膜處理技術作為生物處理的深度處理技術;而混凝技術視具體情況可以放在生物處理工段的前面,也可以放在後面。這些技術都可取得較好的效果。不過一般來說此類技術只是對廢水中的污染物進行了相間轉移,並沒有從根本上消除污染,而且相應材料消耗較大,增加了處理成本,限制了大范圍的推廣應用。
1.1吸附法
當印染廢水與多孔性物質混合或通過由其顆粒組成的濾床時,污染物就會進入多孔物質的孔隙內或者是黏附在表面而被除去。吸附法適用於低濃度印染廢水,多用於深度處理。應用最多的吸附劑是活性炭,但單獨採用活性炭吸附處理印染廢水的成本很高。
近些年來研究的重點主要在於尋找開發新型廉價易得的吸附劑,並對其進行改性來提高吸附性能,其種類和主要性能如表1所示。
1.2混凝法
混凝工藝流程簡單,操作管理方便。但由於染料品種繁多,單一混凝劑難以適應成分復雜的印染廢水,因此開發新型高效無毒混凝劑,對現有葯劑進行改性,爭取做到一劑多用是目前該技術發展的趨勢。
目前常用的絮凝劑包括無機絮凝劑、有機絮凝劑及生物絮凝劑。無機絮凝劑主要有鋁鹽、鐵鹽等低分子混凝劑以及聚合氯化鋁(PAC)、聚合硫酸鐵等高分子混凝劑。傳統的鋁鹽混凝一直佔主導地位,其絮體小、形態穩定,對大部分染料廢水處理效果比較理想,但反應較慢,受溫度影響較大且有毒性;鐵
鹽反應快、絮體大、易失穩沉澱,對疏水性染料脫色效率高,但對親水性染料脫色不理想,投加量不當會使水體呈現黃色,COD去除率低。有人圍繞著鐵磁性物質展開研究,通過磁種混凝使非磁性污染物獲得磁性,實現磁分離來縮短時間。D.Pak等〔1〕將煉鋼過程中產生的廢渣粉碎(其成分中含有磁性鐵氧化物)來處理紡織廢水,沉降速度較FeCl3或PAC大10倍,對色度、SS、TOC、COD、總氮和總磷的去除率都較高;賈宏藝等〔2〕利用磁性納米Fe3O4顆粒的超順磁特性,在外加磁場的作用下將磁顆粒、亞鐵鹽及有機物形成的混凝體迅速沉降下來,COD去除率較只投加亞鐵鹽時高15%。
有機高分子絮凝劑較無機絮凝劑絮凝速度快且穩定,用量少,受共存鹽類、pH及溫度影響小,產生的殘渣也較少,因此應用前景更加廣泛。主要品種有聚丙烯醯胺、聚丙烯酸、聚二甲基二烯丙基氯化銨、聚胺等,由於合成高分子有毒性,因而天然無毒的高分子絮凝劑如殼聚糖日益受到重視。但殼聚糖只能溶解於弱酸性溶液,溶解度較小,在殼聚糖分子上引入基團對其進行改性,增強殼聚糖的螯合能力已經成為必然趨勢。劉運學等〔3〕對比了羧甲基殼聚糖和殼聚糖對某毛巾廠印染廢水的混凝處理效果,在相同工藝條件下前者得到的脫色率和COD去除率都優於後者。
近些年生物絮凝劑發展迅猛,其對水中膠體和懸浮物具有絮凝作用,且無二次污染,具有高效、無毒、絮凝對象廣泛、脫色效果獨特等優點,但是成本較高,技術上還存在一些問題。
1.3膜分離
膜分離技術由於無相變、設備簡單、操作方便等優點,迅速發展日趨成熟並已形成工業化規模,但不適宜直接處理印染廢水,否則極容易造成嚴重的膜污染且難以再生;膜分離技術多用於深度處理,降低和去除殘存的有機物、色度並脫除無機鹽分,分離前段工藝中形成的微生物、絮凝物或是投加的固體催化劑,與其他技術聯用的效果極好,出水可以達到回用標准。叢利澤等〔4〕採用混凝沉澱法對COD高達2500mg/L,色度高達10000倍的印染廢水進行預處理,後接膜生物反應器與納濾膜分離系統組合工藝,處理後COD降到30mg/L,NH3-N降到8mg/L,色度為0,其中納濾膜主要分離色素等生物難降解小分子物質。浙江某公司〔5〕採用超濾-反滲透聯用處理印染廢水,超濾可去除部分有機物及色度,更主要是去除可能污堵反滲透膜的膠體、細菌、病毒等雜質,延長了反滲透膜的清洗周期和壽命;反滲透可去除98%的鹽分,完全去除硬度,同時對COD、色度也具有極高的去除作用,出水完全達到純水標准。
2化學氧化方法
化學氧化能夠使印染廢水中的有機染料發生化學反應而被分解,常用的氧化劑包括O2、O3、ClO2、H2O2、新生態MnO2等。這些氧化劑都能與染料發生氧化還原反應,但由於成本高或效率低導致費用昂貴,於是人們紛紛添加催化劑來提高其氧化性能,通過產生氧化活性更高的˙OH來提高其氧化能力。印染廢水中染料的顏色來源於染料分子的共扼體系—含不飽和基團—N=N—、C=C、—N=O、C=O、C=S—、—CH=N—等的發色體〔6〕。˙OH的標准氧化電位高達2.8eV,是除元素氟以外最強的氧化劑,能夠有效打破共扼體系結構,使之變成無色的有機分子,無選擇地將絕大多數有機物徹底氧化成CO2、H2O和其他無機物。
2.1光化學氧化法
光化學氧化印染廢水不受鹽離子種類、有機物濃度和pH波動的影響,無二次污染,操作條件溫和。利用紫外光照射在TiO2的表面產生˙OH進而氧化有機污染物是當前實驗室內最主要的方法,但對於色度較高的印染廢水由於光透過性較差而使處理效果不夠理想。
於是研究重點正在從利用紫外光的光催化氧化向利用可見光的光敏化氧化轉變。因為染料本身就是一種光敏化劑,能夠被可見光激發向TiO2轉移電子,形成的導帶電子被水中的氧捕獲,進而形成˙O2-和˙OH,這樣協助催化劑被間接激發,從而擴大了可利用光的波長范圍,甚至可以直接利用太陽光,極大地降低了處理成本。在實驗室內採取的措施有:改變光收集裝置透鏡聚焦〔7〕、復式拋物線集光器〔8〕、鍍發光劑〔9〕、聯合類Fenton技術〔8-10〕等,這些都得到了良好的處理效果。在突尼西亞佔地50m2的光敏化氧化工藝中試裝置的運行結果表明,太陽光能夠去除難降解有機物和色度〔11〕,甚至較實驗室內有更高的效率(量子產率達15%),並提高了廢水的可生化性,這在陽光充沛的地區具有極大的意義,只是太陽光的光效率過低,使得處理設施佔地面積龐大。
2.2電化學氧化法
關於電化學氧化的研究主要集中在對電極的改進上,以提高電極材料的催化性能,提高電流效率降低能耗。溫軼等〔12〕以碳納米管電催化電極做陽極,不銹鋼片為陰極分解處理含活性艷紅X-3B的模擬印染廢水,在酸性條件下當電流密度為20mA/cm2時可以有效電催化氧化有機染料。A.Sakalis等〔13〕以鈮/硼摻雜金剛石為陽極來處理4種偶氮染料,與Pt/Ti相比,電耗更低,效率更高,脫色率高達90%。A.Koparal等〔14〕利用硼摻雜金剛石拉西環形陽極在雙極滴流塔反應器中處理鹼性紅29,其分解率達99%,最優的條件下脫色率和COD去除率分別為97.2%和91%,而電流密度僅1mA/cm2。
實際印染廢水往往含有大量無機鹽類,導電性較強,無需額外投加電解質。研究表明,當廢水中含有鹵化物時電解效率會提高,其中NaCl影響最大,不僅能降低電耗,利於絮凝,還能在陽極形成ClO-繼續氧化。A.Sakalis等〔15〕還發現Na2SO4也有相似效果可生成S2O32-,但效果沒有NaCl明顯。
另外通過電解產生的O2或是外界提供的O2還可以在陰極上還原產生H2O2,類似與Fenton試劑聯用。JunshuiChen等〔16〕將Fe2+換成Co2+,獲得了更強的催化能力,對溴鄰苯三酚紅的分解更加迅速。
電化學方法處理印染廢水快速高效,優點眾多,但由於價格昂貴,實際應用並不多,目前著重在對微觀機理、中間產物及其毒性的研究。
2.3濕式氧化法
濕式氧化法(WAO)是在高溫高壓條件下,利用溶解的氧氣將廢水中有機物氧化的方法。該工藝操作條件苛刻,對反應器要求嚴格,且停留時間較長。旨在降低反應溫度和壓力的濕式催化氧化技術(CWAO)近年來受到廣泛的重視和研究。
如何使反應條件變得更加溫和是濕式催化氧化工藝的關鍵。有人投加H2O2、O3等氧化性物質來降低操作條件,也有人制備高效催化劑嘗試在常壓較低溫度下處理染料溶液。Sung-ChulKim等〔17〕以10gAl-Cu柱狀黏土催化H2O2處理1000mg/L的活性藍19溶液,常壓、80℃下,20min內可完全將其去除,還抑制了Cu的溶出。YanLiu等〔18〕在常溫常壓下向500mg/L的甲基橙模擬染料廢水通入空氣2.5h,採用Fe2O3-CeO2-TiO2/γ-Al2O3作為催化劑,脫色率、COD去除率和TOC去除率分別可達98.09%、97.50%和97.08%;HongzhuMa等〔19〕在常壓、35℃、pH=5的條件下,用CuO-MoO3-P2O5催化氧氣處理300mg/L的甲基橙溶液,脫色率僅有55%,而在相同條件下亞甲基藍10min的脫色率就可達99.26%。
2.4Fenton法
Fenton試劑是由H2O2與Fe2+混合組成的氧化體系,H2O2在酸性條件下(一般pH<3.5)被Fe2+或Fe3+催化分解產生高活性的˙OH和˙O2H,同時Fe離子還具有絮凝作用。W.Bae等〔20〕採用Fenton法處理印染紡織廢水時發現Fe離子絮凝的效果遠大於自由基的氧化作用。此技術去除效率高,易操作,但是酸性的反應環境會造成設備腐蝕,因此在排放前須進行中和處理,且出水中Fe2+排放濃度高。李紹鋒等〔21〕採用Fenton試劑對9種活性染料所配水樣進行處理,pH在3~5之間,Fenton試劑對9種染料的降解效果均較好,色度去除率達90%以上,COD去除率在40%~80%之間。反應後的UV-VIS吸收光譜區已無N=N雙鍵及芳香結構的特徵
吸收,說明染料分子中此部分結構已被Fenton試劑徹底破壞。單獨採用Fenton試劑氧化印染廢水中的有機物時H2O2的消耗量過大,處理成本高,一般需與其他技術聯用。近年來有人在Fenton工藝里引入紫外〔20〕、草酸鹽等或是固定催化劑〔22-24〕,可進一步增強其氧化能力、擴大適用的pH范圍和抑制Fe的溶出。JiyunFeng等〔25〕把Fe塗在斑脫土上作為光Fenton催化劑氧化偶氮染料OrangeⅡ,脫色率100%,TOC去除率達50%~60%。A.Durán等〔8〕對比了光Fenton技術在投加草酸鹽與否時處理活性藍4溶液的效果,發現前者有助於創造低pH氛圍,提高了反應速率,且COD、TOC的去除率都優於後者。
2.5微波誘導催化氧化法
微波是指波長為1mm~1m、頻率為300~300000MHz的一種電磁波。在液體中微波能使極性分子高速旋轉,產生熱效應;許多磁性物質如過渡金屬及其化合物、活性炭等對微波有很強的吸收能力,常作為誘導化學反應的催化劑,當受微波輻射時不均勻的表面會產生許多「熱點」,其能量比其他部位高得多,誘導產生高能電子輻射、臭氧氧化、紫外光解和非平衡態等離子體等多種反應,可以產生高溫並形成活性氧化物質,從而使有機物直接分解或將大分子有機物轉變成小分子有機物。
張國宇等〔26〕以顆粒活性炭為催化劑微波誘導氧化雅格素紅BF-3B150%染料廢水,較單獨使用微波氧化和活性炭吸附兩者時都具有明顯的優越性,最優條件下色度和COD去除率分別為99.6%、96.8%。微波輻射能有效解吸活性炭表面的有機物,使活性炭再生並有利於有機物的消解和回收再利用。但是活性炭的機械強度較差,微波、高溫及水力擾動都會使其結構受到破壞甚至破碎,從而影響了其催化活性和壽命。近些年來所使用的催化劑逐漸轉到金屬及其化合物,例如張惠靈等〔27〕用CuO/γ-Al2O3替換活性炭,效果明顯,當摻雜CeO2後脫色率又提高30%,還延長了催化劑的使用壽命;洪光等〔28〕以改性氧化鋁誘導微波氧化處理雅格素藍BF-BR染料,催化活性和使用壽命均優於顆粒活性炭。
2.6超聲催化氧化法
超聲處理效果不受溶液色度影響,並可能實現完全褪色和100%礦化。超聲空化能在液體中產生局部高溫高壓、高剪切力,誘使水分子及染料分子裂解產生˙OH自由基,另外溶解在溶液中的N2和O2也可以發生自由基裂解反應產生˙N和˙O自由基,進一步引發各種反應,使水中有機物礦化成無機物或轉換成易生物降解的小分子化合物,還有可能促進絮凝。由於超聲波產生的自由基濃度有限,能量轉化率低,效果並不理想〔29〕,目前多使用催化劑〔30〕或者與其他氧化技術聯用來提高效率。A.Maezawa等〔31〕發現超聲提高了光催化分解酸性橙52的效率和TOC的去除率,並且不受Cl-的影響,可能是超聲波增加了催化劑的表面積,提高了傳質速度,同時在催化劑表面生成的H2O2有利於產生˙OH。Ki-TaekByun等〔32〕在多泡聲致發光條件下30min內去除亞甲基藍,較普通TiO2催化UV快得多,但同時證實了微氣泡在崩潰瞬間發出的光對染料的氧化幾乎不起作用。JianhuiSun等〔33〕研究表明超聲可以顯著增加低Fe2+濃度的Fenton試劑氧化酸性黑1的能力,最適條件下30min去除率達到98.83%,避免了普通Fenton含鐵污泥的問題。G.Tezcanli-Güyer等〔34〕發現超聲對O3和UV有催化作用,可以提高O3的傳質,同時在催化劑表面生成的H2O2有利於產生˙OH,當3種方法協同作用時,酸性紅7的分解速率大大提高。
符德學等〔35〕採用超聲協同鈦鐵雙陽極電解體系氧化含有鹼性湖藍5B的印染度水,集超聲空化、陽極催化氧化、電生自由基氧化和電絮凝等技術於一體,COD去除率達到90.2%,脫色率達到98.3%。
3結束語
上述方法用來處理印染廢水各有優劣,物理法總體上處理成本較高,其中的吸附法和膜分離技術適合於作為深度處理技術;化學氧化處理效率高、二次污染較少,越來越受到青睞,但直接用於生產則費用昂貴,這限制了這些高效技術的實際應用。比較有效的處理工藝是將化學氧化技術與生化技術結合,充分發揮各自的優勢,通過物化處理減少印染廢水的生物毒性,提高可生化性,再採用處理成本較低的生化法進一步處理。吸附法和膜分離技術作為出水要求嚴格的工藝或回用水技術較為合適。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

④ 芬頓反應原理

H2O2在Fe2+存在下生成強氧化能力的羥基自由基(·OH,並引發更多的其他活性氧,以實現對有機物的降解,其氧化過程為鏈式反應。
其中以·OH產生為鏈的開始,而其他活性氧和反應中間體構成了鏈的節點,各活性氧被消耗,反應鏈終止。
其反應機理較為復雜,這些活性氧僅供有機分子並使其礦化為CO2和H2O等無機物,從而使Fenton氧化法成為重要的高級氧化技術之一。

⑤ fenton處理印染廢水用的多嗎

不多。

印染加工各工序排放的綜合廢水,其色度和有機物濃度都較高。印染廢水中的有機物主要由以芳烴和雜環化合物為母體,並帶有顯色基團及極性基團的染料分子組成,是國內外公認的難降解的有機工業廢水 衛J。國內外常以重鉻酸鉀法測定廢水的COD值,即COD 作為工業廢水中可化學氧化的有機物和還原性無機物含量的替代參數。該方法能較直觀地反映廢水中有機污染物的含量,但需要消耗大量的硫酸銀、重鉻酸鉀等試劑,而且極為費時。特別是樣品較多時,部分樣品由於不能及時測定,而影響到測定結果 。此外,測定過程中大量的試劑廢液,如六價鉻離子、三價鉻離子和汞的絡合物或化合物等毒性較大物質的排出,會對環境造成污染。
另外,也常用BOD (水樣在20℃條件下培養5 d的生化需氧量)來反映廢水中有機污染物的含量。但BOD 值的測定時間太長,難以較大規模地獲得數據,且重復性差。
紫外吸光度值(U )是20世紀70年代提出的評價水中有機污染物的指標,一般用於地表水域的水質測量,其消光值的大小間接反映了水中有機污染程度。由於水中存在著多數芳香族有機物和帶雙鍵的有機物,在254 nrn處有明顯的吸收,因而u 值可有效
地反映廢水中有機物的含量。國外大量文獻表明,水中u 值的大小和水中TOC、TYHMFP、NPTOC和COD等具有一定的相關性 。採用紫外分光光度法代替化學測定法和生化法,能大大縮短測定時間,分析一個水樣只需2 min,具有快速、方便、准確、重復性好等優點。

⑥ fenton試劑處理污染物的機理

硫酸亞鐵起催化劑作用;過氧化氫起氧化作用,將有機物大分子氧化成可以生化的小分子或N,H2O,CO2......等。

⑦ 芬頓法處理廢水,雙氧水和硫酸亞鐵怎麼加,才能使cod降低

我前做印染廢制水COD600左右Fenton試劑採用FeSO4^+7H2O固體與H2O2(30%)溶液配製研究結表明:pH=3.0Fenton試劑H2O2與Fe^2+摩爾比10:1、H2O2投加量0.25mol/L、反應間1.5h印染廢水CODcr除率高達64.7%化性改善
同實驗條件所結想要佳用量要實驗才知道

⑧ 什麼是fenton試劑它在水處理中有何用處

fenton試劑:1894年首次研究表明,H2O₂ 在Fe2+ 離子的催化作用下具有氧化多種有機物的能力。過氧化氫與亞鐵離子的結合即為Fenton試劑,其中Fe2+ 離子主要是作為同質催化劑,而H2O2 則起氧化作用。Fenton試劑具有極強的氧化能力,特別適用於某些難生物降解的或對生物有毒性的工業廢水的處理上,所以Fenton氧化法越來越受到人們的廣泛關注。
水處理的作用:
1,處理印染廢水:紡織印染廢水的組成復雜,是一種難降解的有機廢水,如何對其進行無害化處理一直受到研究者的關注。採用Fenton氧化技術處理印染廢水具有高效、低耗、無二次污染的優點。
2,處理苯、酚類廢水:酚類廢水廣泛存在於多種工業廢水中,這種廢水較難降解,且對微生物有毒害作用。在處理過程中,一般採用化學氧化法先對含酚廢水進行預處理以降解其毒性,然後再用生物處理,在所有的氧化工藝中,Fenton氧化苯類及酚類物質所需的時間最短,因而,可望在此類廢水的處理中得到廣泛應用。
3,處理垃圾滲濾液:隨著城市垃圾的不斷產生,垃圾滲濾液處理越來越引起人們的重視。城市垃圾滲濾液是一種組分復雜,可生化性差,水質變化很大的難處理廢水。由於其含有高度難降解有機物,因而不利於活性污泥法的運行。Fenton氧化法可以解決上述問題,它可以使帶有苯環、羥基、-COOH-SO3H、-NO2等取代基的有機化合物氧化分解,從而提高廢水的可生化性,降低廢水的毒性,改進其溶解性、沉澱性,有利於後續的生化或混凝處理。此外,Fenton試劑具有氧化迅速,溫度、壓力等條件緩和且無二次污染等優點而被廣泛應用。經研究發現,Fenton氧化法處理廢水時,主要將大分子的有機物氧化為小分子,從而降低垃圾滲濾液的COD。因此,Fenton氧化法對垃圾滲濾液中相對分子質量較小的有機物去除率不高。
4,處理飲用水:隨著飲用水原水水質的惡化及飲用水標準的提高,Fenton氧化法在飲用水處理中也得到了廣泛的應用,主要集中在對鹵代物的去除。Watter Z Tang等對Fenton法處理飲用水中的四種三鹵代烷的動力學情況進行了深入研究,結果發現:對不同濃度的溴仿,當pH=3.5時,過氧化氫和亞鐵離子的最佳摩爾比為1.9~3.7時溴仿在3min時的降解率可達85%,降解機理符合準一級動力學方程,但在此過程中氯仿並沒有發生降解。這說明Fenton試劑更易降解三溴甲烷。

閱讀全文

與fenton法印染廢水相關的資料

熱點內容
液相用溶劑過濾器 瀏覽:674
納濾水導電率 瀏覽:128
反滲透每小時2噸 瀏覽:162
做一個純凈水工廠需要多少錢 瀏覽:381
最終幻想4回憶技能有什麼用 瀏覽:487
污水提升器采通 瀏覽:397
反滲透和不發滲透凈水器有什麼區別 瀏覽:757
提升泵的揚程 瀏覽:294
澤德提升泵合肥經銷商 瀏覽:929
飲水機後蓋漏水了怎麼辦 瀏覽:953
小型電動提升器 瀏覽:246
半透膜和細胞膜區別 瀏覽:187
廢水拖把池 瀏覽:859
十四五期間城鎮污水處理如何提質增效 瀏覽:915
怎麼測試空氣凈化器的好壞 瀏覽:519
提升泵是幹嘛的 瀏覽:744
布油做蒸餾起沫咋辦 瀏覽:252
廣州工業油煙凈化器一般多少錢 瀏覽:204
喜哆哆空氣凈化器效果怎麼樣 瀏覽:424
油煙凈化器油盒在什麼位置 瀏覽:582