導航:首頁 > 污水知識 > 工業廢水生化計算書

工業廢水生化計算書

發布時間:2023-03-15 10:04:12

⑴ CASS工藝計算書

1.2 目前CASS工藝設計計算方法 CASS工藝屬於活性污泥法范疇,但由於其運行方式獨特,與傳統活性污泥法又有很大的差別。在同一周期內,池內的污水體積、污染物的濃度、DO和MLSS時刻都在發生變化,是一種非穩態的反應過程。目前CASS工藝設計採用污泥負荷法,該方法不考慮反應池內基質濃度、MLSS和DO含量在時間上的變化,只考慮進出水有機物的濃度差,並忽略同一反應周期內沉澱、潷水和閑置階段的生物降解作用,採用與傳統活性污泥法基本相同的計算公式。CASS工藝採用污泥負荷法進行設計時,除反應池容積計算與傳統活性污泥法不同,其它如反應池DO和剩餘污泥排放量等計算方法與傳統活性污泥工藝相同,因此,本節著重介紹CASS工藝反應池容積的計算方法。1.2.1 計算BOD-污泥負荷(Ns)BOD-污泥負荷是CASS工藝的主要設計參數,其計算公式為: (1)式中: Ns——BOD-污泥負荷,kgBOD5/(kgMLSS·d),生活污水取0.05~0.1kgBOD5/(kgMLSS·d),工業廢水需參考相關資料或通過試驗確定; K2——有機基質降解速率常數,L/(mg·d); Se——混合液中殘存的有機物濃度,mg/L;
η——有機質降解率,%; �0�6——混合液中揮發性懸浮固體濃度與總懸浮固體濃度的比值,一般在生活污水中,�0�6=0.75。 (2)式中: MLVSS——混合液揮發性懸浮固體濃度,mg/L; MLSS——混合液懸浮固體濃度,mg/L;1.2.2 CASS池容積計算CASS池容積採用BOD-污泥負荷進行計算,計算公式為: (3)式中:V——CASS池總有效容積,m3; Q——污水日流量,m3/d; Sa、Se——進水有機物濃度和混合液中殘存的有機物濃度,mg/L;X——混合液污泥濃度(MLSS),mg/L; Ns——BOD-污泥負荷,kgBOD5/(kgMLSS·d); �0�6——混合液中揮發性懸浮固體濃度與總懸浮固體濃度的比值。1.2.3 容積校核 CASS池的有效容積由變動容積和固定容積組成。變動容積(V1)指池內設計最高水位和潷水器排放最低水位之間的容積;固定容積由兩部分組成,一部分是安全容積(V2),指潷水水位和泥面之間的容積,安全容積由防止潷水時污泥流失的最小安全距離決定;另一部分是污泥沉澱濃縮容積(V3),指沉澱時活性污泥最高泥面至池底之間的容積。 CASS池總的有效容積: V=n1×(V1+V2+V3) (4)式中:V——CASS池總有效容積,m3;V1——變動容積,m3;V2——安全容積,m3;V3——污泥沉澱濃縮容積,m3;n1——CASS池個數。設池內最高液位為H(一般取3~5m),H由三個部分組成:H=H1+H2+H3 (5)式中:H1——池內設計最高水位和潷水器排放最低水位之間的高度,m; H2——潷水水位和泥面之間的安全距離,一般取1.5~2.0m;H3——潷水結束時泥面的高度,m;其中: (6)式中: A——單個CASS池平面面積,m2; n2——一日內循環周期數;H3=H×X×SVI×10-3 (7)式中:X——最高液位時混合液污泥濃度,mg/L; 污泥負荷法計算的結果,若不能滿足H2≥H-(H1+H3),則必須減少BOD-污泥負荷,增大CASS池的有效容積,直到條件滿足為止。1.2.4 設計方法分析從上述設計方法的描述中可以看出,現行的CASS工藝設計具有以下幾個方面的特點:1、設計方法簡單,設計參數單一,在傳統的以污泥負荷為主要設計參數的活性污泥設計法基礎上,採用容積進行校核,以保證潷水過程中的污泥不流失。2、設計只針對主反應區容積,而生物選擇區容積則是按照主反應區容積的5%設計。3、污泥負荷法設計重點針對有機物質的降解,對脫氮未加考慮,難以滿足污水排放對於氮的要求,故此方法具有片面性,難以滿足高氨氮污水處理後達標排放。2 CASS工藝設計方法改進CASS工藝目前廣泛應用的設計方法是污泥負荷法,污泥負荷法立足於有機物的去除,對系統脫氮效果則未加考慮,而對於高氨氮污水,脫氮效果的考慮更為重要,因此需結合目前已有的CASS工藝設計方法,加入脫氮工藝設計,對傳統的CASS工藝設計方法進行改進。2.1 CASS工藝設計方法改進的思路高氨氮的污水脫氮設計的改進思路如下:1、設計採用靜態法。設計方法不追蹤CASS反應池內基質和活性污泥濃度在時間上的變化過程,而是著重於在某一進水水質條件下經系統處理後能達到的最終處理效果。對於同步硝化反硝化,由於其機理還處在進一步研究階段,在設計中不加考慮。對於沉澱和潷水階段的生物反應,其作用並不明顯,因此在設計中對這兩個階段的生物反應不加考慮。2、將主反應區和預反應區分開設計,主反應區主要功能為有機物降解和硝化,而預反應區的功能主要為生物選擇和反硝化脫氮。3、主反應區採用泥齡法設計,而將污泥負荷作為導出參數,結合試驗研究的結論,通過污泥負荷對設計結果進行校核。4、反應池的尺寸通過進水量和污泥沉降性能確定。2.2 主反應區容積設計主反應區設計採用泥齡法,並用污泥負荷進行校核,其設計步驟如下:1、計算硝化菌的最大比增長速率當污水pH和DO都適合於硝化反應進行時,計算亞硝酸菌的比增長速率公式為: (8)式中:μN,max——硝化菌的最大比增長速率,d-1;T——硝化溫度,℃;2、計算穩定運行狀態下的硝化菌比增長速率 (9)式中:μN——硝化菌的比增長速率,d-1;N——硝化出水的NH3-N濃度,mg/L;KN——飽和常數,設計中一般取1.0mg/L。3、計算完成硝化反應所需的最小泥齡 (10) 式中: ——最小泥齡,d;μN——硝化菌的比增長速率,d-1。4、計算泥齡設計值 本處採用Lawrence和McCarty在應用動力學理論進行生物處理過程設計時提出的安全系數(SF)概念,SF可以定義為:SF= / (11)式中: ——設計泥齡,d;SF使生物硝化單元在pH值、溶解氧濃度不滿足要求或者進水中含有對硝化有抑製作用的有毒有害物質時仍能保證達到設計所要求的處理效果。美國環保局建議一般取1.5~3.0。5、計算以VSS為基礎的含碳有機物(COD)的去除速率活性異養菌生物固體濃度X1可用下式計算: (12)式中:X1——活性異養菌生物固體濃度,mg/L;YH——異養菌產率系數,gVSS/gCOD或gVSS/gBOD; bH——異養菌內源代謝分解系數,d-1; S0——進水有機物濃度,mgCOD/L或mgBOD/L; S1——出水有機物濃度,mgCOD/L或mgBOD/L; ——設計泥齡,d; t——水力停留時間,d; 活性生物固體表觀產率系數,YH,NET將含碳有機物的去除速率定義為: (13)則可以得到下式:1/ =YH,NET·qH (14) 曝氣池混合液VSS由三部分組成:活性生物固體、微生物內源代謝分解殘留物和吸附在活性污泥上面不能為微生物所分解的進水有機物,VSS濃度可以表示為: (15) 式中:X——VSS濃度,mg/L; △S——基質濃度變化,mgCOD/L或mgBOD/L; YH——以VSS為基礎的產率系數,gVSS/gCOD或gVSS/gBOD; b——以VSS為基礎的活性污泥分解系數,d-1;以VSS為基礎的(濃度為X)的有機物去除速率可以表示為:1/ =YH,NET·qOBS (16)6、計算生化反應器水力停留時間t (17)7、主反應區容積:VN=Q t (18)式中:VN——主反應區容積,m3;Q——進水流量,m3/d;8、有機負荷校核有機負荷F/M: (19)式中:�0�6——MLVSS/MLSS,一般取0.7。根據相關試驗結論,若F/M不在0.18~0.25 kgCOD/(kgMLSS·d),則需改變泥齡,進行重新設計。10、氨氮負荷校核氨氮負荷SNR: (20)式中:N——主反應區產生NO3-N總量TKN,mg/L。根據相關試驗結論,若SNR>0.045 kg NH3-N/(kgMLSS·d),則需增大泥齡,進行重新設計。2.3 預反應區容積設計 預反應區的功能設計為反硝化,其設計步驟如下: 1、計算反硝化速率SDNR反硝化速率可以根據試驗結果或文獻報道值確定,也可以按下面的方法計算:溫度20℃時:SDNR ( 2 0) =0.3F/M+0.029(21)溫度T℃時: SDNR (T)= SDNR (2 0) ·θ( T- 2 0 ) (θ為溫度系數,一般取1.05) (22)2、缺氧池的MLVSS總量為:LA=QND/ SDNR (T) (23)式中:ND——反硝化去除的NO3-N,kgN/d。3、缺氧池的容積:VAN=1000LA/X�0�6 (24)4、缺氧池的水力停留時間:tA=VAN/Q (25)5、系統的總泥齡: (26)2.4 反應器尺寸的確定CASS反應器尺寸的確定主要是確定反應器的高度和面積,以滿足泥水分離和潷水的需要。由於預反應區始終處於反應狀態,不存在泥水分離的問題,且預反應區底部通過導流孔與主反應區相連,其水面高度與主反應區平齊,因此計算出主反應區的設計高度也同時計算出了預反應區的水面高度。所以反應區尺寸的確定主要是主反應區尺寸的確定。CASS池的泥水分離和SBR相同,生物處理和泥水分離結合在CASS池主反應區中進行,在曝氣等生物處理過程結束後,系統即進入沉澱分離過程。在沉澱過程初期,曝氣結束後的殘余混合能量可用於生物絮凝過程,至池子趨於平靜正式開始沉澱一般持續10min左右,沉澱過程從沉澱開始後一直延續至潷水階段結束,沉澱時間為沉澱階段和潷水階段的時間總和。污泥泥面的位置則主要取決於污泥的沉降速度,污泥沉速主要與污泥濃度、SVI等因素有關,在CASS系統中,污泥的沉降速度vS可簡單地用下式計算:vS=650/(XT×SVI) (27)式中:vS——污泥沉速(m/h);XT——在最高水位時濃度(kg/m3),為安全計,採用主反應區中設計值 X,一般取3000~4200 mg/L;SVI——污泥沉降指數(mL /g)。為避免在潷水過程中將活性污泥帶出系統,需要在潷水水位和污泥泥面之間保持一最小的安全距離HS。為保持潷水水位和污泥泥面之間的最小安全距離,污泥經沉澱和潷水階段後,其污泥沉降距離應≥ΔH+HS,期間所經歷的實際沉澱時間為(ts+td-10/60)h,故可得下式:vS×(ts +td -10/60)=ΔH+HS (28) 式中:ΔH——最高水位和最低水位之間的高度差,也稱潷水高度(m),ΔH一般不超過池子總高的40%,與潷水裝置的構造有關,一般其值最大在2.0~2.2m左右;ts——沉澱時間;td——潷水時間。聯立式(6.47)和(6.48)即可得: (29) 式中:ΔV——周期進水體積(m3);A——池子面積(m2);HT——最高水位(m);式中沉澱時間ts、潷水時間td可預先設定,根據水質條件和設計經驗可選擇一定的SVI值,安全高度HS一般在0.6~0.9m左右。ΔV由進水量決定,這樣式(29)中只有池子高度HT和面積A未定。根據邊界條件用試演算法即可求得式(29)中的池子高度和面積。高度HT和面積A的確定方法為:先假定某一池子高度HT,用式(29)求得面積A,從而可求得潷水高度ΔH,如潷水高度超過允許的范圍,則重新設定池子高度,重復上述過程。在求得HT和池子面積A後,即可求得最低水位HB: HB=HT-△H=HT-ΔV/A(30)最高水位時的MLSS濃度XT已知,最低水位時的MLSS濃度則可相應求得:XB=XT×HT /HB(31)最低水位時的設計MLSS濃度一般應不大於6.0kg/m3。2.5 剩餘污泥計算每日從系統中排出的VSS重量為L:L=X�0�6 (VAN+VN) / θ (32)式中:L——每日從系統中排出的VSS重量,kg/d。2.6 需氧量計算1、BOD的去除量:O1=Q (S0-S1)/1000(33)2、氨氮的氧化量:O2=QN/1000 (34)3、生物硝化系統,含碳有機物氧化需氧量與泥齡和水溫有關系,每去除1kgBOD需氧1.0~1.3kg,一般取1.1,則碳氧化和硝化需氧量為:O3=1.1O1+O2(35)4、每還原1kg NO3-N需2.9kgBOD,由於利用水中的BOD作為碳源反硝化減氧需要量為:O4=2.9 NDQ/1000(36) 實際需氧量:O= O3-O4(37

⑵ sbr污水處理工藝流程,以及設計計算

重要的參數——充水比。
弄清楚這個後,其餘與常規活性污泥法計算沒太大區別。
可以參GB50016《室外排水設計規范》。

⑶ 工業廢水排放量的計算公式

你也廢水排放量的個計算公式,這個計算公式來說的話,他有自己的裝備的計算工資的,你只要按照這個套公式就可以的

⑷ 處理一噸工業污水大概需要多少錢計算公式

工業污水處理費用,沒有固定的計算公式,沒有這么簡單。工業污水處理會根據污水性質和各種成分來確定處理工藝,各種消耗的評價計算也是根據上述參數進行計算。另外,這些消耗計算還要根據當地能源價格、材料價格、人力價格等條件來確定。

⑸ 中小型污水處理廠課程設計

中小型的由B/C的數值可知。採用生化處理比較合適。出水1-5w的都使用SBR比較好,(個人意見),要新技術的話就採用CASS也可以。用MSBR也行。
一般的A2/O也可以處理。能達到你的出水標準的了。
網上的論文很多,我就寫點我自己的意見你好了
復制粘貼給你的也沒有意思、。

⑹ 工業廢水BOD(500mg/L),COD(800mg/L)和SS(200mg/L)

對於樓主這復個問題:任制何可以生化處理的水質都可以用傳統的污水處理流程(生化污泥法)來處理,題中提到的BOD達到500,COD800,B/C大於1/3,完全可以處理。這類問題在環/保/通上面也有看到人家在討論,可以去看看。
而對第二個問題,用處理後的再生水來補充地下水,需要達到下列標准中對應的項目:
《城市污水再生利用分類標准GB18919(20、21)-2002》。

⑺ 工業廢水治理的污染參數

工業廢水的主要污染參數
通用的有化學需氧量、懸浮固體、pH值等。五日生化需氧量也是常用參數,但對某些工業廢水不適用。工業廢水的化學需氧量和五日生化需氧量,有高達千、萬毫克/升的。酸鹼廢水的pH值常遠離7。工業廢水含特殊的污染物時,需採用專用的污染參數,如酚。有毒、有害金屬離子,可用生物實驗(一般是魚類實驗)測定毒性,用鼠傷寒沙門氏菌-微粒誘變試驗 (Ames Test)測定致特變性。污染參數的選擇取決於廢水的處置方式,也就是取決於它對環境的影響。

⑻ 廢水的可生化性指標是如何規定的

一般考慮廢水的B/C,如果在0.3以上,可認為可生物處理,如果低於0.2,基本可不用考慮生化處理,在0.2~0.3之間嘗試如何提高B/C——水解酸化,高級氧化等。

(8)工業廢水生化計算書擴展閱讀:

模擬實驗法是指直接通過模擬實際廢水處理過程來判斷廢水生物處理可行性的方法。根據模擬過程與實際過程的近似程度,可以大致分為培養液測定法和模擬生化反應器法。

1、培養液測定法

培養液測定法又稱搖床試驗法,具體操作方法是:在一系列三角瓶內裝入某種污染物(或廢水)為碳源的培養液,加入適當N、P等營養物質,調節pH值,然後向瓶內接種一種或多種微生物(或經馴化的活性污泥)。

將三角瓶置於搖床上進行振盪,模擬實際好氧處理過程,在一定階段內連續監測三角瓶內培養液物理外觀(濃度、顏色、嗅味等)上的變化,微生物(菌種、生物量及生物相等)的變化以及培養液各項指標:pH、COD或某污染物濃度的變化。

2、模擬生化反應器法

模擬生化反應器法是在模型生化反應器(如曝氣池模型)中進行的,通過在生化模型中模擬實際污水處理設施(如曝氣池)的反應條件,如:MLSS濃度、溫度、DO、F/M比等,來預測各種廢水在污水處理設施中的去除效果,及其各種因素對生物處理的影響。

由於模擬實驗法採用的微生物、廢水與實際過程相同,而且生化反應條件也接近實際值,從水處理研究的角度來講,相當於實際處理工藝的小試研究,各種實際出現的影響因素都可以在實驗過程中體現,避免了其他判定方法在實驗過程中出現的誤差,且由於實驗條件和反應空間更接近於實際情況,因此模擬實驗法與培養液測定法相比,能夠更准確地說明廢水生物處理的可行性。

但正是由於該種判定方法針對性過強,各種廢水間的測定結果沒有可比性,因此不容易形成一套系統的理論,而且小試過程的判定結果在實際放大過程中也可能造成一定的誤差。

⑼ 工業廢水計算方法

(1)水池自重Gc計算
頂板自重G1=180.00 kN
池壁自重G2=446.25kN
底板自重G3=318.75kN
水池結構自重Gc=G1+G2+G3=945.00 kN
(2)池內水重Gw計算
池內水重Gw=721.50 kN
(3)覆土重量計算
池頂覆土重量Gt1= 0 kN
池頂地下水重量Gs1= 0 kN
底板外挑覆土重量Gt2= 279.50 kN
底板外挑地下水重量Gs2= 45.50 kN
基底以上的覆蓋土總重量Gt = Gt1 + Gt2 = 279.50 kN
基底以上的地下水總重量Gs = Gs1 + Gs2 = 45.50 kN

閱讀全文

與工業廢水生化計算書相關的資料

熱點內容
工業潤滑油過濾市場 瀏覽:495
醫院污水池除臭排放標准 瀏覽:166
陰離子陽離子交換膜 瀏覽:123
戴森空氣凈化器濾芯怎麼拆 瀏覽:928
凈化器上面顯示復位什麼意思 瀏覽:999
凈水器里有什麼水可以做霧化 瀏覽:396
蒸餾石油的分餾 瀏覽:744
飲水機水桶為什麼會變綠 瀏覽:803
飲水機熱水往上出是什麼意思 瀏覽:627
如何當好污水處理廠的班長 瀏覽:327
微動力污水處理器 瀏覽:729
四氯化碳如何蒸餾水 瀏覽:950
廢水資源化問題與出路 瀏覽:705
樹脂補牙還要打磨 瀏覽:189
什麼叫做雨污水陰陽管 瀏覽:438
廢水處理ph是什麼意思 瀏覽:17
反滲透凈水器有廢水比是什麼意思 瀏覽:507
凈化器過濾芯怎麼取出 瀏覽:837
放水裡面去水垢的東西 瀏覽:56
廢水處置費是不是排污費 瀏覽:569