『壹』 污水中氨氮高,COD一定高嗎
不一定,因為重鉻酸鉀不能氧化氨。純氨氮濃度值不會對COD測定造成影響,但污水中存在亞硝酸鹽時,會增加COD濃度值。
『貳』 氨氮有可能比COD高嗎
一般不可能
氨氮是以N分子量14計算的
COD是以O分子量16計算的
NH3+3/4O2=1/2N2+3/2H2O
當氨氮以NH3存在時,一個N要消耗3/4個O2
即N 14,O 24,O比N質量高
故換算成COD後比氨氮高
只有一種情況會例外,即N以含氧酸鹽存在
氧化時不消耗O,樣品中的N會比較高
但這時的N通常比較難轉化成氨氮
所以氨氮應該也測不出來
『叄』 污水處理廠進水水質COD濃度偏低是什麼原因
可以像樓上說的測下BOD,一般工廠排出的有機物微生物都不易分解,所以COD會比較版高;而生活污水權中的有機物一般都能被微生物分解。如果BOD跟以前相差不大,說明COD減小的原因可能就是關閉了排污企業。如果BOD也跟著減小較多,看一下自5月起的污水進水量,如果進水量猛增,說明是稀釋導致COD偏低。如果進水量變化不大,可能污水中混進了某種強氧化劑也說不定。
不管怎樣,用數據說明問題。
『肆』 SBR工藝處理,處理出來的工業廢水結果COD低氨氮高什麼原因
我個人覺得SBR
反硝化的能力不是很強;硝化細菌是自氧型細菌,反硝化是異氧型細菌當然SBR進入停曝階段
往往沒有足夠的BOD
這樣出水的氨氮不會降低太多。而且如果進水COD太低的話
曝氣量要控制好
如果曝氣量大了會導致部分污泥解體。測氨氮也會比較高。
『伍』 污水處理廠進水水質COD濃度偏低是什麼原因
1.污水廠進水COD質量濃度偏低的現象產生原因
1)居民生活源頭污水COD質量濃度偏低。目前城鎮居民生活水平大幅度提高,城鎮居民日平均用水量逐漸增加,從居民戶排出的污水COD質量濃度有逐漸降低的趨勢。污水大部分還採用化糞方式經初期沉澱後排人市政污水管道,污染物經化糞池沉澱滲入地下.直接影響污水管網所收納污水的COD質量濃度。
2)污水處理廠服務區域內地下水自備水源,對污水處理廠進水COD質量濃度產生影響。自備水源用水費用相對自來水的價格便宜很多,市民節水意識不強。用水量大,不可避免有較多長流水現象,特別是地下水豐富地區,如果大量使用白備水源,加上自來水普及率較低,市政設施相對落後,對污水處理廠進水COD質量濃度產生了影響
3)管道沉積對污水處理廠進水COD質量濃度產生一定影響。如果污水管道坡降小,在施時沒有嚴格控制高程,造成返坡現象,污水在管道流速偏低甚至長期積水,加之污水管道很長,污水中小顆粒將會在管道內存在一定程度的沉積,顆粒在沉積過程中會攜帶較多有機污染物質沉澱,導致通過管網進人污水處理廠的多是污水的上清液,這也是污水處理廠進水COD質量濃度偏低的原因之一。每次大雨初期雖有大量雨水進入污水管道,如果進水水質不降反升,這就表明管道的沉積效果對進水COD質量濃度產生了較大影響。
4)成建制的居民小區大量污水無法納入市政污水管道。根據調查,目前已經建成的住宅小區內基本上全部實行了雨污分流的排水體系,但是普遍存在區內排污管道高程錯誤,管道走向出現時高時低的現象.污水在小區管道內長期積累排不出去,再加上施工質量低劣,大部分污水滲入地下,排去的污水大部分是經過沉澱的上清液。同時,小區排水口亂接嚴重,許多雨水管道接入污水管道、雨季到來,大量的雨水進入污水管道。
5)雨水管道對污水管網的運行產生影響。部分城市在實施污水截流T程時,將雨水、污水管道連通,當雨水管道接人的河流水位相對較高時,可能發生河水倒灌現象,使河水進入污水管道排入污水處理廠進行處理,影響了污水處理廠的進水水質.稀釋了進水COD質量濃度。
6)部分城市污水主幹管埋設較深。有的處於地下水位以下,管道之間密封性差,地下水進入污水管道,稀釋了管道內的污水。
7)城市污水處理廠服務區域內如果沒有較高的丁業污染源污水處理廠進水COD質量濃度不會有大幅度的提高
2.解決方法
1)認真實行雨污管道分流制
實行單獨污水管網系統是污水在封閉的條件下保證其COD質量濃度的主要措施。目前對城區合流制管道的改造以及對雨水管網進行截流是提高污水收集率,解決近期污水處理廠污水處理量不足的替代方案,在後期工作中應逐漸按完全的雨污分流方式進行改造,可以防止雨水、河水進入污水管道。
2)加強排水設施施丁質量管理
污水管道施丁質量直接影響污水COD質量濃度,如果污水管道密閉性差,將導致污水滲漏或者地下水湧入污水管道。由於污水是依靠自重向前流淌,如果高程發生偏差將導致污水無法流動.嚴重時發生梗阻,造成污染物滲漏,管道內污水COD質量濃度降低。因此.加強污水管道施工及驗收管理,確保工程施工質量,是保證污水管道正常運行的必要措施之一。
3)取消自備水源井
對城市自備水源進行普查治理,減輕因自備井取水對城市污水管網造成的壓力,特別是取地下水作為生活用水的城市,取消自備井源,既可以減輕城市污水管網的輸水負擔,也可以防止地表沉降,防止自然災害的發生
4)改造現有三級污水管網收集系統
隨著城市發展,污水管網主幹管已經形成網路.但是現有城市污水級支管急需完善。在污水收集效率不高的老城區,將排污蓋板溝、化糞池進行改造,將污水支管延伸到各個住宅小區、商業密集區,防止污水在源頭阻塞、滲漏,可以部分解決污水處理廠進水COD質量濃度不高的問題,從源頭上堵住污染源泄露,增加污水收集量。
5)加強污水設施管理,認真執行排水許可制度
在城市內規范排水設施建設行為,嚴格實行雨污分流。規劃行政主管部門對涉及排水設施的工程進行規劃驗收時,應當組織排水行政主管部門參與驗收;採取有效措施杜絕排水戶在取得排水許可證之前私自將排水口接人市政污水管網,防止雨污混接的現象發生。
3.結語
目前,我國城市污水處理廠發生的進水COD質量濃度偏低的現象應引起重視。加大城市污水處理設施的建設和運行管理,優化城市污水管網布局,促進城市污水處理行業有序發展。是目前解決污水處理廠進水COD質量濃度偏低問題,推進城市污染減排工作科學化的必經之路。
『陸』 求助:急.污水處理過程中,氨氮達標,COD不達標
延長曝氣時間,好氧段反應多一些,分析一下COD的成分,是不是還原性的無機物或難降解的有機物比較多,一般可生物降解的有機物(BOD)是很容易去除的!
『柒』 污水中氨氮高,COD一定高嗎
不一定,因為重鉻酸鉀不能氧化氨。純氨氮濃度值不會對cod測定造成影響,但污水中存在亞硝酸鹽時,會增加cod濃度值。
『捌』 SBR工藝處理,處理出來的工業廢水結果COD低氨氮高什麼原因
我原來寫的一個小東西,給領導作解釋的,看一下能用得著嗎
第一,必須明確廢水中氮以有機氮、氨氮、亞硝酸氮、硝酸氮四種形式存在,並不是單純的只有氨氮(雖然我們的在線只有氨氮測量)。很多污水廠由於是以生活污水為主要處理目標,同時為了提高生化處理中微生物的營養成分,也會刻意添加一些含氮量高的污泥或污水,所以這種污水中總氮(特別是有機氮)的含量較高(並不代表氨氮含量高)。
第二,生物脫氮通常包括生物硝化和生物反硝化。生物硝化是在好氧條件下,有機氮通過異養菌轉化為氨氮,再通過亞硝酸鹽菌和硝酸鹽菌的作用,將氨氮氧化成亞硝酸鹽和硝酸鹽的過程。如果反應完全,氨氧化成硝酸鹽分兩階段完成:開始,在亞硝酸菌的作用下使氨氧化成亞硝酸鹽,亞硝酸菌屬於強好氧性自養細菌,利用氨作為其唯一能源。第二階段,在硝酸菌的作用下,使亞硝酸鹽轉化為硝酸鹽,硝酸菌是以亞硝酸作為唯一能源的特種自養細菌。生物反硝化是反硝化細菌在缺氧條件下,還原硝酸鹽,釋放出分子態氮(N2)或一氧化二氮(N2O)的過程。
第三,根據生物除氮的原理和過程不難看出,如果氨化反應速率高於硝化反應速率,那麼生成的氨氮就會高於硝化的氨氮,所以氨氮總量也增加了。這主要是由於進水中總氮(特別是有機氮)含量較高,再者反應時間不夠造成的。還有,一些污水廠進水中摻雜了工藝很難處理或處理不了的工業廢水,對後續硝化菌造成嚴重影響,甚至死亡(只是生化處理中需要的生物死亡,並不是所有微生物死亡)。而有機氮廢水,則可以通過一般的異養菌進行高效的氨化作用(生成氨氮的過程)。這樣就導致了氨化速率高於硝化速率,出水氨氮濃度比進水濃度高。
『玖』 好氧處理後cod低氨氮高怎麼辦
高氨氮廢水的一般的形成是由於氨水和無機氨共同存在所造成的,一般上ph在中性以上的廢水氨氮的主要來源是無機氨和氨水共同的作用,ph在酸性的條件下廢水中的氨氮主要由於無機氨所導致。廢水中氨氮的構成主要有兩種,一種是氨水形成的氨氮,一種是無機氨形成的氨氮,主要是硫酸銨,氯化銨等等。
高氨氮廢水如何處理,我們著重介紹一下其處理方法:
1 物化法
1.1 吹脫法
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與濕度、PH、氣液比有關。
1.2 沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。
1.3 膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮
氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。