『壹』 污水處理常用的微生物有哪些
分解氰:諾卡氏菌、假單胞菌、腐皮鐮孢霉、木素木霉等菌種
分解丙烯腈回:珊瑚諾卡答氏菌等菌種
分解多氯聯苯:紅酵母、無色桿菌等
運用活性污泥處理污水中,其中活細菌主要有生枝動膠菌、浮游球衣菌、一些假單胞菌等
而原生動物用在污水處理中的主要有:獨縮蟲、蓋纖蟲、鍾蟲
等
『貳』 聚糖菌和聚磷菌競爭關系
您好,聚糖菌和聚磷菌競爭關系:強化生物除磷(EBPR)工藝運行不穩定.在運行失效的EBPR體系中,優勢菌種由聚磷菌(PAOs)轉變為聚糖菌(GAOs).GAOs和PAOs是相互競爭的關系,GAOs若成為優勢菌種,就會造成EBPR體系除磷效果變差.採用SBR反應器,供給實際小區生活污水以及人工配水,研究了EBPR體系中PAOs和 GAOs之間的相互競爭原理,並提出一套使PAOs成為優勢菌種的種群優化調控方法.分別供給實際小區生活污水和人工配水,對比研究了不同pH值對PAOs活性的長期和短期影響.當pH值從6.5升高到8.0時,PAOs的磷釋放速率隨著pH值的升高而增大,而當pH值升高到8.5時,PAOs的放磷能力受到抑制,當pH值降低至6.0時,PAOs的放磷能力同樣會受到抑制;PAOs在好氧條件下的吸磷能力會隨著pH值的升高而有所提高,但並不是pH值越高越好,當pH值升高到8.5時就會使PAOs吸磷能力受到抑制,同樣,pH值下降到6.0時也會極大抑制PAOs的好氧吸磷能力.試驗結果表明:為了讓PAOs成為EBPR體系中的優勢菌種,既需要保證最佳的厭氧條件下pH值,又要保證最佳的好氧條件下pH值.厭氧條件下適當的升高pH值有利於PAOs放磷,其pH值宜維持在7.5至8.0之間,而好氧條件下pH值不宜過高或過低,其pH值范圍宜在7.0至8.0之間.在整個運行周期內,都不宜使EBPR體系的pH值降低到7.0以下或升高到8.0以上.在實際小區生活污水中投加碳源和磷源,碳源種類,進水COD濃度以及進水磷濃度為三個考察因素,每個因素取三個水平,選定磷去除率,厭氧條件下的放磷量和好氧條件下的吸磷量作為試驗指標,進行多指標因素試驗.得到因素主次順序為:碳源種類,進水COD濃度和進水磷濃度;三個因素的優水平分別為丙酸鈉,進水COD濃度為550 mg/L以及進水磷濃度為11 mg/L;本試驗的最優組合為:丙酸鈉,進水COD濃度為550 mg/L和進水磷濃度為11 mg/L.試驗結果表明:碳源的種類以及進水COD濃度對於EBPR體系的影響很大,而又以前者影響最大.對於PAOs而言,它在厭氧條件下吸收碳源表現出一定的選擇性,在厭氧條件下PAOs會優先考慮吸收丙酸鈉;環境溶液中存在的易降解基質越多,對於PAOs的生長是很有利的.此外,對於PAOs而言,進水中的磷濃度過高或過低都不宜於PAOs的生長.供給實際小區生活污水,考察了環境溶液中不同溫度對EBPR體系中PAOs活性的影響.當溫度降到13℃時,PAOs放磷速率在3.0~4.0mg P/L·h,吸磷速率在6.0mgP/L·h左右,磷去除率下降到10%左右:當溫度在20℃時,PAOs放磷速率升高幅度不大,為4.0~6.0mg P/L·h,但是其吸磷速率卻提高到了10.0mgP/L·h以上,磷去除率迅速上升到95%以上.試驗結果表明:溫度對EBPR體系中PAOs的活性產生很大的影響.溫度的增加可以提高PAOs的厭氧放磷速率以及好氧吸磷速率,吸磷速率受溫度的影響比放磷速率受溫度的影響要大很多;而低溫下運行則會抑制PAOs的活性.供給實際小區生活污水,探討了在EBPR體系中pH值對NO<,2>積累的影響以及NO<,2>濃度對EBPR體系中PAOs活性的影響.當pH值在6.5和7.0之間時,NO<,2>的積累量變化不大,pH值下降到6.0時,NO<,2>的積累量迅速下降,當pH值從7.5升高到8.5時,NO<,2>積累量從4.35 mg/L上升到21.06 mg/L;當NO<,2>積累量從13.4mg/L下降到0.11mg/L時,PAOs的放磷速率從4.81mg P/L.h升高到9.03mg P/L·h,吸磷速率也從7.11mg P/L·h提高到16.7mg P/L·h,且吸磷速率的增長速度比放磷速率的增長速度要快.研究結果表明:降低pH值會減少NO<,2><'->的積累,而升高pH值會提高NO<,2><'->的積累;NO<,2><'->積累量的減少會有效的提高 PALOs的放磷能力和吸磷能力,相比PAOs的放磷能力而言,其吸磷能力更容易受到NO<,2><'->濃度的影響:在實際污水處理過程中,好氧條件下pH值超過8.0後,會造成NO<,2><'->的大量積累,從而抑制PAOs的活性,因而必須監控EBPR體系在好氧階段的pH值和NO<,2><'->濃度,防止NO<,2><'->的積累對PAOs活性的影響.
『叄』 污水處理的matlab源程序
x=[-0.4:0.04:3.6];
y=8+2*exp(1-x.^2).*cos(2*pi*x);
net=newff(minmax(x),[20,1],{'tansig','purelin'});
y1=sim(net,x);
net.trainParam.epochs=50;
net.trainParam.goal=0.01;
net=train(net,x,y);
y2=sim(net,x);
figure;
plot(x,y,'-',x,y1,'-',x,y2,'--');
title('原函數與網路訓練前後的確模擬結果比較');
text(2,12,'原函數y');
text(2,11,'-未訓練網路的模擬結果y1');
text(2,10,'--訓練後網路的模擬結果y2');
這個程序如何轉化成
訓練BP神經網路連接權值的源代碼(matlab)
Ir=0.05; %Ir為學習速率
err_goal=0.001;%期望最小誤差值
max_epoch=10000;
X=[0.75 1 0 1;0.25 0 0.55 0;0 0 0.45 0;0 0 0 0;0 0 0 0;1 1 1 1;0.5 0 0.5 0.5;0.5 0 0.5 0.5;0 1 0 0;1 1 1 1;0 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0;1 1 1 1];
T=[0 0 0 0;0 1 1 1;0 0 0 0;1 0 0 0];%提供4組15輸入4輸出訓練集和目標集
[M,N]=size(X);q=10;[L,N]=size(T);
Wij=rand(q,M);
Wki=rand(L,q);
b1=zeros(q,1);b2=zeros(L,1);—隨機給定隱含層、輸出層偏值
for epoch=1:max_epoch
Oi=tansig(Wij*X,b1);
Ok=purelin(Wki*Oi,b2);
E=T-Ok;
deltak=deltalin(Ok,E);%計算輸出層的delta
deltai=deltatan(Oi,deltak,Wki);%計算隱含層的deita
[dWki,db2]=learnbp(Oi,deltak,Ir);%調整輸出層加權系數
Wki=Wki+dWki;b2=b2+db2;
[dWij,db1]=learnbp(X,deltai,Ir);
Wij=Wij+dWij;b1=b1+db1;
SSE=sumsqr(T-purelin(Wki*tansig(Wij*X,b1),b2));
if(SSE<err_goal) break;end
end
epoch %顯示計算次數
X1=X;
Oi=tansig(Wij*X1,b1);%各隱含層輸出
Ok=purelin(Wki*Oi,b2);%顯示網路輸出層的輸出
『肆』 如何理解環境工程污水處理 A2O 工藝的內在含義
維拓環境 十萬伏特團隊為你解答。
污水處理 A2O 工藝:
本質上是一個混合菌群,在人為控制的不同反應條件下發揮各自的作用。菌群可簡單分為普通異養微生物(OHOs,吃COD,活性污泥法里常見的菌)、聚磷菌(PAOs)、反硝化菌、和硝化菌(又可分為氨氧化菌和亞硝酸鹽氧化菌)。
第一個厭氧池裡,理論上沒有硝酸鹽和氧氣(Anaerobic),聚磷菌將COD(主要是VFAs)和能量儲存在聚磷化合物(PHAs)里,同時釋放出磷酸根,其他細菌基本不作用,這個過程基本沒有細菌生長。降低COD,為除磷做准備(亦可直接在這個階段化學除磷)
第二個缺氧池裡,有硝酸鹽無氧氣(Anoxic),反硝化菌利用COD還原硝酸鹽為氮氣,釋放鹼,自身獲得能量用於生長。降低COD和硝態氮。
第三個好氧池裡,曝氣(Oxic),硝化菌將氨氮氧化為硝態氮,消耗鹼度和氧氣,PAOs大量吸收磷,利用PHAs中的能量合成聚磷,OHOs繼續去除COD,這個過程中PAOs、OHOs、硝化菌都獲得生長。降低COD、氨氮和磷。OHOs在去除COD的同時,還能去除少部分N(合成蛋白質等)、P(合成DNA、RNA)等,約按C:N:P=100:5:1的比例去除。
『伍』 脫氮除磷工藝為什麼不宜使用曝氣沉砂池
這個問題,曝氣好氧狀態下會消耗污水中的有機物,降低COD、BOD,而脫氮除磷工藝對碳源都有較高的要求,BOD5/TP>20,COD/TN>8。水處理問題可到環-保-通進行交流。而曝氣沉砂池有預曝氣作用,而一般的脫氮除磷工藝都是AB法,先厭氧,後好氧,如果進水進行了預曝氣導致水中溶氧升高,會不利於前段厭氧反應。脫氮除磷工藝處理順序應是缺氧--厭氧--好氧,如在缺氧前加曝氣,水中DO增加,對釋磷不利。應該是這樣。由於曝氣作用,廢水中有機顆粒經常處於懸浮狀態,砂粒互相摩擦並承受曝氣的剪切力,砂粒上附著的有機污染物能夠去除,有利於取得較為純凈的砂粒。 在旋流的離心力作用下,這些密度較大的砂粒被甩向外部沉入集砂槽,而密度較小的有機物隨水流向前流動被帶到下一處理單元。另外,在水中曝氣可脫臭,改善水質,有利於後續處理,還可起到預曝氣作用。
普通沉砂池截留的沉砂中夾雜有15%的有機物,使沉砂的後續處理難度增加,採用曝氣沉砂池,可在一定程度上克服此缺點。
『陸』 微生物在污水處理中的應用論文我郵箱是[email protected]謝謝
微生物在污水處理中的應用
摘要:本文主要闡述了各種微生物在不同種類污水中的應用,以及它們不同的應用機理。
關鍵詞:微生物 生活污水 工業污水 農業污水 重金屬 農葯
1.世界水資源現狀
環境保護是我國的基本國策。世界經濟發展的實踐證明,為實現經濟的持續穩定的發展,必須解決好發展與環境保護的矛盾。
全球水資源狀況迅速惡化,「水危機」日趨嚴重。據水文地理學家的估算,地球上的水資源總量約為13.8億立方公里,其中97.5%是海水(13.45億立方公里)。淡水只佔2.5%,其中絕大部分為極地冰雪冰川和地下水,適宜人類享用的僅為0.01%.
20世紀50年代以後,全球人口急劇增長,工業發展迅速。一方面,人類對水資源的需求以驚人的速度擴大;另一方面,日益嚴重的水污染蠶食大量可供消費的水資源。本屆世界水論壇提供的聯合國水資源世界評估報告顯示,全世界每天約有200噸垃圾倒進河流、湖泊和小溪,每升廢水會污染8升淡水;所有流經亞洲城市的河流均被污染;美國40%的水資源流域被加工食品廢料、金屬、肥料和殺蟲劑污染;歐洲55條河流中僅有5條水質差強人意。
20世紀,世界人口增加了兩倍,而人類用水增加了5倍。世界上許多國家正面臨水資源危機:12億人用水短缺,30億人缺乏用水衛生設施,每年有300萬到400萬人死於和水有關的疾病。到2025年,水危機將蔓延到48個國家,35億人為水所困。水資源危機帶來的生態系統惡化和生物多樣性破壞,也將嚴重威脅人類生存。
水資源危機既阻礙世界可持續發展,也威脅著世界和平。過去50年中,由水引發的沖突共507起,其中37起有暴力性質,21起演變為軍事沖突。專家警告說,隨著水資源日益緊缺,水的爭奪戰將愈演愈烈。
2.污水處理方法分類
2.1物理法
利用物理作用分離廢水中呈懸浮狀態的污染物質。主要有沉澱法,過濾法,離心分離法,吸附法等。
2.2化學法
利用化學反應原理及方法來分離,回收廢水中的污染物,或改變污染物的性質,使它從有害變為無害的處理法。主要有化學凝聚法,中和法,氧化還原法,離子交換法。
2.3生物法
主要利用微生物的生命活動過程,對廢水中的污染物質進行轉移和轉化的作用,從而是污水得到凈化的方法。
2.4.微生物簡介
微生物是肉眼看不見或看不清的生物的總稱。包括原核生物(細菌,放線菌和藍細菌),真核生物(真菌和微型藻類),非細胞生物(病毒類)。微生物具有體積小、表面積大、繁殖力驚人等特點,能不斷與周圍環境快速進行物質交換。污水具備微生物生長繁殖的條件,因而微生物能從污水中獲取養分,同時降解和利用有害物質,從而使污水得到凈化。因此微生物可在污水凈化和治理中得到廣泛應用,造福人類。
微生物能降解和轉化污染物主要是因為微生物具有以下幾個特點:個體微小,比表面積大,代謝速率快;種類繁多,分布廣泛,代謝類型多樣;具有多種降解酶;繁殖快,易變異,適應性強;共代謝作用等。
3.原理
利用微生物處理污水實際就是通過微生物的新陳代謝活動,將污水中的有機物分解,從而達到凈化污水的目的.微生物能從污水中攝取糖,蛋白質,脂肪,澱粉及其它低分子化合物。微生物新陳代謝類型有需氧型和厭氧型兩種,因此,凈化方法分為好氧凈化和厭氧凈化.
3.1.好氧凈化
氧存在條件下,許多好氧微生物通過分解代謝、合成代謝和物質礦物化,在把有機物氧化分解成CO2和H2O等過程中,獲尋C源、N源、P源、S和能量。污水的微生物好氧凈化就是模擬上述原理,把微生物置於一定的構築物內通氣培養,高效率凈化污水的方法。
3.2厭氧凈化
微生物在嚴格厭氧條件下,有機物發酵或消化過程中,大部分有機物被解生成H2、CO2、H2S和CH4等氣體。污水的生物厭氧凈化就是根據污水經厭氧發酵後既到凈化,又獲得了生物能源CH4的原理。微物細胞能量轉移的電子受體,由好氧條件下分子氧改變為厭氧條件下的有機物。在厭氧件下,不溶於水而難分解的大分子有機污物,被微生物的胞外酶降解為可溶性物質,再由產甲烷厭氧細菌和產氫細菌降解成低分子有酸類和醇類、並放出H2和CO2;有機酸類和類經產甲烷菌降解成H2、CO2和CH4。甲烷菌還可利用H2還原CO2,形成CH4。
微生物凈化過程:
Ⅰ.有機污染物的濃度由高變低
Ⅱ.異養細菌迅速氧化分解有機污染物而大量繁殖,然後是以細菌為食料的原生動物出現數量高峰,再後是由於有機物礦化,利於藻類的生長,而出現藻類的生長高峰。
Ⅲ.溶解氧濃度隨著有機物被微生物氧化分解而大量消耗,很快降到最低點,隨後,由於有機物的無機化和藻類的光合作用及其他好氧微生物數量的下降,溶解氧又恢復到原來水平。
這樣,在離開污染源相當的距離之後,水中的微生物數量,有機物,無機物的含量,也都下降到最低點。於是,水體恢復到原來的狀態。
微生物處理優點:微生物具有來源廣,易培養,繁殖快,對環境適應性強,易變異的特徵在生產上較容易的採集菌種進行培養繁殖,並在特定條件下進行馴化,使之適應不同的水質條件,從而通過微生物的新陳代謝使有機物無機化。加之微生物的生存條件溫和,新陳代謝時不需要高溫高壓,它是不需要投加催化劑的.生物法具有廢水處理量大、處理范圍廣、運行費用相對較低,所要投入的人力,物力比其他方法要少的多。在污水生物處理的人工生態系統中,物質的遷移轉化效率之高是任何天然的或農業生態系統所不能比擬的。
4.污水處理中重要的微生物種群
4.1 絲狀細菌
絲狀細菌(Filamentous bacteria)能顯著影響絮狀活性污泥的沉降性(污泥膨脹)或引起生物量變化和泡沫形成(污泥發泡),從而嚴重影響活性污泥的處理效率.傳統上,絲狀細菌是通過光學顯微鏡學進行分析鑒定的,如革蘭氏和Neisser染色反應、典型的形態學特徵等.但應用full—cycle rRNA技術發現,傳統形態學鑒定方法不能發現污水廠活性污泥中的許多絲狀細菌 。
系統發生樹部分提供了絲狀菌的系統發生親緣關系,但有些絲狀類型如Eikelboom 1863或Nostocoidalimicola等則是放置在完全無關的類群中.現在利用rRNA目標寡聚核苷酸探針能迅速地鑒定大多數絲狀菌,證明在活性污泥中有些絲狀菌呈現多態性現象.Kanagawa等(2000)從活性污泥中分離出15種絲狀菌,根據形態被分類為Eikelboom 21 N,利用16S rDNA序列分析表明都同變形桿菌亞綱的Thiothrix絲狀菌形成單系群(monophyletic group).Thiothrix絲狀菌在污水中通常表現出生理多能性,在異養、兼性營養和化能自養情況下,它們都能同標記的乙酸鹽或碳酸氫鹽結合。在厭氧狀況下(無論有無硝酸鹽),Thiothrix絲狀菌都很活躍,它通過吸收硫代硫酸鹽和乙酸鹽來形成胞內硫粒。
利用絲狀菌的FISH探針,Mircothrix parvicella被發現有特殊的脂消費,在厭氧情況下專門吸收長鏈脂肪酸(而不是短鏈脂肪酸和葡萄糖),隨後當硝酸鹽或氧可用作電子受體時它們則使用貯存完成生長.不過,在厭氧情況下,M.parvicella不能吸收磷,不適合那些有除磷要求的生物反應器.利用FISH技術對絲狀菌進行系統分類發現,大多數未描述的絲狀菌屬於綠色非硫細菌(Chloroflexi),也可能是污水生物處理系統中豐度最高的絲狀菌。Liao等(2004)發展一種定量FISH,對實驗室和污水廠反應器中的絲狀菌進行了研究,以增加Sphaerotilus natans的方式來刺激污泥膨脹,結果發現是Eikelboom 1851菌叢(而不是試驗的S.natans菌)同活性污泥容積指數(volume index)極度相關,其可延伸的菌絲長度約為6×10。la,m/mL。
4.2 生物除磷的重要細菌
生物除磷可以在EBPR的微生物途徑中由完成,該過程通過循環活性污泥進行交替的厭氧、需氧為特徵。基於微生物的純培養技術,變形桿菌綱г亞綱的不動桿菌屬(Acinetobacter)長期被認為是唯一的PAO(Polyphosphate—accumulating organism).但實際上,雖然不動桿菌能積累多聚磷酸鹽,卻沒有PAO的典型代謝方式.Wanger等(1994)用rRNA目的探針測試後認為,主要的PAO應該為口亞綱中的Rhoclocyclus群,其次為 亞綱中的Planctomycete群及屈撓桿菌屬(Flexibacter)、CFB群(Cytophaga—Flavobacterium—Bacteroides)等.利用螢光抗體染色、呼吸醌檢測和屬特異探針的FISH等非培養方法,證明在EBPR系統中,由於培養偏差顯然高估了不動桿菌的相對豐度,表明其對EBPR系統實際上不是最重要的,而另外一些分離出的細菌才是PAO的候選者。不過,有7個Acinembacter新種從活性污泥中分離到,可望進一步闡釋該屬在脫磷中扮演的角色和意義。
積磷小月菌(Microlunatus phosphovorus)是一個高G+C含量的革蘭氏陽性菌,被認為是專性好氧菌,可以通過EMP途徑發酵葡萄糖為乙酸,而不能夠在厭氧情況下生長.有明顯吸收葡萄糖、分泌乙酸的轉化,導致胞內乙酸積累;產生的乙酸在隨後的好氧階段消耗掉.phosphovorus表現出卓越的吸收和釋放磷的能力,磷釋放率和吸收率可分別高達3.34 mmol g/cell•h和1.56 mmol g/cell•h,比Lampropedia spp.和Acinetobacterspp.要高1個數量級,特異探針證明其在EB—PR工廠里可占總細菌的2.7%。
俊片菌屬(Lampropedia)也擁有聚磷菌的基本代謝特徵,但比EBPR模型預言的吸收乙酸鹽釋放磷酸鹽的比率要低很多.那些被建議名為「Candidatus Ac—cumulibacter phosphates」已被證實顯著存在於EBPR系統中.Saunders等(2003) 在對6個運行污水廠進行了檢測後認為,很可能「無關緊要」的「CandidatusAccumulibacter phosphates」正是重要的PAO.另外還有顯微鏡原位觀察顯示,酵母菌很可能涉及在生物除磷中,許多「聚磷菌」很可能是酵母菌的孢子,但其作用機理顯然還需要進一步探討.
4.3 硝化細菌
氮循環是高度依賴微生物活性和轉化的一個過程.這類微生物在污水處理、農業等領域具有極其重要的作用,因此成為近年來世界研究的熱點,變形桿菌的β亞綱幾乎已經成為微生物生態學的模式系統 .Kindaichi等(2004)對自養硝化生物膜進行了FISH分析表明,膜上有50%屬於硝化細菌,其餘50%為異養細菌,分布為變形桿菌α亞綱23% ,г亞綱13% ,綠色非硫細菌9% ,CFB群2%,未定類群3%.該結果表明,硝化細菌通過可溶性產物的產生支持了異養菌,異養菌也從代謝多樣性等方面確保了生物膜的生態穩定性 .從培養角度來說,硝化細菌生長極慢;由於硝化細菌的分布同pH、溫度等敏感,所以污水廠的硝化作用常有崩潰的情況發生.
4.3.1 氨氧化茵
基於16S rDNA序列分析,已經分離和描述過的氨氧化細菌都分屬於變形桿菌綱的2個單系群中.Ni-trosococcusoceanus和N.halophilus屬於Proteobacteria的β亞綱,包括亞硝化單胞菌屬(Nitrosomonas)、亞硝化螺菌屬(Nitrosospira)、亞硝化弧菌屬(Nitrosovibrio)和亞硝化葉菌屬(Nitrosolobus),後3個屬關系密切;而Nitrosococcus mobilis(實際是Nitrosomonas的一個成員)則在β亞綱組成緊密相關的集合.
4.3.2 亞硝酸氧化茵
基於超微特性,已培養出的亞硝酸氧化菌(Nitrite.oxidizing bacteria,NOB)被分為4個已知屬,硝化桿菌屬(Nitrobacter),硝化刺菌屬(Nitrospina),硝化球菌屬(Nitrococcus)和硝化螺菌屬(Nhrospira).16S rDNA序列比較分析表明,硝化桿菌屬及其3個種都屬於變形桿菌的α一亞綱;Nitrospina和Nitrococcus各有一個種,分屬於變形桿菌的δ和г一亞綱;Nitrospira屬包含有moscoviensis和Ⅳ.rrtarin.在傳統上,Nitrobacter一直被認為是最重要的亞硝酸鹽氧化菌.然而,在硝化污水廠內用目的探針的FISH法和定量斑點雜交(Quantitative dot blot)等發現,檢測不到Nitrobacter或者數目很低,因此凸現了非Nitrobacter的NOB在硝化過程中的重要性.Egli等(2003)用不同污泥接種反應器,利用定量FISH和RFLP(Restriction fragment length polymorphism)方法對穩定的硝化作用反應器進行檢測,發現有活性的都屬於Nitrospira屬 J.以Nitrospira序列發展的特定16S rRNA探針,對活性污泥進行FISH查後表明,未培養的類硝化螺菌(Nitrospira—like)以顯著性數目(總菌數的9%)存在,其對亞硝酸鹽氧化的重要性已由反應器富集研究所證實.Nhrospira能固定CO:,也能利用丙酮酸混合營養生長,而不利用乙酸鹽、丁酸鹽和丙酸鹽。
4.4 反硝化細菌
反硝化細菌(Denitrifying bacteria)的大多數鑒定和計數都是依賴培養法.很多屬的成員,如產鹼桿菌屬(Alcaligenes)、假單胞菌屬(Pseudomonas)、甲基桿菌屬(Methylobacteriurn),副球菌屬(Paracoccus)和生絲微菌屬(Hyphornicrobiurrt)等,都從污水廠中作為脫氮微生物群分離出來過,但這些細菌屬在污水廠中是否具有原位脫氮的活性卻很少被知道.在一個補充以甲醇作為還原碳化物的脫氮沙濾中,使用特異FISH探針監測到有大量數目的P.spp和H.spp;而在沒有附加甲醇的非脫氮沙濾中,兩屬存在的數目都低於總細胞0.1% ,這間接證明了在脫氮過程中有兩屬的活性參與。
5.水污染物的類型及處理
5.1生活污水
生活污水是一大污染源。生活污水中含有大量的無機物,有機物。無機物如氯化物,硫酸鹽,磷酸鹽和鈉,鉀,鈣,鐵等碳酸鹽,有機物有纖維素,澱粉,脂肪,蛋白質和尿素等。排放入環境中促使浮游植物生長和大量繁殖,形成赤潮和水華。
生活污水的處理主要是其中有機物的分解,其主要方法有活性污泥法、生物膜法、AB法。
5.1.1活性污泥法
活性污泥法是以活性污泥為主體的廢水生物處理的主要方法。活性污泥法是向廢水中連續通入空氣,經一定時間後因好氧性微生物繁殖而形成的污泥狀絮凝物。其上棲息著以菌膠團為主的微生物群,具有很強的吸附與氧化有機物的能力。
5.1.2生物膜法
生物膜法是利用附著生長於某些固體物表面的微生物(即生物膜)進行有機污水處理的方法。生物膜是由高度密集的好氧菌、厭氧菌、兼性菌、真菌、原生動物以及藻類等組成的生態系統,其附著的固體介質稱為濾料或載體。生物膜自濾料向外可分為慶氣層、好氣層、附著水層、運動水層。生物膜法的原理是,生物膜首先吸附附著水層有機物,由好氣層的好氣菌將其分解,再進入厭氣層進行厭氣分解,流動水層則將老化的生物膜沖掉以生長新的生物膜,如此往復以達到凈化污水的目的。生物膜法具有以下特點:(1)對水量、水質、水溫變動適應性強;(2)處理效果好並具良好硝化功能;(3)污泥量小(約為活性污泥法的3/4)且易於固液分離;(4)動力費用省。
5.1.3AB法
AB法工藝由德國B0HUKE教授首先開發。該工藝將曝氣池分為高低負荷兩段,各有獨立的沉澱和污泥迴流系統。高負荷段A段停留時間約20-40分鍾,以生物絮凝吸附作用為主,同時發生不完會氧化反應,生物主要為短世代的細菌群落,去除BOD達50%以上。B段與常規活性污泥相似,負荷較低,泥齡較長。
5.2工業廢水
工業廢水是水體污染的主要污染源。包括鋼鐵工業廢水,食品工業廢水,印刷廢水,化工廢水等。隨著工業化的發展,含有重金屬離子的廢水產生量越來越多。重金屬離子已成為最重要、最常見的污染物之一。由於重金屬在生物體內的富集、吸收與轉化,從而通過食物鏈危害人體健康。如致癌、致畸等,故而處理重金屬污染刻不容緩。
微生物處理技術在生活污水處理中的應用已經非常成熟並且全面普及,但是在工業污水的處理中還存在著一定的技術問題。相對於生活污水來說,工業污水的成份要復雜的多,大多數工業污水的COD值都相當高,可生化性差,這就給微生物處理帶來了相當大的難度,有些工業污水甚至還有很高的氨氮指標,增加了微生物處理的難度。但是微生物技術的許多優勢註定了它將是工業污水治理的一個方面,而且目前已經有很多行業的工業污水開始採用微生物處理技術並且得到了穩定的運行數據。
這里主要講述關於污水中重金屬的處理。目前可用的微生物法有生物吸附法、硫酸鹽還原菌凈化法和利用微生物的轉化作用去除重金屬。
5.2.1生物吸附法
生物吸附是利用生物量(如發酵工業的剩餘菌體)通過物理化學機制,將金屬吸附或通過細胞吸收並濃縮環境中的重金屬離子,由於重金屬具有毒性,如果濃度太高,活的微生物細胞就會被殺死。所以,必須控制控制被處理水的重金屬濃度。
例如陳小霞等人用小球藻富集鉻離子,研究表明小球藻富集鉻離子的機制主要表現是表面吸附和主動運輸。在生長期和穩定期小球藻富集的鉻以有機鉻存在,而在衰亡期,小球藻富集的鉻以無機鉻存在。
利用工業發酵後剩餘的芽孢桿菌菌體或酵母菌吸附重金屬,具體做法是首先用鹼處理菌體,以便增加其吸附重金屬的能力。然後通過化學交聯法固定這些細胞,固定化的芽孢桿菌對重金屬的吸附沒有選擇性(微生物在結合無機污染物上表現出選擇性,多於大多數合成的化學吸附劑,微生物對金屬的吸附和累積主要取決於不同配位體結合部位對對金屬的選擇性)。可以去除廢水中的Cd、Cr、Cu、Hg、Ni、Pb、Zn 去除率可達99%。吸附在細胞上的重金屬可以用硫酸洗脫,然後用化學方法回收重金屬,經過鹼處理後的固定化細胞還可以重新用於吸附重金屬。
5.2.2硫酸鹽還原菌凈化法
脫硫弧菌屬硫酸鹽還原菌是厭氧化能細菌,它最大的特徵就是在無自由氧的條件下,在有機質存在時通過還原硫酸根變成硫化氫,從中獲得生長能量而大量繁殖;它繁殖的結果是使溶解度很大的硫酸鹽變成了極難溶解的硫化物或硫化氫。這類細菌分布廣泛,海洋、湖泊、河流及陸地上都能存在。在沒有自由氧而有硫酸鹽及有機物存在的地方它就能生長繁殖,其生長溫度為25~35攝氏度,PH值為6.2~7.5.該細菌的作用可將廢水中的硫酸根變成硫化氫,使廢水中濃度較高的重金屬Cu、Pb、Zn等轉變為硫化物而沉澱,從而使廢水中的重金屬離子得以去除。
5.2.3利用微生物的轉化作用去除重金屬
微生物可以通過氧化作用、還原作用、甲基化作用和去烷基化作用對重金屬和重金屬類化合物進行轉化。
細菌胞外的莢膜或粘膜層可產生多種胞外多聚體,胞外多聚體能夠吸附自然條件下或廢水處理設施中的重金屬。其主要成分是多糖、蛋白質和核酸。
真菌的細胞壁內含幾丁質,這和N----乙醯葡糖胺多聚體是一種有效的金屬於放射性核素結合的生物吸附劑。經過氫氧化物處理的各類真菌暴露出來的幾丁質、脫乙醯殼多糖和其他金屬結合的配位體,形成菌絲層,可以有效的去除廢水中的重金屬。
六價鉻具有強烈的毒性,其毒性是三價鉻的100倍,而且能在人體內沉澱。由於六價鉻很容易通過胞膜進入細胞,然後在細胞質、線粒體和細胞核中被還原為三價鉻,三價格在細胞內與蛋白質結合為穩定的物質並且和核酸相作用,而細胞外的三價鉻是不能參透細胞的,細菌利用細胞中的NADH作為還原劑,在厭氧或好氧的狀態下,將六價鉻還原為三價鉻。如陰溝腸桿菌能抗10000µmol/l鉻酸鹽,在厭氧的條件下能使六價鉻還原為三價鉻,三價鉻可以通過沉澱反應與水分離而被去除。
5.3農業廢水
它面廣而量大且分散。農田使用農葯,化學農葯主要是人工合成的生物外源性物質,很多農葯本身對人類及其他生物是有毒的,而且很多類型是不易生物降解的頑固性化合物。農葯殘留很難降解,人們在使用農葯防止病蟲草害的同時,也使糧食、蔬菜、瓜果等農葯殘留超標,污染嚴重,同時給非靶生物帶來傷害,每年造成的農葯中毒事件及職業性中毒病例不斷增加。同時,農葯廠排出的污水和施入農田的農葯等也對環境造成嚴重的污染,破壞了生態平衡,影響了農業的可持續發展,威脅著人類的身心健康。農葯不合理的大量使用給人類及生態環境造成了越來越嚴重的不良後果,農葯的污染問題已成為全球關注的熱點。因此,加強農葯的生物降解研究、解決農葯對環境及食物的污染問題,是人類當前迫切需要解決的課題之一。
5.3.1 農業生產上主要使用的農葯類型
當前農業上使用的主要有機化合物農葯如表1所示。其中,有些已經禁止使用,如六六六、滴滴涕等有機氯農葯,還有一些正在逐步停止使用,如有機磷類中的甲胺磷等。
表1 農業生產中常用農葯種類簡表
類 型 農 葯 品 種
有機磷:敵百蟲、甲胺磷、敵敵畏、乙醯甲胺磷、對硫磷、雙硫磷、樂果等
殺蟲劑 有機氮:西維因、速滅威、巴沙、殺蟲脒等
有機氯:六六六、滴滴涕、毒殺芬等
殺蟎劑 蟎凈、殺蟎特、三氯殺蟎碸、蟎卵酯、氯殺、敵蟎丹等
除草劑 2,4-D、敵稗、滅草靈、阿特拉津、草甘膦、毒草胺等
殺菌劑 甲基硫化砷、福美雙、滅菌丹、敵克松、克瘟散、稻瘟凈、多菌靈、葉枯凈等
生長調節劑 矮壯素、健壯素、增產靈、赤黴素、縮節胺等
人們發現,在自然生態系統中存在著大量的、代謝類型各異的、具有很強適應能力的和能利用各種人工合成有機農葯為碳源、氮源和能源生長的微生物,它們可以通過各種謝途徑把有機農葯完全礦化或降解成無毒的其他成分,為人類去除農葯污染和凈化生態環境提供必要的條件。
5.3.2 降解農葯的微生物類群
土壤中的微生物,包括細菌、真菌、放線菌和藻類等,它們中有一些具有農葯降解功能的種類。細菌由於其生化上的多種適應能力和容易誘發突變菌株,從而在農葯降解中佔有主要地位。一在土壤、污水及高溫堆肥體系中,對農葯分解起主要作用的是細菌類,這與農葯類型、微生物降解農葯的能力和環境條件等有關,如在高溫堆肥體系當中,由於高溫階段體系內部溫度較高(大於50 ℃),存活的主要是耐高溫細菌,而此階段也是農葯降解最快的時期。通過微生物的作用,把環境中的有機污染物轉化為CO2和H2O等無毒無害或毒性較小的其他物質。通過許多科研工作者的努力,已經分離得到了大量的可降解農葯的微生物(見表2)。不同的微生物類群降解農葯的機理、途徑和過程可能不同,下面簡要介紹一下農葯的微生物降解機理。
5.3.3 微生物降解農葯的機理
目前,對於微生物降解農葯的研究主要集中於細菌上,因此對於細菌代謝農葯的機理研究得比較清楚。
表2 常見農葯的降解微生物
農 葯 降 解 微 生 物
甲胺磷 芽孢桿菌、麴黴、青黴、假單胞桿菌、瓶型酵母
阿特拉津(AT) 煙麴黴、焦麴黴、葡枝根霉、串珠鐮刀菌、粉紅色鐮刀菌、尖孢鐮刀菌、斜卧鐮刀菌、微紫青黴、皺褶青黴、平滑青黴、白腐真菌、菌根真菌、假單胞菌、紅球菌、諾卡氏菌
幼脲3號 真菌
敵殺死 產鹼桿菌
2,4-D 假單胞菌、無色桿菌、節桿菌、棒狀桿菌、黃桿菌、生孢食纖維菌屬、鏈黴菌屬、麴黴菌、諾卡氏菌、
DDT 無色桿菌、氣桿菌、芽孢桿菌、梭狀芽孢桿菌、埃希氏菌、假單胞菌、變形桿菌、鏈球菌、無色桿菌、黃單胞菌、歐文氏菌、巴斯德梭菌、根癌土壤桿菌、產氣氣桿菌、鐮孢黴菌、諾卡氏菌、綠色木霉等
丙體六六六 白腐真菌、梭狀芽孢桿菌、埃希氏菌、大腸桿菌、生孢梭菌等
對硫磷 大腸桿菌、芽孢桿菌
七 氯 芽孢桿菌、鐮孢黴菌、小單孢菌、諾卡氏菌、麴黴菌、根黴菌、鏈球菌
敵百蟲 麴黴菌、鐮孢黴菌
敵敵畏 假單胞菌
狄氏劑 芽孢桿菌、假單胞菌
艾氏劑 鐮孢黴菌、青黴菌
樂 果 假單胞菌
2,4,5-T 無色桿菌、枝動桿菌
細菌降解農葯的本質是酶促反應,即化合物通過一定的方式進入細菌體內,然後在各種酶的作用下,經過一系列的生理生化反應,最終將農葯完全降解或分解成分子量較小的無毒或毒性較小的化合物的過程。如莠去津作為假單胞菌ADP菌株的唯一碳源,有3種酶參與了降解莠去津的前幾步反應。第一種酶是A tzA,催化莠去津水解脫氯的反應,得到無毒的羥基莠去津,此酶是莠去津生物降解的關鍵酶;第二種酶是A tzB,催化羥基莠去津脫氯氨基反應,產生N-異丙基氰尿醯胺;第三種酶是A tzC,催化N-異丙基氰尿醯胺生成氰尿酸和異丙胺。最終莠去津被降解為CO2和NH3。微生物所產生的酶系,有的是組成酶系,如門多薩假單胞菌DR-8對甲單脒農葯的降解代謝,產生的酶主要分布於細胞壁和細胞膜組分;有的是誘導酶系,如王永傑等得到的有機磷農葯廣譜活性降解菌所產生的降解酶等。由於降解酶往往比產生該類酶的微生物菌體更能忍受異常環境條件,酶的降解效率遠高於微生物本身,特別是對低濃度的農葯,人們想利用降解酶作為凈化農葯污染的有效手段。但是,降解酶在土壤中容易受非生物變性、土壤吸附等作用而失活,難以長時間保持降解活性,而且酶在土壤中的移動性差,這都限制了降解酶在實際中的應用。現在許多試驗已經證明,編碼合成這些酶系的基因多數在質粒上,如2,4-D的生物降解,即由質粒攜帶的基因所控制。通過質粒上的基因與染色體上的基因的共同作用,在微生物體內把農葯降解。因此,利用分子生物學技術,可以人工構建「工程菌」來更好地實現人類利用微生物降解農葯的願望。
『柒』 為什麼好氧池要迴流部分污泥到厭氧池
目前主流的觀點是聚磷菌(PAO)獨特的代謝活動,即所謂厭氧釋磷、好氧吸磷,完成了磷從液態水到固態泥的轉化。普通活性污泥中磷的含量為1.5%~2.0%(P/VSS),而PAO能將污泥中磷含量提升到5%~7%。
在好氧條件下,PAO對污水中的溶解性磷酸鹽過量吸收,然後進行沉澱分離。含有過量磷的污泥少部分以剩餘污泥的形式排出系統而將磷去除,大部分和污水一起迴流至厭氧池。此時污水中的有機物在厭氧發酵產酸菌的作用下轉化為乙酸苷;而活性污泥中的聚磷菌在厭氧條件下,將體內聚集的聚磷分解,分解產生的能量部分供聚磷菌生長,另一部分能量供聚磷菌主動吸收乙酸苷,並轉化為聚β羥基丁酸(PHB)的形式貯藏於體內,聚磷分解形成的無機磷則釋放回污水中,這就是厭氧釋磷。
再次進入好氧狀態後,聚磷菌將貯存於體內的PHB進行好氧分解並釋放大量能量,大部分供聚磷菌增殖,一部分供其主動吸收污水中的磷酸鹽,以聚磷的形式積聚於體內,這就是好氧吸磷。
由於活性污泥在運行中不斷增殖,必須從系統中排除和增殖量相當的活性污泥,也就是剩餘污泥。剩餘污泥包含過量吸磷的聚磷菌,從而完成了從污水中去除含磷物質的過程。
『捌』 污水污染物的組分
合理的識別污水中污染物的組成對於系統的設計以及運營維護有特別重大的意義。
污水中的主要成分可以氨氣來源分,按其性質分,按其特點分。在國際水協會IWA建立活性污泥數學模型ASM1的時候推出了污水處理過程中的十三個組成部分,後續其它的模型中也會引入不同的參數。
為了便於交流,公認的污水組分表達的notation包括
S-Soluble material, 這個一般指可以通過0.45um膜的組分,但也有用別的類型的膜進行過濾測試的,因此一定要搞清楚當我們說Soluble時候的Soluble的cutoff 是什麼。
X-Suspendid solids.這可以表示水中的顆粒性即不能通過過濾膜的成分,也用來表達水中各種微生物組分。
I-Inert 表示惰性部分
另外C-Colloidal也經常會被用來表示水中呈膠體裝台的污染物或者組分。
由於城市污水管網差異,當地氣候條件,居民生活條件的差異,一般來說很難對污水成分進行概述,但也會有一些數值被拿來作為典型城市污水的特點。
不管怎麼講以及在什麼時候,采樣以及分析的樣品的代表性是非常重要的。不管是利用當前監測數據或者是類似場地項目數據的時候一定不能忘記預測未來的發展變化,這些發展變化不僅僅是水量,也包括各種因素引起的水質發生變化。
書上說過去利用mg/L 這種方式表示水質情況在21世紀來說已經過時了,大家應該多用the constituent mass discharge rate on a per capita basis.這種當量表達的方式相對來說比濃度來預測要簡單一些。
下面的表格在學習水處理原理及技術的時候非常的不重要,但涉及到具體的工程實踐實際的時候,這些背景值一定要作為參考資料,這樣才能有效的評價我們自己的數據的有效性。
Per capita Mass constituent Discharges in The United States (the total mass of waste discharged per person per day (dry weight basis) from indivial residences.
在污水處理廠設計過程中,以下指標的具體濃度值得關註:
1.碳組分含量Carbonaceous constituents
2. 含氮組分,Nitroghenous compounds
3.含磷組分Phosphorus compounds
4.固體組分, Total and volitaile suspended solids
5. 鹼度。一般會轉換為CaCO3的濃度來表示。
在進行污水處理過程中,常有如下的一些指標被用以描述污水。
Carbonaceous constituents
BOD
BOD 一般使用5日生化需氧量
sBOD 溶解性五日生化需氧量
UBOD 生化需氧量,對於UBOD/BOD值為1.5的市政廢水來說,bCOD/BOD大約為1.6到1.7.
對於典型市政污水來說,UBOD/BOD=1.5,fd=0.15, YH=0.4 bCOD/BOD=1.64
COD
TCOD,CODT, 總化學需氧量
bCOD 可生物降解化學需氧量
pCOD 顆粒型化學需氧量
sCOD 溶解性化學需氧量
nbCOD 不可生物降解需氧量
rbCOD Ss readily biodegradable化學需氧量,可以直接被微生物利用,is assimilated quickly by the biomass,rbCOD對於微生物的動力學參數以及工藝運行有直接的影響。這一部分COD濃度高會提高硝酸鹽還原速率,在除磷系統中可以很快轉化為VFA然後為PAOs使用。准確的測量rbCOD對於強化生物除磷系統的模擬及預測很重要。但是rbCOD依然還有除了VFA以外的成分。對於活性污泥系統來說,較高濃度的rbCOD以為著菌膠團細菌可以得到更多的基質,從而有利於絮體的增長,最終形成沉降性能更優的微生物絮體。
bsCOD 可生物降解的溶解性的COD
bcolCOD 可生物降解的膠體態COD,需要被酶水解後以較慢的速度被微生物利用
sbCOD Xs 慢速生物降解COD
bpCOD Xsp 可生物降解的顆粒態的COD,需要被酶水解後以較慢的速度被微生物利用
nbpCOD Xi 不可生物降解的顆粒態COD.這部分的COD依然是有機物,盡管不能被微生物利用,但會成為揮發性懸浮固體物質的成分。
nbsCOD Si 不可生物降解的溶解態COD
Nitrogen
TKN 總凱氏氮,包括氨氮和有機物中含的氮,進水中大約60%到70%的凱氏氮都是氨氮。
bTKN 可生物降解的TKN
sTKN 溶解性的TKN
ON 有機氮含量,有機氮包括溶解性的和顆粒態的,其中一部分是惰性的。
NH4-N Snh4 氨氮濃度
bON
nbON 不可生物降解的有機氮,一般來說不可生物降解的有機氮佔VSS(以COD計)的6-7%
pON
bpON 顆粒態的有機氮,由於需要水解以後才可以被微生物利用,因此顆粒態的有機氮的利用速率比較低。
nbpON 不可生物降解的顆粒態有機氮
sON 溶解性有機氮
bsON 可生物降解的溶解性有機氮
nbsON nonbiodegradable soluble organic nitrogen,濃度一般為1-2mg/L
Phosphorus
TP 總磷
PO4 正磷酸鹽
bpP
nbpP
bsP
nbsP
Suspended solids
TSS
VSS
nbVSS 不可生物降解的揮發性懸浮固體,這部分的VSS大致上等於nbpCOD
iTSS 惰性總懸浮固體濃度
上面所列的組分盡管存在這樣的定以,其具體濃度依然受實驗操作及實驗條件等影響。
『玖』 mbr工藝微動力生活污水處理設備有哪些常見的參數啊
MBR工藝的生活污水處理設備對於參數的設計要求較高,參數的合理性直接影響設備污水處理能力。如下是生活污水處理設備中混合液污泥濃度(MLSS)、污泥泥齡(SRT)、迴流比、水力停留時間(HRT)的具體參數作用。
1、混合液污泥濃度(MLSS)相關參數
MLSS是具有活性的微生物(Ma)、微生物自身氧化的殘留物(Me)、吸附在污泥上不能被生物降解的有機物(Mi)以及無機物(Mii)這四者的總量。MBR膜生活污水處理設備一般膜池MLSS控制在10g/L,缺氧池MLSS為6.5g/L,厭氧區MLSS為5g/L,好氧區穩定在8.0g/L
2、污泥泥齡(SRT)
不同污泥齡(SRT)參數對同步硝化內源反硝化除磷(SNEDPR)系統脫氮除磷性能有著緊密關聯。同時SRT計算時需考慮對膜污染的控制,短SRT有利於提高PAOs的競爭優勢,在SRT為10-15h,系統除磷性能均較高。所以不同廠家的生活污水處理設備其SRT也是有差異的
3、迴流比
膜池向好氧區、好氧區向缺氧區、缺氧區向厭氧區的迴流液比例分別控制在300-500%,200-300%,100-200%
四、水力停留時間(HRT)
硝化和反硝化效果與HRT之間有著密切的關系,過短的HRT難以保證硝化和反硝化效果,具體HRT時間的設置需要根據項目具體情況來確定,常規MBR工藝生活污水處理設備的HRT區間是10-12小時。
『拾』 高人詳細介紹下污水處理中的化學除磷的工藝和方法有哪些
磷的去除有化學除磷生物除磷兩種工藝,生物除磷是一種相對經濟的除磷方法,但由於該除磷工藝目前還不能保證穩定達到0.5mg/l出水標準的要求,所以要達到穩定的出水標准,常需要採取化學除磷措施來滿足要求。
化學除磷是通過化學沉析過程完成的,化學沉析是指通過向污水中投加無機金屬鹽葯劑,其與污水中溶解性的鹽類,如磷酸鹽混合後,形成顆粒狀、非溶解性的物質,這一過程涉及的是所謂的相轉移過程,反應方程舉例如式1。實際上投加化學葯劑後,污水中進行的不僅僅是沉析反應,同時還進行著化學絮凝反應,所以必須區分化學沉析和化學絮凝的差異。
FeCl3+K3PO4→FePO4↓+3KCl 式1
污水沉析反應可以簡單的理解為:水中溶解狀的物質,大部分是離子狀物質轉換為非溶解、顆粒狀形式的過程,絮凝則是細小的非溶解狀的固體物互相粘結成較大形狀的過程,所以絮凝不是相轉移過程。
在污水凈化工藝中,絮凝和沉析都是極為重要的,但絮凝是用於改善沉澱池的沉澱效果,而沉析則用於污水中溶解性磷的去除。如果利用沉析工藝實現相的轉換,則當向污水中投加了溶解性的金屬鹽葯劑後,一方面溶解性的磷轉換成為非溶解性的磷酸金屬鹽,也會同時產生非溶解性的氫氧化物(取決於PH值)。另一方面,隨著沉析物的增加及較小的非溶解性固體物聚積成較大的非溶解性固體物,使穩定的膠體脫穩,通過速度梯度或擴散過程使脫穩的膠體互相接觸生成絮凝體。最後通過固—液分離步驟,得到凈化的污水和固一液濃縮物(化學污泥),達到化學除磷的目的。
根據化學沉析反應的基礎,為了生成磷酸鹽化合物,用於化學除磷的化學葯劑主要是金屬鹽葯劑和氫氧化鈣(熟石灰)。許多高價金屬離子葯劑投加到污水中後,都會與污水中的溶解性磷離子結合生成難溶解性的化合物。出於經濟原因,用於磷沉析的金屬鹽葯劑主要是Fe3+、Al3+和Fe2+鹽和石灰。這些葯劑是以溶液和懸浮液狀態使用的。二價鐵鹽僅當污水中含有氧,能被氧化成三價鐵鹽時才能使用。Fe2+在實際中為了能被氧化常投加到曝氣沉砂池或採用同步沉析工藝投加到曝氣池中,其效果同使用Fe3+一樣,反應式如式2、3。
Al3++PO43-→AlPO4↓pH=6~7 式2
Fe3++PO43-→FePO4↓pH=5~5.5 式3
與沉析反應相競爭的反應是金屬離子與OH的反應,所以對於各種不同的金屬鹽產品應注意的是金屬的離子量,反應式如式4、5。
Al3++3OH-→Al(OH)3↓ 式4
Fe3++3OH-→Fe(OH)3 式5
金屬氫氧化物會形成大塊的絮凝體,這對於沉析產物的絮凝是有利的,同時還會吸附膠體狀的物質、細微懸浮顆粒。需要注意的是有機物在以化學除磷為目的化學沉析反應中的沉析去除是次要的,但在分離時有機性膠體以及懸浮物的凝結在絮凝體中則是決定性的過程。
沉析效果是受PH值影響的,金屬磷酸鹽的溶解性同樣也受PH的影響。對於鐵鹽最佳PH值范圍為5.0~5.5,對於鋁鹽為6.0~7.0,因為在以上PH值范圍內FePO4或AIPO4的溶解性最小。另外使用金屬鹽葯劑會給污水和污泥處理還會帶來益處,比如會降低污泥的污泥指數,有利於沼氣脫硫等。
由於金屬鹽葯劑的投加會使污水處理廠出水中的Cl-或SO2-4離子含量增加。如果沉析葯劑溶液中另外含有酸的話,則需特別加以注意。
投加金屬鹽葯劑後相應會降低污水的鹼度,這也許會對凈化產生不利影響。當在同步沉析工藝中使用硫酸鐵時,必須考慮對硝化反應的影響。
另外,如果污水處理廠污泥用於農業,使用金屬鹽葯劑除磷時必須考慮鋁或者鐵負荷對農業的影響。
除了金屬鹽葯劑外,氫氧化鈣也用作沉析葯劑。在沉折過程中,對於不溶解性的磷酸鈣的形成起主要作用的不是Ca2+,而是OH-離子,因為隨著pH值的提高,磷酸鈣的溶解性降低,採用Ca(OH)2除磷要求的pH值為8.5以上。磷酸鈣的形成是按反應式6進行的:
5Ca2++3po43-+OH-→Ca5(PO4)3OH↓ pH ≥8.5 式6
但在pH值為8.5到10.5的范圍內除了會產生磷酸鈣沉析外,還會產生碳酸鈣,這也許會導致在池壁或渠、管壁上結垢,反應式如式7。
Ca2++CO32-→CaCO3 式7
與鈣進行磷酸鹽沉析的反應除了受到PH值的影響,另外還受到碳酸氫根濃度(鹼度)的影響。在一定的PH值惰況下,鈣的投加量是與鹼度成正比的。
對於軟或中硬的污水,採用鈣沉析時,為了達到所要求的PH值所需要的鈣量是很少的,具有強緩沖能力的污水相反則要求較大的鈣投加量。
化學沉析工藝是按沉析葯劑的投加地點來區分的,實際中常採用的有:前沉析、同步沉析和後沉析或在生物處理之後加絮凝過濾。
(1)前沉析
前沉析工藝的特點是沉析葯劑投加在沉砂池中,或者初次沉澱池的進水渠(管)中,或者文丘里渠(利用渦流)中。其一般需要設置產生渦流的裝置或者供給能量以滿足混合的需要。相應產生的沉析產物(大塊狀的絮凝體)則在一次沉澱池中通過沉澱而被分離。如果生物段採用的是生物濾池,則不允許使Fe2+葯劑,以防止對填料產生危害(產生黃銹)。
前沉析工藝(如圖2所示)特別適合於現有污水處理廠的改建(增加化學除磷措施),因為通過這一工藝步驟不僅可以去除磷,而且可以減少生物處理設施的負荷。常用的沉析葯劑主要是生灰和金屬鹽葯劑。經前沉析後剩餘磷酸鹽的含量為1.5-2.5mg/1,完全能滿足後續生物處理對磷的需要。
(2)同步沉析
同步沉析是使用最廣泛的化學除磷工藝,在國外約占所有化學除磷工藝的50%。其工藝是將沉析葯劑投加在曝氣池出水或二次沉澱池進水中,個別情況也有將葯劑投加在曝氣池進水或迴流污泥渠(管)中。目前很多污水廠都採用,如廣州大坦沙污水處理廠三期就是採用的同步沉析,加葯對活性污泥的影響比較小。
(3)後沉析
後沉析是將沉析、絮凝以及被絮凝物質的分離在一個與生物設施相分離的設施中進行,因而也就有二段法工藝的說法。一般將沉析葯劑投加到二次沉澱池後的一個混合池(M池)中,並在其後設置絮凝池(F池)和沉澱池(或氣浮池)。
對於要求不嚴的受納水體,在後沉析工藝中可採用石灰乳液葯劑,但必須對出水PH值加以控制,比如採用沼氣中的CO2進行中和。
採用氣浮池可以比沉澱池更好地去除懸浮物和總磷,但因為需恆定供應空氣而運轉費用較高。