㈠ 螺旋式空壓機工作原理
可能是螺桿式空壓機吧,兩個螺桿對牙運轉時,利用齒牙的空間變化來壓縮空氣,跟齒輪泵的原理差不多。
㈡ 空氣壓縮機的結構圖
一,工作機構,包括汽缸,活塞,氣閥,機身等。1 c( ~" v Q! Q' H- c& R
二,傳動機構,包括曲軸,連桿,十字頭,軸承,傳動部件等。 ?+ Z6 _+ h2 b0 g! r! ~
三,輔助設備,包括潤滑系統,冷卻系統,調節系統等(這是共有的,不管那一種壓縮機都有)) X" r% _% F B. b# U, O
離心式壓縮機速度式壓縮機的代表。壓縮機本體主要是由轉子和定子,軸承等部件組成" H! R- S) P! J& \; A
一,轉子 主要由主軸,葉輪,聯軸器,止推盤,平衡活塞和軸套組成,
二,定子 主要由機殼。隔板,級間密封和周端密封,進氣室,蝸殼,擴壓器,彎道及迴流器組成。
㈢ 螺桿空壓機結構圖
工作流程:空氣先經過預過濾網,然後通過空氣過濾器及進氣控制器,進入螺桿主機壓縮腔與潤滑油混合,通過兩個非對稱轉子進行線性的、連續的壓縮。經過壓縮的油氣混合物進入油罐及分離系統進行三級分離(離心、自重和精分離)。經過分離的壓縮空氣通過冷卻器降溫後排出,可靠的壓力開關系統控制排氣壓力。當機器運行時,螺桿壓縮機潤滑油靠系統內壓力差自動循環,無須油泵。剛開機時,最小壓力閥關閉以保證潤滑油油循環所需的最小壓力。除了潤滑,油還起到密封、冷卻和降噪的作用。高效的油氣分離器和高效冷卻器確保輸出高品質壓縮空氣。
這些是我平時工作中用到的,請採納!有問題歡迎詢問,知無不言!
㈣ 螺桿空壓機原理及結構圖
㈤ 城市污水處理工藝的流程圖原理及特點
城市污水處理主要工藝:以A/O(厭氧-好氧活性污泥法),介紹下A/O工藝原理及流程。
1、A/O工藝原理:
厭氧-好氧活性污泥法(Anoxic/Oxic,簡稱A/O)是由厭氧和好氧兩部分反應組成的污水生物處理工藝。污水進入厭氧池後,與迴流污泥混合。活性污泥中的聚磷菌在這一過程中大量吸收污水中的BOD,並將污泥中的磷以正磷酸鹽的形式釋放到混合液中。混合液進入好氧池後,有機物被氧化分解,同時聚磷菌大量吸收混合液中的正磷酸鹽到污泥中。由於聚磷菌在好氧條件下吸收的磷多於厭氧條件下釋放的磷,因此,污水經過「厭氧-好氧」的交替作用和二沉池的污泥分離作用,最終達到除磷的目的。
2、工藝流程說明:
如下圖1可知,生活污水經格柵進入調節池後,由污水泵抽送至A級生物處理池(兼氧池),兼氧池內掛有彈性填料,通過吸附在填料上的兼氧細菌的吸附水解作用,使污水中對生物細菌有抑製作用和難以生物降解的有機物水解,大分子的有機物水解為小分子的有機物,並對固體有機物進行降解,減少了污泥量,降低污水中懸浮固體的含量,並利用污水中的有機物作為碳源,使從後級好氧段迴流的硝化液中的硝酸鹽氮和亞硝酸鹽氮在兼氧脫氮菌的作用下形成氣態氮從污水中逸出,達到脫氮的目的,從而降解污水中有機污染物,提高污水的生化可降解性,並去除污水中的氨氮和懸浮物。兼氧池出水進入O級好氧接觸氧化池,好氧池內好氧微生物在水體中有充足溶解氧的情況下,利用污水中的可溶性污染物進行新陳代謝,從而達到去除污水中可溶解性污染物的目的。好氧池出水自流入二沉池,污水中大部分懸浮物能在此得以有效去除。二沉池出水自流入中間水池貯存,再由中間水泵提升到砂過濾器去除水中膠體、顆粒、懸浮雜質,確保出水達到排放標准後,消毒排放。經格柵處攔截的柵渣定期清理外運,二沉池中的污泥部分迴流至A級生物處理池,另一部分污泥至污泥池使污泥進行好氧穩定消化,減少污泥體積和臭氣排放,消化池上清液溢流回到調節池進行循環處理。剩餘污泥定期抽送出設備罐體外運處置。
工藝流程圖:
㈥ 污水處理廠工藝流程圖。以及簡單工藝介紹
污水處理工藝
污水處理工藝分三級:一級處理:物理處理,通過機械處理,如格柵、沉澱或氣浮,去除污水中所含的石塊、砂石和脂肪、油脂等。二級處理:生物化學處理,污水中的污染物在微生物的作用下被降解和轉化為污泥。
三級處理:污水的深度處理,它包括營養物的去除和通過加氯、紫外輻射或臭氧技術對污水進行消毒。可能根據處理的目標和水質的不同,有的污水處理過程並不是包含上述所有過程。
1、一級處理
機械(一級)處理工段包括格柵、沉砂池、初沉池等構築物,以去除粗大顆粒和懸浮物為目的,處理的原理在於通過物理法實現固液分離,將污染物從污水中分離,這是普遍採用的污水處理方式。
機械(一級)處理是所有污水處理工藝流程必備工程(盡管有時有些工藝流程省去初沉池),城市污水一級處理BOD5和SS的典型去除率分別為25%和50%。
在生物除磷脫氮型污水處理廠,一般不推薦曝氣沉砂池,以避免快速降解有機物的去除;在原污水水質特性不利於除磷脫氮的情況下,初沉的設置與否以及設置方式需要根據水質特性的後續工藝加以仔細分析和考慮,以保證和改善除磷除脫氮等後續工藝的進水水質。
2、二級處理
污水生化處理屬於二級處理,以去除不可沉懸浮物和溶解性可生物降解有機物為主要目的,其工藝構成多種多樣,可分成活性污泥法、AB法、A/O法、A2/O法、SBR法、氧化溝法、穩定塘法、CASS法、土地處理法等多種處理方法。目前大多數城市污水處理廠都採用活性污泥法。
生物處理的原理是通過生物作用,尤其是微生物的作用,完成有機物的分解和生物體的合成,將有機污染物轉變成無害的氣體產物(CO2)、液體產物(水)以及富含有機物的固體產物(微生物群體或稱生物污泥);多餘的生物污泥在沉澱池中經沉澱池固液分離,從凈化後的污水中除去。
3、三級處理
三級處理是對水的深度處理,是繼二級處理以後的廢水處理過程,是污水最高處理措施。現在的我國的污水處理廠投入實際應用的並不多。
它將經過二級處理的水進行脫氮、脫磷處理,用活性炭吸附法或反滲透法等去除水中的剩餘污染物,並用臭氧或氯消毒殺滅細菌和病毒,然後將處理水送入中水道,作為沖洗廁所、噴灑街道、澆灌綠化帶、工業用水、防火等水源。
由此可見,污水處理工藝的作用僅僅是通過生物降解轉化作用和固液分離,在使污水得到凈化的同時將污染物富集到污泥中,包括一級處理工段產生的初沉污泥、二級處理工段產生的剩餘活性污泥以及三級處理產生的化學污泥。
由於這些污泥含有大量的有機物和病原體,而且極易腐敗發臭,很容易造成二次污染,消除污染的任務尚未完成。污泥必須經過一定的減容、減量和穩定化無害化處理井妥善處置。污泥處理處置的成功與否對污水廠有重要的影響,必須重視。
如果污泥不進行處理,污泥將不得不隨處理後的出水排放,污水廠的凈化效果也就會被抵消掉。所以在實際的應用過程中,污水處理過程中的污泥處理也是相當關鍵的。
4、除臭工藝
其中物理法主要包括稀釋法、吸附法等;化學法包括吸收法、燃燒法等;生物法包括生物制劑法、生物過濾法、填充塔式生物脫臭法和生物洗滌法,植物提取液霧化噴淋法等。
(6)城市污水處理廠螺旋空壓機結構圖擴展閱讀
未來發展的趨勢。
1、行業整體的績效提高。內部行業的績效成為當務之急,所以國家十二五重大專項裡面,專門有項目要建立國家范圍的行業管理績效體系。
2、服務成為我們行業的核心任務,成為行業的核心環節。這跟發達國家是一致的,發達國家基本上服務業占整個環保產業,設備、投資、建設大概佔50%左右,我國估計佔10%左右,所以有這么大的空間,內部的結構調整面臨從建設到發展的需求。
沒有哪一個運營主體在一個國家層面上能夠占絕對的主導地位,不論是國有企業也好,外資企業也好,事業單位也好,還是股份制公司也好,都呈現了多樣化形式。
所以以資產為基礎的整合機會,這個不容易。這是我們面臨的一個困難。但是另一方面,又提供了很好的契機。如果看國際上做資產整合的話,早期是英國做的比較成功,它先解決整合的問題,然後再解決市場化的問題。
3、從技術層面上看,水資源問題,本身開始出現流域化的趨勢,過去叫「多龍治水」,越來越強調從流域的層面協調,從流域的尺度上,不僅僅是協調水資源,而且協調再生水。只有從流域角度上考慮這個問題的時候,才能取得最大的效益。
㈦ 城市污水處理工藝流程圖
污水處理工藝
污水處理工藝分為三級:一級處理:物理處理、機械處理,如格柵、沉澱或氣浮,去除污水中所含的石塊、沙子、脂肪、油脂等。二級處理:生化處理。污水中的污染物在微生物的作用下降解轉化為污泥。
三級處理:污水的深度處理,包括通過氯化、紫外線或臭氧技術去除污水中的營養物質和消毒。根據不同的處理目標和水質,有些污水處理工藝並不包括上述所有工藝。
1、一級處理
機械(一級)處理段包括格柵、沉砂池、初沉池等結構,用於去除粗顆粒和懸浮物。處理的原理是通過物理方法實現固液分離,實現污染物與污水的分離,這是污水處理的常用方法。
所有廢水處理工藝都需要機械(初級)處理(盡管有些工藝有時省略初級沉澱池)。城市污水一級處理中bod5和ss的典型去除率分別為25%和50%。
生物除磷脫氮廢水處理廠一般不推薦採用曝氣沉砂池,以避免快速降解的有機物的去除;在原有廢水水質特性不利於除磷脫氮的情況下,根據後續工藝的水質特點,需要對初沉的設置和設置方法進行認真的分析和考慮,以保證和改善後續工藝的除磷、脫氮等水質。。
2、二次處理
污水生化處理是一種二級處理,其主要目的是去除不沉降的懸浮物和可溶的可生物降解有機物。其工藝組成多樣,可分為活性污泥法、AB法、A/O法、A2/O法、SBR法、氧化溝法、穩定塘法、CASS法、土地處理法等處理方法。目前,大多數城市污水處理廠採用活性污泥法。
生物處理的原理是通過生物作用,特別是微生物的作用,完成有機物的分解和有機物的合成,從而將有機污染物轉化為無害的氣體產物(CO2)。富含有機物(微生物群或生物污泥)的液體產物(水)和固體產物;剩餘的生物污泥通過沉澱池內的固液分離從沉澱池內的凈化生物污泥中分離出來。從污水中清除。
3、三級處理
三級處理是水的深度處理,二級處理後的廢水處理工藝,是廢水的最高處理措施。目前,我國的污水處理廠還不多。
對二級處理後的水進行脫氮除磷,用活性炭吸附法或反滲透法去除水中殘留的污染物,用臭氧或氯氣對細菌和病毒進行消毒,然後將處理後的水作為水送至中間水道沖廁、噴灑街道、綠化帶、工業用水、消防等水源。
由此可見,污水處理工藝的作用只是通過生物降解轉化和固液分離,從而凈化污水,使污染物富集到污泥中,包括一級處理段產生的一級污泥和二級污泥。
(7)城市污水處理廠螺旋空壓機結構圖擴展閱讀:
未來發展的趨勢。
1、行業整體的績效提高。內部行業的績效成為當務之急,所以國家十二五重大專項裡面,專門有項目要建立國家范圍的行業管理績效體系。
2、服務成為我們行業的核心任務,成為行業的核心環節。這跟發達國家是一致的,發達國家基本上服務業占整個環保產業,設備、投資、建設大概佔50%左右,我國估計佔10%左右,所以有這么大的空間,內部的結構調整面臨從建設到發展的需求。
沒有哪一個運營主體在一個國家層面上能夠占絕對的主導地位,不論是國有企業也好,外資企業也好,事業單位也好,還是股份制公司也好,都呈現了多樣化形式。
所以以資產為基礎的整合機會,這個不容易。這是我們面臨的一個困難。但是另一方面,又提供了很好的契機。如果看國際上做資產整合的話,早期是英國做的比較成功,它先解決整合的問題,然後再解決市場化的問題。
3、從技術層面上看,水資源問題,本身開始出現流域化的趨勢,過去叫「多龍治水」,越來越強調從流域的層面協調,從流域的尺度上,不僅僅是協調水資源,而且協調再生水。只有從流域角度上考慮這個問題的時候,才能取得最大的效益。
㈧ 螺桿空壓機原理及結構圖
螺桿式空氣壓縮機的原理和結構圖如下:
螺桿式空氣壓縮機的工作原理是當螺桿在殼體內轉動時,螺桿與殼體的齒相互嚙合,空氣從進氣口吸入,同時由於齒的轉動,吸入的油氣被密封輸送到出氣口。在運輸過程中,齒槽嚙合間隙逐漸變小,油氣被壓縮。
當齒槽嚙合面旋轉到殼體排氣口時,高壓油氣混合氣從體內排出,工作過程分為吸入、密封輸送、壓縮和排氣四個過程。
變頻器可以通過改變螺桿轉子的轉速來改變排量。當用氣量發生變化時,變頻器改變轉速來調節空壓機的排量,從而達到排氣壓力恆定,節能的目的。單螺桿空氣壓縮機的結構原理如圖所示。
㈨ 螺桿空壓機原理及結構圖
螺桿空壓機原理及結構圖如下:
螺桿空壓機工作原理是當螺桿在殼體內轉動時,螺桿與殼體的齒溝相互嚙合,空氣由進氣口吸入,同時也吸入機油,由於齒溝嚙合面轉動將吸入的油氣密封並向排氣口輸送;在輸送過程中齒溝嚙合間隙逐漸變小,油氣受到壓縮。
當齒溝嚙合面旋轉至殼體排氣口時,較高壓力的油氣混合氣體排出機體,工作過程分為吸氣、密封及輸送、壓縮、排氣四個過程。
採用變頻器可通過改變螺桿轉子轉速的方式來改變排氣量,當用氣量發生變化時,變頻器改變轉速的方式調節空壓機的排氣量,達到排氣壓力恆定不變,並節約能源的目的,如圖所示為單螺桿空氣壓縮機的結構原理。
空壓機系統組成
在空氣壓縮機控制系統中,採用空壓機後端出氣管道上安裝的壓力感測器來控制空氣壓縮機的壓力。空壓機啟動時,載入電磁閥處於關閉狀態,載入氣缸不動作,變頻器拖動電機空載運行,一段時間,可有控制器任意設定,在此設置為10S)後,載入電磁閥打開,空壓機帶載運行。
當空氣壓縮機啟動運行後,如果後端設備用氣量較大,儲氣罐和後端管路中壓縮氣壓力未達到壓力上限值,則控制器動作載入閥,打開進氣口,電機負載運行,不斷地向後端管路產生壓縮氣。
當空壓機連續運行,壓縮機主體溫度會升高,當溫度達到一定程度時,本系統設定為80℃,可有控制器根據應用環境自行設定,風機開始運行,用於降低主機工作溫度。風機運行一段時間,主機溫度下降,低於75℃風機停轉。
㈩ 某城市污水處理廠設計 急急急
模板
第一節 設計任務和內容
以一座二級處理的城市污水處理廠為對象,對主要污水處理構築物的工藝尺寸,進行設計計算,確定污水廠的平面布置和高程布置。
完成設計計算說明書和設計圖紙(污水廠平面布置圖和污水廠高程布置圖)。
設計深度一般為方案設計的深度。
第二節 基 本 資 料
1. 污水水量、水質
污水處理水量16萬m3/d;
污水水質為:CODcr450mg/L,BOD5200 mg/L, SS250 mg/L,氨氮25mg/L。
2. 處理要求
污水經二級處理後應符合以下具體要求:
CODcr≤70mg/L, BOD5≤20mg/L, SS ≤30mg/L,氨氮≤12mg/L。
3. 處理工藝流程
原水→格柵→泵→沉砂池→初沉池→曝氣池→二沉池→出水
4. 氣象與水文資料
風向:多年主導風向為北北東風;
氣溫:最冷月平均為-3.5℃;
最熱月平均為32.5℃;
極端氣溫,最高為41.9℃,最低為-17.6℃,最大凍土深度:0.18m;
水文:降水量,多年平均為每年728mm;
蒸發量,多年平均為每年1210mm;
地下水水位,地面下5-6m。
5. 廠區地形
污水廠選址區域海拔標高在64-66米之間,平均地面標高為64.5米。平均地面坡度為0.3-0.5‰,地勢為西北高,東南低。
廠區征地面積為東西長380米,南北長280-300米。
污水進水管相對標高為-2.50米。
第二章 處理工藝流程說明
根據污水處理量、原污水水質、處理要求,污水廠主要去除CODcr,BOD5和SS,對氨氮也有一定的去除率,選擇以好氧生物處理為主的二級處理工藝流程如下:
原水→格柵→泵→沉砂池→初沉池→曝氣池→二沉池→出水
第一節 格 柵
格柵是用以去除廢水中較大的懸浮物,漂浮物,纖維物質和固體顆粒物質,以保證後續處理單元的正常運行,減輕後續處理單元的處理負荷,防止阻塞排泥管道和設備。
按形狀分為平面格柵和曲面格柵兩種。按格柵柵條的凈間隙,可分為粗格柵,中格柵和細格柵。按清楂方式可分為人工清楂和機械清楂兩種。
本設計選用間隙b=20mm的中格柵,機械式平面清渣。
第二節 沉 砂 池
沉砂池的作用是從廢水中分離密度比較大的無機顆粒,例如:直徑為0.1mm,密度為2.5g/cm3以上的砂粒。目前常用沉砂池,按池型可分為平流式沉砂池,曝氣沉砂池、多爾式沉砂池和鍾式式沉砂池[1]。
本設計選用停留時間t=250s的曝氣沉砂池。因為平流式沉砂池的主要缺點是沉砂中約夾有15%的有機物,使沉砂的後續處理難度加大,而曝氣池就能克服這一缺點。曝氣池的優點還有通過調節曝氣量可以控制污水旋流速度,使除砂效率較穩定,受流量變化的影響較小,同時還起預曝氣的作用,但其構造比平流式沉砂池復雜。
第三節 初 沉 池
初次沉澱池的作用是對污水中的以無機物為主的相對密度大的固體懸浮物進行沉澱分離。污水中的懸浮顆粒以重力為主,在初沉池中主要進行自由沉澱和絮凝沉澱。污水處理廠用沉澱池,按水流方向分平流式,輻流式,豎流式,斜流式四種。每種沉澱池都分為五個區,即進水區,沉澱區,緩沖區,污泥區和出水區。
此處選擇表面負荷q=1.8的平流式沉澱池,其優點是沉澱效果好,對沖擊負荷和溫度變化的適應能力強,布置緊湊,排泥過程穩定,施工簡易,已趨定型。缺點是配水不易均勻,如果採用多斗排泥時每個泥斗需單獨設排泥管各自排泥,操作量大,因此多採用新型排泥方法與機械。
第四節 曝 氣 池
曝氣池,屬於好氧生物處理單元,對污水中的(膠體和懸浮的)有機物作進一步的處理,COD、BOD、NH3-N的去除率一般為85%、90%、65%左右,可使出水達到二級要求。
曝氣池按流動形態分主要有推流式,完全混合式和循環混合式三種。按平面形狀方面可分為長方形廊道形,圓形,方形以及環狀跑道形等四種。按採用的曝氣方法可分為鼓風曝氣池,機械曝氣池以及兩者混合使用的機械-鼓風曝氣池。
此處選用傳統活性污泥法,污泥負荷取0.2 kgBOD5/(kgMLSS•d),推流式廊道、鼓風曝氣、形狀為長方形。
第五節 二 沉 池
二沉池有別於其他沉澱池,首先在作用上有其特點。它除了進行泥水分離外,還進行污泥濃縮,並由於水量、水質的變化,還要暫時貯存污泥。由於二次沉澱池需要完成污泥濃縮的作用,所需要的池面積大於只進行泥水分離所需要的池面積。
其次,進入二次沉澱池的活性污泥混合液在性質上有其特點。活性污泥混合液的濃度高,具有絮凝性能,屬於成層沉澱。
活性污泥的另一特點是質輕,易被出水帶走,並容易產生二次流和異重流現象,使實際的過水斷面遠遠小於設計的過水斷面。
池型說明:分為平流、斜管、輻流、豎流四類,本設計選用中心進水周邊出水輻流式二沉池。
第六節 消 毒 池
城市污水經一級處理或二級處理後,水質改善,細菌含量也大幅度減少,但其絕對值仍很可觀,並有存在病原菌的可能,因此污水排放水體前應進行消毒,特別是醫院、生物製品所及屠宰場等有致病菌污染的污水,更應嚴格消毒。
消毒設備應按連續工作設置,消毒設備的工作時間,消毒劑投加量,可根據所排放水體的衛生要求及季節條件掌握。
目前最常用的污水消毒劑是液氯。其優點是效果可靠,投配設備簡單,投量准確,價格便宜。
第三章 污水處理構築物設計計算
第一節 格 柵
1. 設計參數
處理設施數量:兩組
設計流量為: ,
最大設計流量Qmax = KzQ
柵前水深h=1.0 m
過柵流速v=0.9m/s
柵條間隙b=0.02m
安裝傾角α= 60°
1. 柵條的間隙數n
h=1.0 m ,v=0.9m/s, b=0.02m, α= 60°,n=2,
最大設計流量Qmax = KzQ =1.2×1.85/2 =1.11 m3/s
2. 柵槽寬度B
設柵條寬度S=0.01
B=(n-1)S+bn=(72-1)×0.01+0.02×72=2.15m
3. 進水渠道漸寬部分長度l1
設進水渠寬 ,其漸寬部分展開角度為 ,
4. 柵槽與出水渠道連接處的漸寬部分長度l2
5. 通過格柵的水頭損失h1
設柵條斷面為銳邊矩形斷面
6. 柵後槽總高度H
設柵前渠道的超高 ,
7. 柵槽總長度L
8. 每日柵渣量W
在格柵間隙20mm 的情況下,設柵渣量為每1000m3污水產生0.07m3.
,宜用機械清渣。
格柵計算簡圖如下:
第二節 曝氣沉砂池
1. 參數的確定
處理設施數量:兩組,n=2
設計流量為:
,
水力停留時間t=240s=250s ,水平流速v=0.1m/s,有效水深
含砂量X=0.05L/ =50 /1000000 ,
2. 池子總容積:
3. 水流斷面積:
4. 池長:
5. 池寬: 池子總寬度為 , 池子分兩格n=2,
每格池子寬度b=
6. 池高:池底坡度為0.2,超高 ,集砂槽高度 ,集砂槽寬度 ,池底斜面高度 ,全池總高:
7. 每格沉砂池實際進水斷面面積:
8. 每格沉砂池沉砂斗容量:
9. 每格沉砂池實際沉砂量:每兩天排一次砂,則:
10. 每小時所需空氣量:取曝氣管浸水深度為3.2m,查表得單位池長所需空氣量為28 ,故q=28×24×(1+15%)×2=1545.6 /h,式中(1+15%)為考慮到進出口條件而增長的池長。
第三節 初 沉 池
1. 參數確定:
表面負荷 =1.8 ,
沉澱時間t=2.1h,
SS去除率η=55%,
設計流量
2. 沉澱池各部尺寸:
總有效沉澱面積 ,
採用四(8)座沉澱池, 每池處理量Q= ,
每池表面積A= ,
沉澱池有效水深 ,
每個池寬b取12m
池長:L=
長寬比 ,合格
3. 污泥區尺寸:
每日產生的污泥量 每日每座沉澱池的污泥量 ,
污泥斗容積:
式中污泥鬥上口 ,污泥斗下底面積 ㎡,污泥斗為方斗,α=60°,故 ,則每個污泥斗的容積為
4. 沉澱池總高度
採用機械刮泥,緩沖層高 (含刮泥板),平底,故
0.3+3.78+0.6+10.4=15.08m
5. 沉澱池總長度
L=0.5+0.3+83.3=84.1m
式中 0.5為流入口至擋板距離,0.3為流出口至擋板的距離。
6. 放空管徑
放空時間設為T=6h,則放空管 取d=360mm, 式中H為平均水深
7. 進出水措施
進水端採用穿孔花牆配水,出水端採用三角溢流堰
第四節 曝 氣 池
一、 設計數據:
污泥負荷Ns = 0.30kgBOD5/(kgMLSS•d)
設計流量Q=16×104m3/d=1.86m3/s
二、 計算:
1. 污水處理程度的計算:
原污水的BOD值為200mg/L, 經初次沉澱池處理後BOD5按降低25%考慮,則進入曝氣池的污水,其BOD5值(Sa)為: 。
計算去除率,對此,首先按下式計算處理水中非溶解性BOD5值 ,式中b為微生物自身氧化率,取0.09,Xa活性微生物在處理水中所佔的比例,取0.4,Ce為處理水中懸浮固體濃度。
處理水中溶解性BOD5值為Se=20-5=15mg/L,
去除率
2. BOD-污泥負荷率的確定
擬定採用的BOD-污泥負荷率為0.3kgBOD5/(kgMLSS•d),但為穩妥需加以校核。
,式中
代入各值,計算得 ,
計算結果確定, 值取0.3是適宜的。
3. 確定混合液污泥濃度X
由基本資料得SVI值為120-150 mg/L,取120mg/L
計算確定混合液污泥濃度X,對此r=1.2,R=0.5,代入各值得:
4. 確定曝氣池容積計算
曝氣池容積按下式計算:
5. 確定曝氣池各部位尺寸
設4組曝氣池,每組容積為 ,
池深取4m,則每組曝氣池的面積 ㎡,
池寬取4.5m,, 介於1-2之間,符合規定。
池長: ,符合規定。
設五廊道式曝氣池,廊道長: ,
取超高0.5m,則,池總高度H=4+0.5=4.5m
在曝氣池面對初沉池和二沉池的一側各設橫向配水渠道,並在1,2和3,4號沉澱池之間設置縱向中間配水渠道與橫向配水渠道相連接。在兩側橫向配水渠道上設進水口,每組曝氣池共有5個進水口。
6. 曝氣系統的設計與計算(本設計採用鼓風曝氣系統)
1) 平均時需氧量的計算
由公式: 取 , , 代入各值,得:
2) 最大時需氧量的計算
查表得K=1.4,代入各值,得:
3) 每日去除的BOD5值
4) 去除每千克BOD的需氧量
5) 最大時需氧量與平均時需氧量之比
7. 供氣量的計算
採用網狀膜型中微孔空氣擴散器,敷設於距池底0.2m處,淹沒水深3.8m,
計算污水溫度為30°C,
查表得水中溶解氧飽和度:
1) 空氣擴散器出口處的絕對壓力 按下式計算,即:
2) 空氣離開曝氣池面時,氧的百分比按下式計算,即:
式中EA是空氣擴散器的氧轉移效率,對網狀膜型中微孔空氣擴散器,取值12%。
3) 曝氣池混合液中平均氧飽和度(按最不利的溫度30°C考慮)按下式計算,即:
4) 換算為在20°C條件下,脫氧清水的充氧量,按下式計算,即:
取值α=0.82,β=0.95,C=2.0,ρ=1.0
代入各值,得:
相應的最大時需氧量為:
5) 曝氣池平均時供氣量,按下式計算,即:
6) 曝氣池最大時供氣量:
7) 去除每kgBOD5的供氣量:
8) 每立方米污水的供氣量:
9) 本系統的空氣總量:除採用鼓風曝氣外,本系統還採用空氣在迴流污泥井提升污泥,空氣量按迴流污泥量的6倍考慮,污泥迴流比R取值60%,這樣,提升迴流污泥所需空氣量為:
總需氣量:36525+32000=68525
8. 空氣管系統計算
在相鄰的2個廊道的隔牆上設1根干管,共10根干管。每根干管上設5對配氣豎管,每根干管上共10條配氣豎管。全曝氣池共設100條配氣豎管。每根豎管的供氣量為: ,曝氣池的平面面積為:66.6×4.5×5×4=5994㎡。每個空氣擴散器的服務面積按0.49㎡計,則所需空氣擴散器的總數為: ,為安全計,本設計採用12300個空氣擴散器,每個豎管上安設的空氣擴散器的數目為: 個,每個空氣擴散器的配氣量為: 。
空氣管道系統的總壓力損失估算為:3kPa。網狀膜空氣擴散器的壓力損失為5.88kPa,總壓力損失為:5.88+3=8.88kPa。為安全計,設計取值10kPa。
9. 空壓機的選定
空氣擴散裝置安曝氣池池底0.2m處,因此,空壓機所需壓力為:P=(4-0.2+1)×9.8=47kPa
空壓機供氣量,最大時:36525+32000=68525
平均時:30186+32000=62186
根據所需壓力及空氣量,決定採用LG80型空壓機15台,該型空壓機風壓50kPa,風量80 。正常條件下,13台工作,2台備用;高負荷時14台工作,1台備用。
第五節 二 沉 池
二沉池的池型是中心進水周邊出水的輻流式沉澱池,其剖面圖如下:
一、 參數的確定:
表面水力負荷q=1.2m3/(㎡•h),
二沉池個數n=4,
水力停留時間T=2.5h
二、 主要尺寸計算:
1. 池總表面積
2. 單池面積:
3. 池直徑:
4. 沉澱部分有效水深
5. 沉澱部分有效容積: V=
6. 沉澱池底坡落差: 取池底底坡 i=0.05,則:
7. 沉澱池周邊水深(有效)水深:
,滿足規范要求6—12之間,
式中 為緩沖層高度,取0.5m;
為刮泥板高度,取0.5m
8. 沉澱池總高度: ,
式中 為沉澱池超高,取0.3m
為沉澱池中心斗高度,取1.73m。
三、 每池產生的污泥量
估計經過曝氣池後污泥的SS去除率能達到80%,採用機械刮泥,所以污泥在斗內貯存時間約2h,並考慮到曝池迴流比取最大值80%,則:
四、 貯泥斗貯泥量計算
泥斗容積用幾何公式計算:
,
式中泥斗高
故
池底可貯存污泥的體積為:
共可貯存污泥的體積
>57.6 ,合要求。
五、 中心進水管的計算
單池設計流量: ,
中心進水管設計流量:
,
選用管徑 ,
六、 進出水配水設施
進水採用進水管,進水豎井,穩流筒等設施;出水採用環形集水槽,以及出水溢流三角堰。
第六節 污泥處理
一、污泥處理工藝
典型的污泥處理工藝流程包括四個階段。第一階段為污泥濃縮,主要目的是使污泥初步減容,縮小後續處理構築物的容積或設備容量,第二階段為污泥消化,使污泥中的有機物分解,使污泥趨於穩定;第三階段為污泥脫水,使污泥進一步減容,便於運輸;第四階段為污泥處置,採用某種適宜的途徑,將最終的污泥予以消化處置。以上各階段產生上清液或濾液其中含有大量的污泥物質,因而應送回污水處理系統中繼續處理。
以上是典型的污泥址理工藝流程。但由於各地的條件不同,也可採用一些簡化流程。
當污泥果用自然干化法脫水時,可果用以下工藝流程
二、污泥濃縮池
污泥濃縮主要有重力濃縮,氣浮濃縮和離心濃縮三種工藝形式。國內目前以重力濃縮為主,但隨著氧化溝、A2/0 等污在處理新工藝的不斷增多,氣浮濃縮和離心濃縮將會有較大的發展。在此選用重力濃縮。
1. 設計參數:
二沉池剩餘污泥量:691.2m3/d
含水率99.2%,濃度7875mg/l
濃縮後含水率96%濃度3937mg/l
二座濃縮池固體通量Nwg=55Kg
2. 設計計算:
(1) 每座濃縮池面積
設計泥量Qw=
A=
(2) 濃縮池直徑
D= =
(3) 濃縮池工作部分高度
取污泥濃縮時間T=14h。則濃縮池工作部分高度
h1= =
(4) 濃縮池高度
設池超高0.5m。緩沖層高0.3m
濃縮池總高:
H=h1+h2+h3=2.3+0.5+0.3=3.1m
(5) 濃縮後污泥總體積:
V2=
第四章 污水廠總體布置
一、廠址選擇
在城鎮總體規劃中,污水廠的位置范圍已有規定。但是,在污水廠的具體設計時,對具體廠址的選擇,仍須進行深入的調查研究和詳盡的技術經濟比較。其一般原則如下:
(1)廠址與規劃居住區或公共建築群的衛生防護距離應根據當地具體情況,與有關環保部門協商確定,一般不小於300m 。
(2) 廠址應在城鎮集中供在水源的下游,至少500m。
(3) 廠址應盡可能少佔農田或不佔良田.便於農田灌溉和消納污泥。
(4) 廠址應盡可能設在城鎮和工廠夏季主導風向的下方。
(5) 廠址應設在地形有適當坡度的城鎮下游地區,使污水有自流的可能,以節約動力消耗。
二、平面布置及總平面圖
污水處理廠的平面布置包括處理構築物、辦公、化驗且其他輔助建築物,以及各種管道、道路、綠化等的布置。根據處理廠的規模大小,採用l:200-1:50比例尺的地形圖繪制總平面圖,管道布置可單獨繪制。
平面布置的一般原則如下:
(1)處理構築物的布置應緊湊,節約用地且便於管理。
(2) 處理構築物應盡可能地按流程的順序布置,以避免管線迂迴,同時應充分利用地型,以減少士方量。
(3) 經常有人工作的建築物如辦公、化驗等用房應布置在夏季主風向的上風一方,在北方地區,並應考慮朝陽。
(4 )在布置總圖時,應考慮安裝充分的綠化地帶。
(5) 總圖布置應考慮遠近期結合,有條件時,可按遠景規劃水量布置,將處理構築物分為若干係列,分期建設。遠景設施的安排應在設計中仔細考慮,除了滿足遠景處理能力的需要而增加的處理池以外,還應為改進出水水質的設施安排場址。
(6) 構築物之間的距離應考慮敷設管渠的位置,運轉管理的需要和施工的要求,一般採用5-10m.
(7) 污泥處理構築物應恩可能布置成單獨的組合,以策安全,並方便管理。污泥消化池應距初次沉澱池較近,以縮短污泥管線,但消化池與其他構築物之間的距離不應小於20m。貯氣罐與其他構築物的間距則應根據容量大小按有關規定辦理。
1、水廠面積為380m*280m,
平面圖採用1:1000比例。所有構築物應在廠區的范圍內。
三、高程布置
在整個污水處理過程中,應盡可能使污水和污泥為重力流,但在多數情況下,往往須抽升。高程布置的一般規定如下:
(1)為了保證污水在各構築物之間能順利自流,必須精確計算各構築物之間的水頭損失,包括沿程損失、局部損失及構築物本身的水頭損失。此外,還應考慮污水廠擴建時預留的儲備水頭。
(2) 進行水力計算時,應選擇距離最長,損失最大的流程,井按最大設計流量計算。當有二個以上並聯運行的構築物時,應考慮某構築物發生故障時,其餘構築物須負擔全部流量的情況。計算時還須考慮管內淤積,阻力增大的可能。因此,必須固有充分的餘地,以防止水頭不夠而發生涌水現象。
(3) 污水廠的出水管渠高程,須不受水體洪水頂托,並能自由進行農田灌溉。
(4)各處理構築物的水頭損失(包括進出水渠的水頭損失) .