導航:首頁 > 污水知識 > 氧化還原處理電鍍廢水工程實例

氧化還原處理電鍍廢水工程實例

發布時間:2022-12-16 07:41:56

① 電鍍廠污水處理

關於電鍍廢水處理的方法及新工藝研究
內容: 前言

電鍍是利用化學和電化學方法在金屬或在其它材料表面鍍上各種金屬。電鍍技術廣泛應用於機器製造、輕工、電子等行業。

電鍍廢水的成分非常復雜,除含氰(CN-)廢水和酸鹼廢水外,重金屬廢水是電鍍業潛在危害性極大的廢水類別。根據重金屬廢水中所含重金屬元素進行分類,一般可以分為含鉻(Cr)廢水、含鎳(Ni)廢水、含鎘(Cd)廢水、含銅(Cu)廢水、含鋅(Zn)廢水、含金(Au)廢水、含銀(Ag)廢水等。電鍍廢水的治理在國內外普遍受到重視,研製出多種治理技術,通過將有毒治理為無毒、有害轉化為無害、回收貴重金屬、水循環使用等措施消除和減少重金屬的排放量。隨著電鍍工業的快速發展和環保要求的日益提高,目前,電鍍廢水治理已開始進入清潔生產工藝、總量控制和循環經濟整合階段,資源回收利用和閉路循環是發展的主流方向。

1、電鍍重金屬廢水治理技術的現狀

針對我國家目前電鍍行業廢水的處理現狀的統計和調查,廣泛採用的主要有7不同分類的方法:(1)化學沉澱法,又分為中和沉澱法和硫化物沉澱法。(2)氧化還原處理,分為化學還原法、鐵氧體法和電解法。(3)溶劑萃取分離法。(4)吸附法。(5)膜分離技術。(6)離子交換法。(7)生物處理技術,包括生物絮凝法、生物吸附法、生物化學法、植物修復法。但目前都存在一定的弊端或嚴重的不合理性。

2、傳統電鍍廢水處理方法的弊端

目前電鍍廢水的處理方法一般採用物化法之分流—綜合兩段處理。前段處理多分三支水:鉻水、氰水和綜合水(銅鎳鋅水)。鉻水用還原劑使之變價還原,氰水用兩級氧化破氰,銅鎳鋅水直接與前兩股水匯合而成為綜合水。後段處理綜合水,基本上是用鹼(燒鹼或石灰)、聚合氯化鋁(PAC)和有機絮凝劑(PAM),具體操作是:把綜合水的pH值提到10~13,鹼濃度大而迫使鹼與重金屬的反應向生成氫氧化物的方向進行。由於pH>9,排放口又得用酸中和使pH值降到9以下。

上述乃傳統的處理工藝,存在許多嚴重的理論與實踐上的錯誤:

1、前處理三支污水的劃分,不符合生產實際,因為不論那支水中都是你中有我、我中有你,只不過是鉻水以鉻為主、氰水以氰為主、銅鎳鋅三合水以3元素居多。這些實際情況,我們是在廢水處理的實踐中發現的,幾乎所有企業的電鍍廢水都是如此。我們詢問過電鍍廠的有關人員,其實他們能把這一現象的成因說得非常清楚,奇怪的是污水管理部門竟把分流—綜合兩段處理作為不能違反的規范性模式。由於第二段處理的污水中各種污染物都存在,怎麼可能用簡單的處理葯劑和方法就可使終端水達標排放呢?

2、許多專門論述中都會提到,氰水要分開處理是因為氰在酸液中會生成毒性極強的HCN(氰酸),它的揮發勢必造成人的中毒。這在理論上是成立的,確實要十分注意。不過,我們發現多數氰水本身就是pH<6的液體,如果要揮發就可能在車間,而不會流到污水池再揮發。再說氰酸本身是液體,只不過是揮發溫度低(26℃),那麼外界溫度<26℃時就不存在揮發問題了。

3、人工強制以超鹼使重金屬生成氫氧化物沉澱在污泥中,這有不科學之處:

(1)從化學反應原理上說,勿論在什麼樣的酸鹼度條件下,都有個反應平衡,也就是說永遠都不可達到水中不存在一定數量的重金屬。

(2)不同的重金屬形成氫氧化物的最佳酸鹼度(pH值)不盡相同,對某種重金屬最適合的pH值范圍,對另一些金屬可能已是重新溶解的pH值條件。

(3)由於二段處理是超鹼除重金,最後的排放水也必然超鹼,這就勢必要在排放口向水中加酸,以求pH值達到排放標准。加酸的結果,那些尚未沉澱的微細的氫氧化物迅速發生分解,重金屬又回到水中。

(4)由於分流—匯合兩道污水處理,工程裝置自然就比較復雜,從而造成工程建設投資大、時長。

3、CZB礦物法處理電鍍廢水

3.1CZB礦物法的概念

CZB礦物法是採用以純天然礦物為原料,經過一定特殊工藝該性加工生產而成的專利產NMSTA天然礦物污水治理和礦粉BC,在再輔加某些助劑對電鍍廢水進行混合處理的一種方法。

3.2CZB礦物法的主要作用機理

由於該方法主要採用的是純天然的礦物為主體原料,其所具有的特性有離子交換性、吸附性、化學轉化性、催化性等。

3.3CZB礦物法的主要優勢

該方法的主要優勢如下:

1、徹底改變長期以來分流處理的傳統工藝,把鉻水、氰水、綜合水等混合起來進行處理,糾正了分流處理所存在的某些嚴重錯誤,彌補了傳統工藝所存在的弊端。

2、經一段處理即可完全解決問題,改變了傳統的兩段處理模式。

3、由於上述兩點,污水處理的工程裝置大大簡化,基建投資和工程建設時間大幅度減少。

4、傳統的處理方法,從理論上分析是不可能達標的,大量的實踐也證明了該工藝的確不能達到排放標准。若用礦物法處理電鍍廢水,從原理和實用上都表明了可以穩定地達標排放。

5、傳統工藝處理電鍍廢水的葯劑費用,主要被用於燒鹼中和酸水,一般情況處理一噸污水燒鹼費就要6~10元,加上其他葯劑,總葯劑費多在10元以上。誠然,如果只求把廢水澄清,那費用就很難有個標准了。應用礦物法,前提是達標排放。處理一噸廢水葯劑費大約4~6元.

4、結論

經過長時間來的研究和實踐,以及對理論上的探討,結合目前的實際,我們在對各種工藝進行完全的比較(包括葯劑的性價比、工程建設的投資、運營及管理等)之後,認為採用CZB礦物法處理電鍍可以保證出水的水質達到國家一級排放標准。

該工藝目前已在多家電鍍廠實施和穩定運行,還在研究和不斷的完善之中。

② 電鍍廢水怎麼處理

電鍍生產排出的廢水或廢液的處理。電鍍工廠排出的廢水和廢液中含有大量金屬離子如:鉻、鎬、鎳,含氰,含酸,含鹼,一般常含有有機添加劑。金屬離子有的以簡單的陽離子形式存在,有的則以酸根陰離於形式存在,有的以復雜的絡合離子存在。電鍍廢水處理常用中和沉澱法、中和混凝沉澱法、氧化法、還原法、鋇鹽法、鐵氧體法等化學方法。化學法設備簡單,投資少,應用較廣,但常留下污泥需要進一步處理。

③ 電鍍廢水常用的處理方法

電鍍廢水常用的方法有哪些?

電解:高能耗、高能耗、高鐵耗,高專濃度含鉻廢水產生的污泥屬過多,不宜採用。同時,含氰廢水處理不理想,應採用化學法處理含氰廢水。

化學試劑+氣浮法:採用化學試劑氧化還原中和氣浮分離污泥與水。由於電鍍污泥比例大,廢水中含有多種有機添加劑,氣浮在實際應用中不徹底,運行管理不便。到90年代末,氣浮法的應用越來越少。

化學品+沉澱:該方法是第一種採用,經過30多年的實際使用比較,採用不同的處理工藝。目前,已恢復到很早、有效的工藝技術中來。這種方法在國外電鍍處理中應用較多。但是,經過長時間的固液分離,沉澱池中的污泥會發生翻身,出水很難保證標準的穩定性。

生物處理工藝:水量少、單一鍍種的操作效果高,許多大型項目的使用非常不穩定,因為水質和水量難以恆定,微生物難以適應水溫、物種、重金屬離子濃度的變化。而pH值,大量微生物瞬間死亡,發生環境污染事故,細菌培養不容易。

膜分離法:是利用高分子所具有的選擇性來進行物質分離的技術,包括電滲析、反滲透、膜萃取、超過濾等。用電滲析法處理電鍍產業廢水,處理後廢水組成不變,有利於回收使用。

④ 關於電鍍含鎳廢水處理

電鍍廢水的處理與回用對節約水資源以及保護環境起著至關重要的作用。本文綜述了各種電鍍廢水處理技術的優缺點,以及一些新材料在電鍍廢水處理上的應用。
01 化學沉澱法
化學沉澱法是通過向廢水中投入葯劑,使溶解態的重金屬轉化成不溶於水的化合物沉澱,再將其從水中分離出來,從而達到去除重金屬的目的。
化學沉澱法因為操作簡單,技術成熟,成本低,可以同時去除廢水中的多種重金屬等優點,在電鍍廢水處理中得到廣泛應用。
1.鹼性沉澱法
鹼性沉澱法是向廢水中投加NaOH、石灰、碳酸鈉等鹼性物質,使重金屬形成溶解度較小的氫氧化物或碳酸鹽沉澱而被去除。該法具有成本低、操作簡單等優點,目前被廣泛使用。
但是鹼性沉澱法的污泥產量大,會產生二次污染,而且出水pH偏高,需要回調pH。NaOH由於產生污泥量相對較少且易回收利用,在工程上得到廣泛應用。
2.硫化物沉澱法
硫化物沉澱法是通過投加硫化物(如Na2S、NariS等)使廢水中的重金屬形成溶度積比氫氧化物更小的沉澱,出水pH在7~9,無需回調pH即可排放。
但是硫化物沉澱顆粒細小,需要添加絮凝劑輔助沉澱,使處理費用增大。硫化物在酸性溶液中還會產生有毒的HS氣體,實際操作起來存在局限性。
3.鐵氧體法
鐵氧體法是根據生產鐵氧體的原理發展起來的,令廢水中的各種重金屬離子形成鐵氧體晶體一起沉澱析出,從而凈化廢水。該法主要是通過向廢水中投加硫酸亞鐵,經過還原、沉澱絮凝,最終生成鐵氧體,因其設備簡單、成本低、沉降快、處理效果好等特點而被廣泛應用。
pH和硫酸亞鐵投加量對鐵氧體法去除重金屬離子的影響,確定鎳、鋅、銅離子的最佳絮凝pH分別為8.00~9.80、8.00~10.50和10.00,投加的亞鐵離子與它們摩爾比均為2~8,而六價鉻的最佳還原pH為4.00~5.50,最佳絮凝pH則為8.00~10.50,最佳投料比為20。出水的鎳含量小於0.5mg/L,總鉻含量小於1.0mg/L,鋅含量小於1.0mg/L,銅含量小於0.5mg/L,達到《電鍍污染物排放標准》(GB21900—2008)中「表2」的要求。
化學沉澱法的局限性
隨著污水排放標準的提高,傳統單一的化學沉澱法很難經濟有效地處理電鍍廢水,常常與其他工藝組合使用。
採用鐵氧體-CARBONITE(一種具有物理吸附與離子交換功能的材料)聯合工藝處理Ni含量約為4000mg/L的高濃度含鎳電鍍廢水:先以鐵氧體法控制pH為11.0,在Fe/Fe。摩爾比O.55,FeSO4·7H2O/Ni質量比21,反應溫度35℃的條件下攪拌反應15min,出水Ni平均濃度從4212.5mg/L降至6.8mg/L,去除率達99.84%;然後採用CARBONITE處理,在CARBONITE投加量1.5g/L,pH=6.5,溫度35℃的條件下反應6h,Ni去除率可達96.48%,出水Ni濃度為0.24mg/L,達到GB21900-2008中的「表2」標准。
採用高級Fenton一化學沉澱法處理含螯合重金屬的廢水,使用零價鐵和過氧化氫降解螯合物,然後加鹼沉澱重金屬離子,不僅可以去除鎳離子(去除率最高達98.4%),而且可以降低COD化學需氧量。
02 氧化還原法
1.化學氧化法
化學氧化法在處理含氰電鍍廢水上的效果尤為明顯。該方法把廢水中的氰根離子(CN一)氧化成氰酸鹽(CNO-),再將氰酸鹽(CNO-)氧化成二氧化碳和氮氣,可以徹底解決氰化物污染問題。
常用的氧化劑包括氯系氧化劑、氧氣、臭氧、過氧化氫等,其中鹼性氯化法應用最廣。採用Fenton法處理初始總氰濃度為2.0mg/L的低濃度含氰電鍍廢水,在反應初始pH為3.5,H202/FeSO4摩爾比為3.5:1,H202投加量5.0g/L,反應時間60min的最佳條件下,氰化物的去除率可達93%,總氰濃度可降至0_3mg/L。
2.化學還原法
化學還原法在電鍍廢水處理中主要針對含六價鉻廢水。該方法是在廢水中加入還原劑(如FeSO、NaHSO3、Na2SO3、SO2、鐵粉等)把六價鉻還原為三價鉻,再加入石灰或氫氧化鈉進行沉澱分離。上述鐵氧體法也可歸為化學還原法。
該方法的主要優點是技術成熟,操作簡單,處理量大,投資少,在工程應用中有良好的效果,但是污泥量大,會產生二次污染。採用硫酸亞鐵作為還原劑,處理80t/d的含總鉻7O~80mg/L的電鍍廢水,出水總鉻小於1.5mg/L,處理費用為3.1元/t,具有很高的經濟效益。
以焦亞硫酸鈉為還原劑處理含80mg/L六價鉻、pH為6~7的電鍍廢水,出水六價鉻濃度小於0.2mg/L。
03 電化學法
電化學法是指在電流的作用下,廢水中的重金屬離子和有機污染物經過氧化還原、分解、沉澱、氣浮等一系列反應而得到去除。
該方法的主要優點是去除速率快,可以完全打斷配合態金屬鏈接,易於回收利用重金屬,佔地面積小,污泥量少,但是其極板消耗快,耗電量大,對低濃度電鍍廢水的去除效果不佳,只適合中小規模的電鍍廢水處理。
電化學法主要有電凝聚法、磁電解法、內電解法等。
電凝聚法是通過鐵板或者鋁板作為陽極,電解時產生Fe2+、Fe或Al,隨著電解的進行,溶液鹼性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通過絮凝沉澱去除污染物。
由於傳統的電凝聚法經過長時間的操作,會使電極板發生鈍化,近年來高壓脈沖電凝聚法逐漸替代傳統的電混凝法,它不僅克服了極板鈍化的問題,而且電流效率提高20%~30%,電解時間縮短30%~40%,節省電能30%~40%,污泥產生量少,對重金屬的去除率可達96%~99%。
採用高壓脈沖電絮凝技術處理某電鍍廠的電鍍廢水,Cu2十、Ni2、CN一和COD的去除率分別達到99.80%、99.70%、99.68%和67.45%。
電混凝法通常也與其他方法結合使用,利用電凝聚法和臭氧氧化法聯合處理電鍍廢水,以鐵和鋁做極板,出水六價鉻、鐵、鎳、銅、鋅、鉛、TOC(總有機碳)、COD的去除率分別為99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年來內電解法受到廣泛關注。內電解法利用了原電池原理,一般向廢水中投加鐵粉和炭粒,以廢水作為電解質媒介,通過氧化還原、置換、絮凝、吸附、共沉澱等多種反應的綜合作用,可以一次性去除多種重金屬離子。
該方法不需要電能,處理成本低,污泥量少。通過靜態試驗研究了鐵碳微電解法對模擬電鍍廢水的COD及銅離子的去除效果,去除率分別達到了59.01%和95.49%。然而,採用微電解反應柱研究連續流的運行結果顯示,14d後微電解出水的COD去除率僅為10%~15%,銅的去除率降低至45%~50%之間,可見需要定期更換填料或對填料進行再生。
04 膜分離技術
膜分離技術主要包括微濾(MF)、超濾(UF)、納濾(NF)、反滲透(RO)、電滲析(ED)、液膜(Lv)等,利用膜的選擇透過性來對污染物進行分離去除。
該方法去除效果好,可實現重金屬回收利用和出水回用,佔地面積小,無二次污染,是一種很有發展前景的技術,但是膜的造價高,易受污染。
對膜技術在電鍍廢水處理中的應用和效果進行了分析,結果表明:結合常規廢水處理工藝與膜生物反應器(MBR)組合工藝,電鍍廢水被處理後的水質達到排放標准;電鍍綜合廢水經UF凈化、RO和NF兩段脫鹽膜的集成工藝處理後,水質達到回用水標准,RO和NF產水的電導率分別低於100gS/cm和1000gS/cm,COD分別約為5mg/L和10mg/L;鍍鎳漂洗廢水通過RO膜後,鎳的濃縮高達25倍以上,實現了鎳的回收,RO產水水質達到回用標准。
投資與運行費用分析表明:工程運行1年多即可收回RO濃縮鎳的設備費用。
液膜法並不是採用傳統的固相膜,而是懸浮於液體中很薄的一層乳液顆粒,是一種類似溶劑萃取的新型分離技術,包括制膜、分離、凈化及破乳過程。
美籍華人黎念之(NormanN.Li)博士發明了乳狀液膜分離技術,該技術同時具有萃取和滲透的優點,把萃取和反萃取兩個步驟結合在一起。乳化液膜法還具有傳質效率高、選擇性好、二次污染小、節約能源和基建投資少的特點,對電鍍廢水中重金屬的處理及回收利用有著良好的效果。
05 離子交換法
離子交換法是利用離子交換劑對廢水中的有害物質進行交換分離,常用的離子交換劑有腐殖酸物質、沸石、離子交換樹脂、離子交換纖維等。離子交換的運行操作包括交換、反洗、再生、清洗四個步驟。
此方法具有操作簡單、可回收利用重金屬、二次污染小等特點,但離子交換劑成本高,再生劑耗量大。
研究強酸性離子交換樹脂對含鎳廢水的處理工藝條件及鎳回收方法。結果表明:pH為6~7有利於強酸性陽離子交換樹脂對鎳離子的去除。離子交換除鎳的適宜溫度為30℃,適宜流速為15BV/h(即每小時l5倍樹脂床體積)。適宜的脫附劑為10%鹽酸,脫附液流速為2BV/h。前4.6BV脫附液可回用於配製電鍍槽液,平均鎳離子質量濃度達18.8g/L。
Mei.1ingKong等研究了CHS—l樹脂對cr(VI)的吸附能力,發現Cr(VI)在低濃度時,樹脂的交換吸附率是由液膜擴散和化學反應控制的。CHS一1樹脂對Cr(VI)的最佳吸附pH為2~3,在298K下其飽和吸附能力為347.22mg/g。CHS一1樹脂可以用5%的氫氧化鈉溶液和5%氯化鈉溶液來洗脫,再生後吸附能力沒有明顯的下降。
使用鈦酸酯偶聯劑將1一Fe203與丙烯酸甲酯共聚,在鹼性條件下進行水解,制備出磁性弱酸陽離子交換樹脂NDMC一1。
通過對重金屬Cu的吸附研究發現,NDMC—l樹脂粒徑較小、外表面積大,因而具有較快的動力學性能。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。
06 蒸發濃縮法
蒸發濃縮法是通過加熱對電鍍廢水進行蒸發,使液體濃縮達到回用的效果。一般適用於處理含鉻、銅、銀、鎳等重金屬濃度高的廢水,用其處理濃度低的重金屬廢水時耗能大,不經濟。
在處理電鍍廢水中,蒸發濃縮法常常與其他方法一起使用,可實現閉路循環,效果不錯,比如常壓蒸發器與逆流漂洗系統聯合使用。蒸發濃縮法操作簡單,技術成熟,可實現循環利用,但是濃縮後的干固體處置費用大,制約了它的應用,目前一般只作為輔助處理手段。
07 生物處理技術
生物處理法是利用微生物或者植物對污染物進行凈化,該方法運行成本低,污泥量少,無二次污染,對於水量大的低濃度電鍍廢水來說是不二之選。生物法主要包括生物絮凝法、生物吸附法、生物化學法和植物修復法。
1.生物絮凝法
生物絮凝法是一種利用微生物或微生物產生的代謝物進行絮凝沉澱來凈化水質的方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外、具有絮凝活性的代謝物,能使水中膠體懸浮物相互凝聚、沉澱。
生物絮凝劑與無機絮凝劑和合成有機絮凝劑相比,具有處理廢水安全無毒、絮凝效果好、不產生二次污染等優點,但其存在活體生物絮凝劑不易保存,生產成本高等問題,限制了它的實際應用。目前大部分生物絮凝劑還處在探索研究階段。
生物絮凝劑可以分為以下三類:
(1) 直接利用微生物細胞作為絮凝劑,如一些細菌、放線菌、真菌、酵母等。
(2) 利用微生物細胞壁提取物作為絮凝劑。微生物產生的絮凝物質為糖蛋白、黏多糖、蛋白質等高分子物質,如酵母細胞壁的葡聚糖、Ⅳ-乙醯葡萄糖胺、絲狀真菌細胞壁多糖等都可作為良好的生物絮凝劑。
(3) 利用微生物細胞代謝產物的絮凝劑。代謝產物主要有多糖、蛋白質、脂類及其復合物等。
近年來報道的生物絮凝劑主要為多糖類和蛋白質類,前者有ZS一7、ZL—P、H12、DP。152等,後者有MBF—W6、NOC—l等。陶穎等]利用假單胞菌Gx4—1胞外高聚物製得的絮凝劑對cr(Ⅳ)進行了絮凝吸附研究。
其研究結果表明,在適宜條件下Or(Ⅳ)的去除率可達51%。研究枯草芽孢桿菌NX一2制備的生物絮凝劑v一聚谷氨酸(T-PGA)對電鍍廢水的處理效果,實驗證明,T-PGA能有效地去除Cr3+、Ni等重金屬離子。
2.生物吸附法
生物吸附法是利用生物體自身的化學結構或成分特性來吸附水中的重金屬,然後通過固液分離,從水中分離出重金屬。
可以從溶液中分離出重金屬的生物體及其衍生物都叫做生物吸附劑。生物吸附劑主要有生物質、細菌、酵母、黴菌、藻類等。該方法成本低,吸附和解析速率快,易於回收重金屬,具有選擇性,前景廣闊。
研究各種因素對枯草芽胞桿菌吸附電鍍廢水中Cd效果的影響,結果表明:pH為8、吸附劑用量為10g/L(濕重)、攪拌轉數為800r/min、吸附時間為10min的條件下,廢水中鎘的去除率達93%以上。
吸附鎘後的枯草芽胞桿菌細胞膨大,色澤變亮,細胞之間相互粘連。Cd2+與細胞表面的鈉進行了離子交換吸附。
殼聚糖是一種鹼性天然高分子多糖,由海洋生物中甲殼動物提取的甲殼素經過脫乙醯基處理而得到,可以有效地去除電鍍廢水中的重金屬離子。
通過乳化交聯法制備了磁性二氧化硅納米顆粒組成的殼聚糖微球,然後用乙二胺和縮水甘油基三甲基氯化反應的季銨基團改性,所得生物吸附劑具有很高的耐酸性和磁響應。
用它來去除酸性廢水中的cr(VI),在pH為2.5、溫度為25℃的條件下,最大吸附能力為233.1mg/g,平衡時間為40~120min[取決於初始Cr(VI)的濃度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液進行吸附劑再生,解吸率達到95.6%,因此該生物吸附劑具有很高的重復使用性。
3.生物化學法
生物化學法是指微生物直接與廢水中的重金屬進行化學反應,使重金屬離子轉化為不溶性的物質而被去除。
從電鍍廢水中篩選分離出3株可以高效降解自由氰根的菌種,在最佳條件下可以將80mg/L的CN一去除到0.22mg/L。研究發現,有許多可以將cr(VI)還原成低毒cr(III)的微生物,如無色桿菌、土壤細菌、芽孢桿菌、脫硫弧菌、腸桿菌、微球菌、硫桿菌、假單胞菌等,其中除了大腸桿菌、芽孢桿菌、硫桿菌、假單胞菌等可以在好氧條件下還原Cr(VI),其餘大部分菌種只能在厭氧條件下還原cr(VI)。
R.S.Laxman等發現灰色鏈黴菌能在24~48h內把cr(VI)還原成cr(III),並能夠將cr(III)顯著地吸收去除。中科院成都生物研究所的李福、吳乾菁等從電鍍污泥、廢水及下水道鐵管內分離篩選出35株菌種,並獲得了SR系列復合功能菌,該功能菌具有高效去除Cr(VI)和其他重金屬的功效,並在此基礎上進行了工程應用,取得較好的效果。
4.植物修復法
植物修復法是利用植物的吸收、沉澱、富集等作用來處理電鍍廢水中的重金屬和有機物,達到治理污水、修復生態的目的。
該方法對環境的擾動較少,有利於環境的改善,而且處理成本低。人工濕地在這方面起著重要的作用,是一種發展前景廣闊的處理方法。
李氏禾是一種可富集金屬的水生植物,在去除水中重金屬方面具有很大的潛力。在人工濕地種植了李氏禾,用以處理含鉻、銅、鎳的電鍍廢水,使它們的含量分別降低了84.4%、97.1%和94_3%。當水力負荷小於0.3m/(m2·d1時,出水中的重金屬濃度符合電鍍污染物排放標準的要求;當進水鉻、銅和鎳的濃度為5、10和8mg/L時,仍能達標排放。
可見用李氏禾處理中低濃度的電鍍廢水是可行的。質量平衡表明,鉻、銅和鎳大部分保留在人工濕地系統的沉積物中。
08 吸附法
吸附法是利用比表面積大的多孔性材料來吸附電鍍廢水中的重金屬和有機污染物,從而達到污水處理的效果。
活性炭是使用最早、最廣的吸附劑,可以吸附多種重金屬,吸附容量大,但是活性炭價格昂貴,使用壽命短,需要再生且再生費用不低。一些天然廉價材料,如沸石、橄欖石、高嶺土、硅藻土等,也具有較好的吸附能力,但由於各種原因,幾乎沒有得到工程應用。
以沸石作為吸附劑處理電鍍廢水,發現在靜態條件下,沸石對鎳、銅和鋅的吸附容量分別達到5.9、4.8和2.7mg/g.先以磁性生物炭去除電鍍廢水中的Cr(vI),
然後通過外部磁場分離,使得cr(VI)的去除率達到97.11%。而在10rain的磁選後,濁度由4075NTU降至21.8NTU。其研究還證實了吸附過程後,磁性生物炭仍保留原來的磁分離性能。近年來又研製開發了一些新型吸附材料,如文中提到的生物吸附劑以及納米材料吸附劑。
納米技術是指在1~100nm尺度上研究和應用原子、分子現象,由此發展起來的多學科交叉、基礎研究與應用緊密聯系的科學技術。納米顆粒由於具有常規顆粒所不具備的納米效應,因而具有更高的催化活性。
納米材料的表面效應使其具有高的表面活性、高表面能和高的比表面積,所以納米材料在制備高性能吸附劑方面表現出巨大的潛力。雷立等l採用溫和水熱法一步快速合成了鈦酸鹽納米管(TNTs),並應用於對水中重金屬離子Pb(II)、cd(II)和Cr(III)的吸附。
結果表明:pH=5時,初始濃度分別為200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分別為513.04、212.46和66.35mg/L,吸附性能優於傳統吸附材料。納米技術作為一種高效、節能環保的新型處理技術,得到人們的廣泛認同,具有很大的發展潛力。
09 光催化技術
光催化處理技術具有選擇性小、處理效率高、降解產物徹底、無二次污染等特點。
光催化的核心是光催化劑,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化學穩定性好、無毒、兼具氧化和還原作用等諸多特點。TiO:在受到一定能量的光照時會發生電子躍遷,產生電子一空穴對。
光生電子可以直接還原電鍍廢水中的金屬離子,而空穴能將水分子氧化成具有強氧化性的OH自由基,從而把很多難降解的有機物氧化成為COz、H:0等無機物,被認為是最有前途、最有效的水處理方法之一。
以懸浮態的TiO2為催化劑,在紫外光的作用下對絡合銅廢水進行光催化反應。結果表明:當TiO2投加量為2g/L,廢水pH=4時,在300W高壓汞燈照射下,載入60mL/min的空氣反應40rain,對120mg/LEDTA絡合銅廢水中Cu(II)與COD的去除率分別達到96.56%和57.67%。實施了「物化一光催化一膜」處理電鍍廢水的工程實例,出水COD去除率達到70%以上,同時TiO2光催化劑可重復使用。
膜法的引入可大大提高水質,使處理後水質達到中水回用標准,提高了電鍍廢水的資源化利用率,回用率達到85%以上,大大節約了成本。然而光催化技術在實際應用中受到了很多的限制,如重金屬離子在光催化劑表面的吸附率低,催化劑的載體不成熟,遇到色度大的廢水時處理效果大幅下降,等等。不過光催化技術作為高效、節能、清潔的處理技術,將會有很大的應用前景。
10 重金屬捕集劑
重金屬捕集劑又叫重金屬螯合劑,它能與廢水中的絕大部分重金屬離子產生強烈的螯合作用,生成的高分子螯合鹽不溶於水,通過分離就可以去除廢水中的重金屬離子。
重金屬捕集劑處理後的重金屬廢水中剩餘的重金屬離子濃度大部分都能達到國家排放標准。以二硫代氨基甲酸鹽重金屬離子捕集劑XMT探討了不同因素對Cu的捕集效果,對Cu去除率在99%以上,出水Cu濃度小於0.05mg/L,出水遠低於GB21900-2008的「表3」標准。
選取3種市售重金屬捕集劑對實際電鍍廢水中的Cu2+、Zn2+、Ni進行同步深度處理,發現三聚硫氰酸三鈉(簡稱TMT)對Cu的去除效果最為顯著,投加量少且效果穩定,但對Ni的去除效果較差。甲基取代的二硫代氨基甲酸鈉(以Me2DTC表示)的適用性最強,對3種重金屬離子均具有良好的去除效果,可達到GB21900-2008中的「表3」排放標准,且在DH=9.70時處理效果最佳。至於乙基取代的二硫代氨基甲酸鈉(Et2DTC),對Ni的去除效果不佳。
重金屬捕集劑因高效、低能、處理費用相對較低等特點而有很大的實用性。
結語
電鍍廢水成分復雜,應盡量分工段處理。在選擇處理方法時,應充分考慮各種方法的優缺點,加強各種水處理技術的綜合應用,形成組合工藝,揚長避短。
重金屬具有很大的回收價值且毒性大,在電鍍廢水處理過程中應多使用重金屬回收利用的工藝,盡可能地減少排放。
基於化學沉澱法污泥產量大,電化學法能耗高,膜分離技術的膜組件造價高且易受污染等諸多問題,就現有電鍍廢水處理技術而言,應向著節能、高效、無二次污染的方向改進。
同時可與計算機技術相結合,實現智能化控制。還可結合材料學、生物學等學科,開發出更適合處理電鍍廢水的新型材料。

⑤ 電鍍廢水處理方法

我國處理電鍍廢水常用的方法有化學法、生物法、物化法和電化學法等。
化學法
化學法是依靠氧化還原反應或中和沉澱反應將有毒有害的物質分解為無毒無害的物質,或者直接將重金屬經沉澱或氣浮從廢水中除去。
1、沉澱法
(1) 中和沉澱法。在含重金屬的廢水中加入鹼進行中和反應,使重金屬生成不溶於水的氫氧化物沉澱形式加以分離。中和沉澱法操作簡單,是常用的處理廢水方法。
(2) 硫化物沉澱法。加入硫化物使廢水中重金屬離子生成硫化物沉澱而除去的方法。與中和沉澱法相比,硫化物沉澱法的優點是:重金屬硫化物溶解度比其氫氧化物的溶解度更低,反應pH值在7~9之間,處理後的廢水一般不用中和,處理效果更好。但硫化物沉澱法的缺點是:硫化物沉澱顆粒小,易形成膠體,硫化物沉澱在水中殘留,遇酸生成氣體,可能造成二次污染。
(3) 螯合沉澱法。通過高分子重金屬捕集沉澱劑(DTCR)在常溫下與廢水中Hg2+、Cd2+、Cu2+、Pb2+、Mn2+、Ni2+、Zn2+及Cr3+等重金屬離子迅速反應,生成不溶水的螯合鹽,再加入少量有機或(和)無機絮凝劑,形成絮狀沉澱,從而達到捕集去除重金屬的目的。DTCR系列葯劑處理電鍍廢水的特點是可同時去除多種重金屬離子,對重金屬離子以絡合鹽形式存在的情況,也能發揮良好的去除效果,去除膠質重金屬不受共存鹽類的影響,具有較好的發展前景。
2、氧化法
通過投加氧化劑,將電鍍廢水中有毒物質氧化為無毒或低毒物,主要用於處理廢水中的CN-、Fe2+、Mn2+低價態離子及造成色度、昧、嗅的各種有機物以及致病微生物。如處理含氰廢水時,常用次氯酸鹽在鹼性條件下氧化其中的氰離子,使之分解成低毒的氰酸鹽,然後再進一步降解為無毒的二氧化碳和氮。
3、化學還原法
化學還原法在電鍍廢水治理中最典型的是對含鉻廢水的治理。其方法是在廢水中加入還原劑FeS04、NaHS03、Na2S03、S02或鐵粉等,使Cr(Ⅵ)還原成Cr(III),然後再加入NaOH或石灰乳沉澱分離。該法優點是設備簡單、投資少、處理量大,但要防止沉渣污泥造成二次污染。
4、中和法
通過酸鹼中和反應,調節電鍍廢水的酸鹼度,使其呈中性或接近中性或適宜下步處理的酸鹼度范圍,主要用來處理電鍍廠的酸洗廢水。
5、氣浮法
氣浮法作為處理電鍍廢水的技術是近幾年發展起來的一項新工藝。其基本原理是用高壓水泵將水加壓到幾個大氣壓注入溶罐中,使氣、水混合成溶氣水,溶氣水通過溶氣釋放器進入水池中,由於突然減壓,溶解在水中的空氣形成大量微氣泡,與電鍍廢水初步處理產生的凝聚狀物黏附在一起,使其相對密度小於水而浮到水面上成為浮渣排除,從而使廢水得到凈化。
生物法
生物處理是一種處理電鍍廢水的新技術。一些微生物代謝產物能使廢水中的重金屬離子改變價態,同時微生物菌群本身還有較強的生物絮凝、靜電吸附作用,能夠吸附金屬離子,使重金屬經固液分離後進入菌泥餅,從而使得廢水達標排放或回用。
1、生物吸附法
凡具有從溶液中分離金屬能力的物體或生物體制備的衍生物稱為生物吸附劑。生物吸附劑主要是菌體、藻類及一些提取物。微生物對重金屬的吸附機理取決於許多物理、化學因素,如光、溫度、pH值、重金屬含量及化學形態、其他離子、螫合劑的存在和吸附劑的預處理等。生物吸附技術治理重金屬污染具有一定的優勢,在低含量條件下,生物吸附劑可以選擇性地吸附其中的重金屬,受水溶液中鈣、鎂離子的干擾影響較小。該方法處理效率高,無二次污染,可有效地回收一些貴重金屬。但是生物成長環境不容易控制,往往會因水質的變化而大量中毒死亡。
2、生物絮凝法
生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。微生物絮凝劑是由微生物自身產生的、具有高效絮凝作用的天然高分子物質,它的主要成分是糖蛋白、黏多糖、纖維素、蛋白質和核酸等。它具有較高電荷或較強的親水性和疏水性,能與顆粒通過離子鍵、氫鍵和范德華力同時吸附多個膠體顆粒,在顆粒間產生架橋現象,形成一種網狀三維結構而沉澱下來。對重金屬有絮凝作用的生物絮凝劑約有十幾個品種,生物絮凝劑中的氨基和羥基可與Cu 2+、Hg2+、Ag+、Au2+等重金屬離子形成穩定的螯合物而沉澱下來。該方法處理廢水具有安全方便無毒,不產生二次污染,絮凝范圍廣,絮凝活性高、生長快,絮凝作用條件粗放,大多不受離子強度、pH值及溫度的影響,易於實現工業化等特點。
3、生物化學法
生物化學法是通過微生物與金屬離子之間發生直接的化學反應,將可溶性離子轉化為不溶性化合物而去除。其優點是:選擇性強、吸附容量大、不使用化學葯劑。污泥中金屬含量高,二次污染明顯減少,而且污泥中重金屬易回收,回收率高。但其缺點是功能菌和廢水中金屬離子的反應效率並不高,且培養菌種的培養基消耗量較大,處理成本較高。
物化法
物化法是利用離子交換或膜分離或吸附劑等方法去除電鍍廢水所含的雜質,其在工業上應用廣泛,通常與其他方法配合使用。
1、離子交換法
離子交換法是利用離子交換劑分離廢水中有害物質的方法。最常用的交換劑是離子交換樹脂,樹脂飽和後可用酸鹼再生後反復使用。離子交換是靠交換劑自身所帶的能自由移動的離子與被處理的溶液中的離子通過離子交換來實現的。多數情況下,離子是先被吸附,再被交換,具有吸附、交換雙重作用。對於含鉻等重金屬離子的廢水,可用陰離子交換樹脂去除Cr(VI),用陽離子交換樹脂去除Cr(Ⅲ)、鐵、銅等離子。一般用於處理低有害物質含量廢水,具有回收利用、化害為利、循環用水等優點,但它的技術要求較高、一次性投資大。
2、膜分離法
膜分離是指用半透膜作為障礙層,藉助於膜的選擇滲透作用,在能量、含量或化學位差的作用下對混合物中的不同組分進行分離。利用膜分離技術,可從電鍍廢水中回收重金屬和水資源,減輕或杜絕它對環境的污染,實現電鍍的清潔生產,對附加值較高的金、銀、鎳、銅等電鍍廢水用膜分離技術可實現閉路循環,並產生良好的經濟效益。對於綜合電鍍廢水,經過簡單的物理化學法處理後,採用膜分離技術可回用大部分水,回收率可達60%~80%,減少污水總排放量,削減排放到水體中的污染物。
3、蒸發濃縮法
該方法是對電鍍廢水進行蒸發,使重金屬廢水得以濃縮,並加以回收利用的一種處理方法,一般適用於處理含鉻、銅、銀、鎳等含重金屬的電鍍廢水。一般將之作為其他方法的輔助處理手段。它具有能耗大、成本高、佔地面積大、運轉費用高等缺點。
4、活性炭吸附法
活性炭吸附法是處理電鍍廢水的一種經濟有效的方法,主要用於含鉻、含氰廢水。它的特點是處理調節溫和,操作安全,深度凈化的處理水可以回用。但該方法存在活性炭再生復雜和再生液不能直接回鍍槽利用的問題,吸附容量小,不適於有害物含量高的廢水。
電化學法
1、電解法
電解法是利用電解作用處理或回收重金屬,一般應用於貴金屬含量較高或單一的電鍍廢水。電解法處理Cr(VI),是用鐵作電極,鐵陽極不斷溶解產生的亞鐵離子能在酸性條件下將Cr(VI)還原成Cr(Ⅲ),在陰極上Cr(Ⅵ)直接還原為Cr(Ⅲ),由於在電解過程中要消耗氫離子,水中余留的氫氧根離子使溶液從酸性變為鹼性,並生成鉻和鐵的氫氧化物沉澱去除鉻。電解法能夠同時除去多種金屬離子,具有凈化效果好、泥渣量少、佔地面積小等優點,但是消耗電能和鋼材較多,已較少採用。
2、原電池法
以顆粒炭、煤渣或其他導電惰性物質為陰極,鐵屑為陽極,廢水中導電電解質起導電作用構成原電池,通過原電池反應來達到處理廢水的目的。近年來,鐵碳微電解技術在電鍍廢水的處理中受到越來越多的重視。
3、電滲析法
電滲析技術是膜分離技術的一種。它是將陰、陽離子交換膜交替地排列於正負電極之間,並用特製的隔板將其隔開,在電場作用下,以電位差為推動力,利用離子交換膜的選擇透過性,把電解質從溶液中分離出來,從而實現電鍍廢水的濃縮、淡化、精製和提純。
4、電凝聚氣浮法 採用可溶性陽極(Fe、AI等)材料,生成Fe2+、Fe3+、Al3+等大量陽離子,通過絮凝生成Fe(OH)2、Fe(OH)3、AI(OH)3等沉澱物,以去除水中的污染物。同時,陰極上產生大量的H2微氣泡,陽極上產生大量的O2微氣泡,以這些氣泡作為氣浮載體,與絮凝污物一起上浮。大量絮體在豐富的微氣泡攜帶下迅速上浮,達到凈化水質的目的。
我國電鍍廢水的常規處理技術已經比較成熟,現代生物法處理電鍍廢水是非常有發展前途的一項廢水處理技術,且不產生二次污染,關鍵是要運用新技術對其進行深度處理,進一步提高出水水質。膜處理技術因其分離效率高,且能回收重金屬,今後必將在電鍍廢水處理中占據重要的地位。同時通過推廣清潔生產工藝,從電鍍生產的各個環節上減少排污量,變「被動治理」為「積極治理」,也是解決電鍍廢水污染的根本方法。

⑥ 現代污水處理有哪些常見的方法

1、物理處理法
物理處理法是通過物理作用, 以分離、 回收污水中不溶解的、 呈懸浮狀的污染物質(包括油膜和油珠), 在處理過程中不改變其化學性質。 常用的有過濾法、 沉澱法、 浮選法等。
(1) 過濾法:利用過濾介質截流污水中的懸浮物。 過濾介質有篩網、紗布、 粒物, 常用的過濾設備有格柵、篩網、微濾機等。
1) 格柵與篩網。 在排水工程中, 廢水通過下水道流人水處理廠, 首先應經過斜置在渠道內的一組金屬制的呈縱向平行的框條(格柵)、 穿孔板或過濾網(篩網), 使漂浮物或懸浮物不能通過而被阻留在格柵、 細篩或濾料上。
這一步屬廢水的預處理, 其目的在於回收有用物質;初步漫清廢水以利於以後的處理, 減輕沉澱池或其他處理設備的負荷;保護抽水機械, 以免受到顆粒物堵塞發生故障。 保護水泵和其他處理設備。格柵截留的效果主要取決於污水水質和格柵空隙的大小。 清渣方法有人工與機械兩種。柵渣應及時清理和處理。
篩網主要用於截留粒度在數毫米到數十毫米的細碎懸浮態雜物, 如纖維、紙漿、藻類等,通常用金屬絲、化纖編織而成,或用穿孔鋼板,孔徑一般小於5mm,最小可為0.2mm。 篩網過濾裝置有轉鼓式、 旋轉式、 轉盤式、 固定式振動斜篩等。 不論何種結構,既要能截留污物,又便於卸料及清理篩面 。
2)粒狀介質過濾(又稱彤、濾、 驚料過濾)。 廢水通過粒狀濾料(如石英砂)床層時,其中細小的懸浮物和肢體就被截留在濾料的表面和內部空隙中。 常用的過濾介質有石英砂、 無煙煤和石榴石等。 在過濾過程中濾料同時對懸浮物進行物理截留、 沉降和吸附等作用。 過濾的效果取決於濾料孔徑的大小、 濾料層的厚度、 過濾速度及污水的性質等因素。
當廢水自上而下流過粒狀濾料層時,位徑較大的懸浮顆粒首先被截留在表層濾料的空隙中,從而使此層濾料空隙越來越小,逐漸形成一層主要由被截留的團體顆粒構成的濾膜, 並由它起主要的過濾作用。 這種作用屬於阻力截留或篩濾作用。
廢水通過濾料層時,眾多的濾料表面提供了巨大的可供懸浮物沉降的有效面積,形成無數的小 「沉澱池」,懸浮物極易在此沉降下來。這種作用屬於重力 沉降。
由於濾料具有巨大的表面積, 它與懸浮物之間有明顯的物理吸附作用。此外,砂粒在水中常常帶有表面負電荷,能吸附帶正電荷的鐵、 鋁等肢體,從而在濾料表面形成帶正電荷的薄膜,並進而吸附帶負電荷的膠土和多種有機物等膠體,在砂粒上發生接觸絮凝。
(2)沉澱法。沉澱法是利用污水中的懸浮物和水的相對密度不同的原理, 藉助重力沉降作用使懸浮物從水中分離出來。 根據水中懸浮顆粒的濃度及絮凝特性(即彼此帖結聚團的能力)可分為四種:
1) 分離沉降(或自由沉降)。在沉澱過程中,顆粒之間互不聚合,單獨進行沉降。 顆位只受到本身在水中的重力和水流阻力的作用,其形狀、 尺寸、 質量均不改變,下降速度也不改變。
2)混凝沉澱(或稱作絮凝沉降)。 混凝沉降是指在混凝劑的作用下,使廢水中的膠體和細微懸浮物凝聚為具有可分離性的絮凝體,然後採用重力沉降予以分離去除。 混凝沉澱的特點是在沉澱過程中,顆粒接觸碰撞而互相聚集形成較大絮體,因此顆粒的尺寸和質量均會隨深度的增加而增大,其沉速也隨深度 而增加。
常用的無機混凝劑有硫酸鋁、 硫酸亞鐵、 三氯化鐵及聚合鋁;常用的有機絮凝劑有聚丙烯酷膠等,還可採用助凝劑如水玻璃、 石灰等 。
3)區域沉降(又稱擁擠沉降、 成層沉降)。 當廢水中懸浮物含量較高時,顆粒間的距離較小,其間的聚合力能使其集合成為一個整體,並一同下沉,而顆粒相互間的位置不發生變動,因此澄清水和混水間有一明顯的分界面,逐漸向下移動,此類沉降稱為區域沉降。加高濁度水的沉澱池和二次沉澱池中的沉降(在沉降中後期)多屬此類。
4)壓縮沉澱。當懸浮液中的懸浮固體濃度很高時,顆粒互相接觸、擠壓,在上層顆粒的重力作用下,下層顆粒間隙中的水被擠出,顆粒群體被壓縮。壓縮沉澱發生在沉澱池底部的污泥斗或污泥濃縮池中,進行得很緩慢。依據水中懸浮性物質的性質不同,設有沉砂池和沉澱池兩種設備。
沉砂池用於除去水中砂粒、煤渣等相對密度較大的元機顆粒物。沉砂池一般設在污水處理裝置前,以防止處理污水的其他機械設備受到磨損。
沉澱池是利用重力的作用使懸浮性雜質與水分離。它可以分離直徑為20~100µ,m以上的顆粒。根據沉澱池內的水流方向,可將其分為平流式、輻流式和豎流式三種。
①平流式沉澱池。廢水從池一端流人,按水平方向在池內流動,水中懸浮物逐漸沉向池底,澄清水從另一端溢出。
②輻流式沉澱池。池子多為圓形,直徑較大,一般在20~30m以上,適用於大型水處理廠。原水經進水管進入中心筒後,通過筒壁上的孔口和外圍的環形穿孔擋板,沿徑向呈輻射狀流向沉澱池周邊。由於過水斷面不斷增大,流速逐漸變小,顆粒沉降下來,澄清水從其周圍溢出匯入集水槽排出。
③豎流式沉澱池。截面多為圓形,也有方形和多角形的。水由中心管的下口流入池中,通過反射板的阻攔向四周分布於整個水平斷面上,緩緩向上流動。沉速超過上升流速的顆粒則沉到污泥斗,澄清後的水由四周的埋口溢出池外。
在污水處理與利用的方法中,沉澱(或上浮)法常常作為其他處理方法前的預處理。如用生物處理法處理、污水時,一般需事先經過預沉池去除大部分懸浮物質,以減少生化處理時的負荷,而經生物處理後的出水仍要經過二次沉澱池的處理,進行泥水分離以保證出水水質。
(3)浮選法。將空氣通人污水中,並以微小氣泡形式從水中析出成為載體,污水中相對密度接近於水的微小顆粒狀的污染物質(如乳化油等)附在氣泡上,並隨氣泡上升到水面,然後用機械的方法撇除,從而使污水中的污染物質得以從污水中分離出來。疏水性的物質易氣浮,而親水性的物質不易氣浮。因此有時為了提高氣浮效率,需向污水中加入浮選劑改變污染物的表面特性,使某些親水性物質轉變為疏水性物質,然後氣浮除去,這種方法稱為「浮選」。
氣浮時要求氣泡的分散度高,量多,有利於提高氣浮的效果。泡沫層的穩定性要適當,既便於浮渣穩定在水面上,又不影響浮渣的運送和脫水。產生氣 泡的方法有兩種:
1)機械法。使空氣通過微孔管、微孔板、帶孔轉盤等生成微小氣泡。
2)壓力溶氣法。將空氣在一定的壓力下溶於水中, 並達到飽和狀態, 然後突然減壓, 過飽和的空氣便以微小氣泡的形式從水中逸出。 目前廢水處理中的氣浮工藝多採用壓力溶氣法。
氣浮法的主要優點有:設備運行能力優於沉澱池, 一般只需15~20min即可完成固液分離, 因此它佔地少, 效率較高;氣浮法所產生的污泥較乾燥, 不易腐化, 且系表面刮取, 操作較便利;整個工作是向水中通人空氣, 增加了水中的潛解氧量, 對除去水中有機物、 藻類表面活性劑及臭味等有明顯效果, 其出水水質為後續處理及利用提供了有利條件。
氣浮法的主要缺點是:耗電量較大;設備維修及管理工作量增加, 運轉部分常有堵塞的可能;浮渣露出水面, 易受風、 雨等氣候因素影響。
除了上述兩種氣浮方法外, 目前較為常用的方法還有電解氣浮法。
(4)離心分離法。 含有懸浮污染物質的污水在高速旋轉時, 利用懸浮顆粒(如乳化油)和污水受到的離心力不同, 從而達到分離目的的方法。 常用的離心設備有旋流分離器和離心
2、化學處理法
向污水中投加化學試劑, 利用化學反應來分離、 回收污水中的污染物質,或將污染物質轉化為無害的物質。 該法既可使污染物與水分離, 回收某些有用物質, 也能改變污染物的性質, 如降低廢水的酸鹼度、 去除金屬離子、 氧化某些有毒有害的物質等, 因此可達到比物理法更高的凈化程度。 常用的化學方法 有化學沉澱法、 中和法、 氧化還原法和混凝法。
化學法處理的局限性如下:
由於化學處理廢水常採用化學葯劑(或材料), 處理費用一般較高, 操作與 管理的要求也較嚴格。
化學法還需與物理法配合使用。 在化學處理之前, 往往需用沉澱和過濾等手段作為前處理;在某些場合下,又需採用沉澱和過濾等物理手段作為化學處理的後處理。
( 1)化學沉澱法。
化學沉澱法是指向廢水中投加某些化學葯劑, 使其與廢水中的溶解性污染物發生五換反應, 形成難榕於水的鹽類(沉澱物)從水中沉澱出來, 從而降低或除去水中的污染物。化學沉澱法多用於在水處理中去除鈣離子、 鏡離子以及廢水中的重金屬離子, 如隸、 鍋、鉛、 缽等。 按使用的沉澱劑不同, 沉澱法可分為石灰法(又稱為氫氧化物沉澱法)、硫化物法和銀鹽法等。
水中Ca 2+、 Mg2+令 含量的總和稱總硬度, 可分為碳酸鹽硬度和非碳酸鹽硬度。碳酸鹽硬度可投加石灰使水中的Ca 2+和Mg2+形成CaC03和Mg (OH) 2沉澱而降低, 如需同時去除非碳酸鹽硬度, 可採用石灰-蘇打軟化法, 使Ca 2+和Mg2+ 形成CaC03 矛llMg ( OH) 2沉澱除去。 因此, 當原水硬度或鹼度較高時, 可先用化學沉澱法作為離子交換軟化的前處理, 以節省離子交換的運行費用。
去除廢水中的重金屬離子時, 一般採用投加碳酸鹽的方法, 生成的金屬離子, 碳酸鹽的溶度積很小, 便於回收。 如利用碳酸銷處理含鎊廢水。
ZnS04 + Na 2C03 一一→ZnC03 ↓+ NazS04
此法優點是經濟簡便, 葯劑來源廣, 因此在處理重金屬廢水時應用最廣。 存在的問題是勞動衛生條件差, 管道易結垢堵塞與腐蝕;沉澱體積大, 脫水困難。
(2)中和法。
中和法處理是利用酸鹼相互作用生成鹽和水的化學原理, 將廢水從酸性或鹼性調整到中性附近的處理方法。 對於酸或鹼的濃度大於3%的廢水, 首先應進 行酸鹼的回收。 對於低濃度的酸鹼廢水, 可採取中和法進行處理。
酸性污水的處理, 通常採用投加石灰、 苛性鍋、 碳酸鍋或以石灰石、 大理石作潔、料來中和酸性污水。 鹼性污水的處理, 通常採用投加硝酸、 鹽酸或利用二氧化碳氣體中和鹼性污水。 另外, 對於酸、 鹼性污水也可以用二者相互中和的辦法來處理。
(3)氧化還原法。
氧化還原法是通過化學葯劑與水中污染物之間的氧化還原反應, 將污水中的有毒有害污染物轉化為無毒或微毒物質的方法。 這種方法主要處理無機污染物, 如重金屬和氧化物的污染。 利用高健酸御、 液氯、 臭氧等強氧化劑或電極的陽極反應, 將廢水中的有害物質氧化分解為元害物質;利用鐵粉等還原劑或電極的陰極反應, 將廢水中的有害物質還原為無害物質;臭氧氧化法對污水進 行脫色、 殺菌和除臭處理;空氣氧化法處理含硫廢水;還原法處理含錦電鍍廢水等都是氧化還原法處理廢水的實例。
水處理常用的氧化劑有氧、 臭氧、 氯、 次氯酸等。 常用的還原劑有硫酸亞鐵、 亞硫酸鹽、 鐵屑、 鑄粉等。
(4)混凝法。
混凝法是在含不易沉降的細顆粒及膠體顆粒的廢水中加入電解質以破壞肢體的穩定性而使其聚沉。 常用的混凝劑有硫酸鋁、 硫酸亞鐵、 三氯化鐵、 聚乙烯亞股或聚丙烯酷膠等。 為加速混凝常伴隨加入助凝劑石灰、 活性硅膠、 骨膠等。
3、物理化學處理法
物理化學法(簡稱物化法), 是利用萃取、 吸附、 離子交換、 膜分離技術、氣提等物理化學的原理, 處理或回收工業廢水的方法。 它主要用分離廢水中無機的或有機的(難以生物降解的)溶解態或膠態的污染物質, 回收有用組分,並使廢水得到深度凈化。 因此, 適合於處理雜質濃度很高的廢水(用作回收利用的方法), 或是濃度很低的廢水(用作廢水深度處理)。利用物理化學法處理工業廢水前, 一般要經過預處理, 以減少廢水中的懸浮物、 油類、 有害氣體等雜質, 或調整廢水的pH值, 以提高回收效率、 減少損耗。同時, 濃縮的殘渣要 經過後處理以避免二次污染。常用的方法有萃取法、 吸附法、 離子交換法、 膜析法(包括滲析法、 電滲析法、 反滲透法、 超濾法等)。
(1)萃取法。
萃取法是向污水中加人一種與水不相溶而密度小於水的有機溶劑, 充分混合接觸後使污染物重新分配, 由水相轉移到溶劑相中, 利用溶劑與水的密度差別, 將溶劑分離出來, 從而使污水得到凈化的方法。再利用溶質與溶劑的沸點差將溶質蒸館回收, 再生後的溶劑可循環使用。使用的溶劑叫萃取劑, 提出的物質叫萃取物。 萃取是一種液-液相間的傳質過程, 是利用污染物(溶質)在水與有機溶劑兩相中的溶解度不同進行分離的。
在選擇萃取劑時, 應注意萃取劑對被萃取物(污染物)的選擇性, 即溶解能力的大小, 通常溶解能力越大, 萃取的效果越好;萃取劑與水的密度相差越大, 萃取後與水分離就越容易。常用的萃取劑有含氧萃取劑、 含磷萃取劑、 含氮萃取劑等 。 常用的萃取設備有脈沖篩板塔、 離心萃取機等。
(2)吸附法。
吸附法處理廢水是利用——種多孔性固體材料(吸附劑)的表面來吸附水中的一種或多種溶解污染物、 有機污染物等(稱為熔質或吸附質), 以回收或去除它們, 使廢水得以凈化。例如, 利用活性炭可吸附廢白水中的盼、 隸、 錯、氧等劇毒物質, 且具有脫色、 除臭等作用。吸附法目前多用於污水的深度處理, 可分為靜態吸附和動態吸附兩種方法, 即在污水分別處於靜態和流動態時進行吸 附處理。常用的吸附設備有固定床、 移動床和流動床等。
在廢水處理中常用的吸附劑有活性炭、 磺化煤、 木炭、 焦炭、 硅藻土、 木屑和吸附樹脂等。以活性炭和吸附樹脂應用較為普遍。一般吸附劑均呈鬆散多 孔結構, 具有巨大的比表面積。其吸附力可分為分子引力(范德華力)、 化學鍵力和靜電引力三種。水處理中大多數吸附是上述三種吸附力共同作用的結果。
吸附劑吸附飽和後必須經過再生, 把吸附質從吸附劑的細孔中除去, 恢復其吸附能力。再生的方法有加熱再生法、 蒸汽吹脫法、 化學氧化再生法(濕式氧化、 電解氧化和臭氧氧化等)、 溶劑再生法和生物再生法等。
由於吸附劑價格較貴, 而且吸附法對進水的預處理要求高, 因此多用於給水處理中。
(3)離子交換法。
離子交換法是利用離子交換劑的離子交換作用置換污水中的離子態污染物質的方法。隨著離子交換樹脂的生產和離子交換技術的發展, 由於效果良好, 操作方便, 近年來在回收和處理工業污水中的有毒物質方面, 得到一定的應用。如用陽離子交換劑去除(回收) 污水中的銅、鎳、鎘、鋅、汞、金、銀、鉑等重金屬。
離子交換法多用於工業給水處理中的軟化和除鹽, 主要去除廢水中的金屬 離子。 離子交換軟化法採用Na+交換樹脂。
(4)膜析法。
1) 電滲析法。電摻析法是在直流電場的作用下, 利用陰、 陽離子交換膜對溶液中陰陽離子的選擇透過性(即陽膜只允許陽離子通過, 陰膜只允許陰商子通過), 使一部分溶液中的離子遷移到另一部分溶液中去,使得溶液中的電解質與水分離, 從而達到濃縮、純化、分離的一 種水處理方法。電滲析法是在離子交換技術基礎上發展起來的新方法, 除用於污水處理外, 還可用於海水除鹽、制備去離子水(純水)等。
2)反滲透法。
反滲透法巳用於含重金屬廢水的處理、 污水的深度處理及海水淡化等。在世界淡水供應危機嚴重的今天, 反滲透法結合蒸館法的海水淡化技術前景廣闊。 它的另一重要用途是與離子交換系統聯用, 作為離子交換的預處理方法以制備去離子的超純水。在廢水處理中, 反滲透法主要用於去除與回收重金屬離子, 去除鹽、有機物、色度以及放射性元素等。
目前在水處理領域內廣泛應用的半透膜有醋酸纖維素 膜和聚酷膠膜磺化聚苯醋等高聚物。常用的反滲透裝置有管式、螺旋式、中空纖維式及板框式等。滲透水可重復利用。
4、生物處理法
生物處理法是利用自然環境中微生物的生物化學作用, 氧化分解溶解於污 水中或肢體狀態的有機污染物和某些無機毒物(如氟化物、硫化物), 並將其轉化為穩定無害的無機物, 從而使廢水得以凈化的方法。 此法具有投資少、效果好、運行費用低等優點, 在城市廢水和工業廢水的處理中得到最廣泛的應用。
現代生物處理法根據微生物在生化反應中是否需要氧氣, 分為好氧生物處 理和厭氧生物處理兩類。
(1)好氧生物處理法。
在有氧的條件下, 依賴好氧菌和兼氧菌的生化作用完成廢水處理的工藝稱為好氧生物處理法。 該法需要有氧的供應。 根據好氧微生物在處理系統中所呈現的狀態, 可分為活性污泥法和生物膜法。
1)活性污泥法是目前使用最廣泛的一種生物處理法。 該方法是向曝氣池中富含有機污染物並有細菌的廢水中不斷地通人空氣(曝氣), 在一定的時間後就會出現懸浮態絮狀的泥粒, 這實際上是由好氧菌(及兼性好氧菌)所吸附的有機物和好氧菌代謝活動的產物所組成的聚集體, 具有很強的分解有機物的能力,稱之為 「活性污泥」。從曝氣池流出的污水和活性污泥混合液經沉澱池沉澱分離後, 澄清的水被排放, 污泥作為種泥迴流到曝氣池, 繼續運作。 這種以活性污泥為主體的生物處理法稱為 活性污泥法」 。廢水在曝氣池中停留4~6h, 可除去廢水中的有機物(BOD6)約90%。 活性污泥法有多種池型及運行方式, 通常有普通活性污泥法、完全混合式表面曝氣法、吸附再生法等。
2)生物膜法是使污水連續流經固體填料(碎石、煤渣或塑料填料), 微生物在填料上大量繁殖, 形成污泥狀的膠膜稱為生物膜, 利用生物膜處理污水的方法,稱為生物膜法。生物膜主要由大量的菌膠團、真菌、藻類和原生動物組成。 生物膜上的微生物起到和活性污泥同樣的凈化作用, 吸附並降解水中的有機污 染物, 從填料上脫落的衰老的生物膜隨處理後的污水流入沉澱池, 經過沉澱池沉澱分離後, 使污水得以凈化。常用的生物膜法有生物濾池、生物接觸氧化池、生物轉盤等。
(2)厭氧生物處理法。
在無氧的條件下, 利用厭氧微生物的作用分解、污水中的有機物, 使污水凈化的方法稱為厭氧生物處理法。 近年來, 世界性的能源緊張, 使污水處理向節能和實現能源化的方向發展, 從而促進了厭氧微生物處理方法的發展。 一大批高效新型厭氧生物反應器相繼出現, 包括厭氧生物濾池、 升流式厭氧污泥床、 厭氧硫化床等。 它們的共同特點是反應器中生物團體濃度很高, 市泥齡很長, 因此處理能力大大提高, 從而使厭氧生物處理法所具有的能耗小、可以回收能源、 剩餘的污泥量少、 生成的污泥穩定而易處理、 對高濃度有機廢水處理效率高等優點得到充分體現。厭氧生物處理法經過多年的發展,已經成為污水處理的主要方法之一。
5、除磷、 脫氮
( 1) 除磷。 城市廢水中磷的主要來源是糞便、 洗滌劑和某些工業廢水, 以正磷酸鹽、 聚磷酸鹽和有機磷的形式溶解於水中。 常用的除磷方法有化學法和生物法。
1)化學法除磷。 利用磷酸鹽與鐵鹽、 石灰、 鋁鹽等反應生成磷酸鐵、 磷酸鈣、 磷酸鋁等沉澱, 將磷從廢水中排除。化學法的特點是磷的去除效率較高, 處理結果穩定, 污泥在處理和處置過程中不會重新釋放磷造成二次污染,但污泥的產量比較大。
2)生物法除磷。生物法除磷是利用微生物在好氧條件下, 對廢水中溶解性 磷酸鹽的過量吸收,沉澱分離而除磷。 整個處理過程分為厭氧放磷和好氧吸磷 兩個階段。
含有過量磷的廢水和含磷活性污泥進人厭氧狀態後,活性污泥中的聚磷商在厭氧狀態下, 將體內積聚的聚磷分解為無機磷釋放回廢水中。這就是 「 厭氧放磷」。聚磷菌在分解聚磷時產生的能量除一部分供自己生存外, 其餘供聚磷菌吸收廢水中的有機物,並在厭氧發酵產酸菌的作用下轉化成乙酸背,再進一步轉化為PHB (聚自-短基丁酸) 儲存於體內。
進入好氧狀態後, 聚磷菌將儲存於體內的PHB進行好氧分解, 並釋放出大 量能量,一部分供自己增殖, 另一部分供其吸收廢水中的磷酸鹽, 以聚磷的形式積聚於體內。這就是 「好氧吸磷」。在此階段, 活性污泥不斷增殖。 除了一部分含磷活性活泥迴流到厭氧池外, 其餘的作為剩餘污泥排出系統,達到除磷的目的。
(2) 脫氮。
生活廢水中各種形式的氮占的比例比較恆定:有機氮 50%~60%,氨氮40%~ 50%,亞硝酸鹽與硝酸鹽中的氮占 0~ 5%。 它們均來源於人們食物中的蛋白質。脫氮的方法有化學法和生物法兩大類。
1)化學法脫氮。包括氨吸收法和加氯法。
①氨吸收法。 先把廢水的pH值調整到10以上,然後在解吸塔內解吸氨
②加氯法。在含氨氮的廢水中加氯。通過適當控制加氯量, 可以完全除去水中的氨氮。為了減少氯的投加量, 此法常與生物硝化聯用, 先硝化再除去微量的殘余氨氮。
2)生物法脫氮。生物脫氮是在微生物作用下, 將有機氮和氨態氮轉化為氮氣的過程, 其中包括硝化和反硝化兩個反應過程。
硝化反應是在好氧條件下, 廢水中的氨態氮被硝化細菌 (亞硝酸菌和硝酸菌)轉化為亞硝酸鹽和硝酸鹽。 反硝化反應是在無氧條件下, 反硝化菌將硝酸鹽氮(N03-)和亞硝酸鹽氮(NH2-)還原為氮氣。因此整個脫氮過程需經歷好氧和缺氧兩個階段。

⑦ 電鍍廢水怎麼處理才能達標排放

電鍍廢水的處理與回用對節約水資源以及保護環境起著至關重要的作用。本文綜述了各種電鍍廢水處理技術的優缺點,以及一些新材料在電鍍廢水處理上的應用。
01 化學沉澱法
化學沉澱法是通過向廢水中投入葯劑,使溶解態的重金屬轉化成不溶於水的化合物沉澱,再將其從水中分離出來,從而達到去除重金屬的目的。
化學沉澱法因為操作簡單,技術成熟,成本低,可以同時去除廢水中的多種重金屬等優點,在電鍍廢水處理中得到廣泛應用。
1.鹼性沉澱法
鹼性沉澱法是向廢水中投加NaOH、石灰、碳酸鈉等鹼性物質,使重金屬形成溶解度較小的氫氧化物或碳酸鹽沉澱而被去除。該法具有成本低、操作簡單等優點,目前被廣泛使用。
但是鹼性沉澱法的污泥產量大,會產生二次污染,而且出水pH偏高,需要回調pH。NaOH由於產生污泥量相對較少且易回收利用,在工程上得到廣泛應用。欣格瑞水處理專家
2.硫化物沉澱法
硫化物沉澱法是通過投加硫化物(如Na2S、NariS等)使廢水中的重金屬形成溶度積比氫氧化物更小的沉澱,出水pH在7~9,無需回調pH即可排放。
但是硫化物沉澱顆粒細小,需要添加絮凝劑輔助沉澱,使處理費用增大。硫化物在酸性溶液中還會產生有毒的HS氣體,實際操作起來存在局限性。
3.鐵氧體法
鐵氧體法是根據生產鐵氧體的原理發展起來的,令廢水中的各種重金屬離子形成鐵氧體晶體一起沉澱析出,從而凈化廢水。該法主要是通過向廢水中投加硫酸亞鐵,經過還原、沉澱絮凝,最終生成鐵氧體,因其設備簡單、成本低、沉降快、處理效果好等特點而被廣泛應用。
pH和硫酸亞鐵投加量對鐵氧體法去除重金屬離子的影響,確定鎳、鋅、銅離子的最佳絮凝pH分別為8.00~9.80、8.00~10.50和10.00,投加的亞鐵離子與它們摩爾比均為2~8,而六價鉻的最佳還原pH為4.00~5.50,最佳絮凝pH則為8.00~10.50,最佳投料比為20。出水的鎳含量小於0.5mg/L,總鉻含量小於1.0mg/L,鋅含量小於1.0mg/L,銅含量小於0.5mg/L,達到《電鍍污染物排放標准》(GB21900—2008)中「表2」的要求。
化學沉澱法的局限性
隨著污水排放標準的提高,傳統單一的化學沉澱法很難經濟有效地處理電鍍廢水,常常與其他工藝組合使用。
採用鐵氧體-CARBONITE(一種具有物理吸附與離子交換功能的材料)聯合工藝處理Ni含量約為4000mg/L的高濃度含鎳電鍍廢水:先以鐵氧體法控制pH為11.0,在Fe/Fe。摩爾比O.55,FeSO4·7H2O/Ni質量比21,反應溫度35℃的條件下攪拌反應15min,出水Ni平均濃度從4212.5mg/L降至6.8mg/L,去除率達99.84%;然後採用CARBONITE處理,在CARBONITE投加量1.5g/L,pH=6.5,溫度35℃的條件下反應6h,Ni去除率可達96.48%,出水Ni濃度為0.24mg/L,達到GB21900-2008中的「表2」標准。
採用高級Fenton一化學沉澱法處理含螯合重金屬的廢水,使用零價鐵和過氧化氫降解螯合物,然後加鹼沉澱重金屬離子,不僅可以去除鎳離子(去除率最高達98.4%),而且可以降低COD化學需氧量。
02 氧化還原法
1.化學氧化法
化學氧化法在處理含氰電鍍廢水上的效果尤為明顯。該方法把廢水中的氰根離子(CN一)氧化成氰酸鹽(CNO-),再將氰酸鹽(CNO-)氧化成二氧化碳和氮氣,可以徹底解決氰化物污染問題。
常用的氧化劑包括氯系氧化劑、氧氣、臭氧、過氧化氫等,其中鹼性氯化法應用最廣。採用Fenton法處理初始總氰濃度為2.0mg/L的低濃度含氰電鍍廢水,在反應初始pH為3.5,H202/FeSO4摩爾比為3.5:1,H202投加量5.0g/L,反應時間60min的最佳條件下,氰化物的去除率可達93%,總氰濃度可降至0_3mg/L。
2.化學還原法
化學還原法在電鍍廢水處理中主要針對含六價鉻廢水。該方法是在廢水中加入還原劑(如FeSO、NaHSO3、Na2SO3、SO2、鐵粉等)把六價鉻還原為三價鉻,再加入石灰或氫氧化鈉進行沉澱分離。上述鐵氧體法也可歸為化學還原法。
該方法的主要優點是技術成熟,操作簡單,處理量大,投資少,在工程應用中有良好的效果,但是污泥量大,會產生二次污染。採用硫酸亞鐵作為還原劑,處理80t/d的含總鉻7O~80mg/L的電鍍廢水,出水總鉻小於1.5mg/L,處理費用為3.1元/t,具有很高的經濟效益。
以焦亞硫酸鈉為還原劑處理含80mg/L六價鉻、pH為6~7的電鍍廢水,出水六價鉻濃度小於0.2mg/L。
03 電化學法
電化學法是指在電流的作用下,廢水中的重金屬離子和有機污染物經過氧化還原、分解、沉澱、氣浮等一系列反應而得到去除。
該方法的主要優點是去除速率快,可以完全打斷配合態金屬鏈接,易於回收利用重金屬,佔地面積小,污泥量少,但是其極板消耗快,耗電量大,對低濃度電鍍廢水的去除效果不佳,只適合中小規模的電鍍廢水處理。
電化學法主要有電凝聚法、磁電解法、內電解法等。
電凝聚法是通過鐵板或者鋁板作為陽極,電解時產生Fe2+、Fe或Al,隨著電解的進行,溶液鹼性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通過絮凝沉澱去除污染物。
由於傳統的電凝聚法經過長時間的操作,會使電極板發生鈍化,近年來高壓脈沖電凝聚法逐漸替代傳統的電混凝法,它不僅克服了極板鈍化的問題,而且電流效率提高20%~30%,電解時間縮短30%~40%,節省電能30%~40%,污泥產生量少,對重金屬的去除率可達96%~99%。欣格瑞水處理專家
採用高壓脈沖電絮凝技術處理某電鍍廠的電鍍廢水,Cu2十、Ni2、CN一和COD的去除率分別達到99.80%、99.70%、99.68%和67.45%。
電混凝法通常也與其他方法結合使用,利用電凝聚法和臭氧氧化法聯合處理電鍍廢水,以鐵和鋁做極板,出水六價鉻、鐵、鎳、銅、鋅、鉛、TOC(總有機碳)、COD的去除率分別為99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年來內電解法受到廣泛關注。內電解法利用了原電池原理,一般向廢水中投加鐵粉和炭粒,以廢水作為電解質媒介,通過氧化還原、置換、絮凝、吸附、共沉澱等多種反應的綜合作用,可以一次性去除多種重金屬離子。
該方法不需要電能,處理成本低,污泥量少。通過靜態試驗研究了鐵碳微電解法對模擬電鍍廢水的COD及銅離子的去除效果,去除率分別達到了59.01%和95.49%。然而,採用微電解反應柱研究連續流的運行結果顯示,14d後微電解出水的COD去除率僅為10%~15%,銅的去除率降低至45%~50%之間,可見需要定期更換填料或對填料進行再生。
04 膜分離技術
膜分離技術主要包括微濾(MF)、超濾(UF)、納濾(NF)、反滲透(RO)、電滲析(ED)、液膜(Lv)等,利用膜的選擇透過性來對污染物進行分離去除。
該方法去除效果好,可實現重金屬回收利用和出水回用,佔地面積小,無二次污染,是一種很有發展前景的技術,但是膜的造價高,易受污染。
對膜技術在電鍍廢水處理中的應用和效果進行了分析,結果表明:結合常規廢水處理工藝與膜生物反應器(MBR)組合工藝,電鍍廢水被處理後的水質達到排放標准;電鍍綜合廢水經UF凈化、RO和NF兩段脫鹽膜的集成工藝處理後,水質達到回用水標准,RO和NF產水的電導率分別低於100gS/cm和1000gS/cm,COD分別約為5mg/L和10mg/L;鍍鎳漂洗廢水通過RO膜後,鎳的濃縮高達25倍以上,實現了鎳的回收,RO產水水質達到回用標准。
投資與運行費用分析表明:工程運行1年多即可收回RO濃縮鎳的設備費用。
液膜法並不是採用傳統的固相膜,而是懸浮於液體中很薄的一層乳液顆粒,是一種類似溶劑萃取的新型分離技術,包括制膜、分離、凈化及破乳過程。
美籍華人黎念之(NormanN.Li)博士發明了乳狀液膜分離技術,該技術同時具有萃取和滲透的優點,把萃取和反萃取兩個步驟結合在一起。乳化液膜法還具有傳質效率高、選擇性好、二次污染小、節約能源和基建投資少的特點,對電鍍廢水中重金屬的處理及回收利用有著良好的效果。
05 離子交換法
離子交換法是利用離子交換劑對廢水中的有害物質進行交換分離,常用的離子交換劑有腐殖酸物質、沸石、離子交換樹脂、離子交換纖維等。離子交換的運行操作包括交換、反洗、再生、清洗四個步驟。
此方法具有操作簡單、可回收利用重金屬、二次污染小等特點,但離子交換劑成本高,再生劑耗量大。
研究強酸性離子交換樹脂對含鎳廢水的處理工藝條件及鎳回收方法。結果表明:pH為6~7有利於強酸性陽離子交換樹脂對鎳離子的去除。離子交換除鎳的適宜溫度為30℃,適宜流速為15BV/h(即每小時l5倍樹脂床體積)。適宜的脫附劑為10%鹽酸,脫附液流速為2BV/h。前4.6BV脫附液可回用於配製電鍍槽液,平均鎳離子質量濃度達18.8g/L。
Mei.1ingKong等研究了CHS—l樹脂對cr(VI)的吸附能力,發現Cr(VI)在低濃度時,樹脂的交換吸附率是由液膜擴散和化學反應控制的。CHS一1樹脂對Cr(VI)的最佳吸附pH為2~3,在298K下其飽和吸附能力為347.22mg/g。CHS一1樹脂可以用5%的氫氧化鈉溶液和5%氯化鈉溶液來洗脫,再生後吸附能力沒有明顯的下降。
使用鈦酸酯偶聯劑將1一Fe203與丙烯酸甲酯共聚,在鹼性條件下進行水解,制備出磁性弱酸陽離子交換樹脂NDMC一1。
通過對重金屬Cu的吸附研究發現,NDMC—l樹脂粒徑較小、外表面積大,因而具有較快的動力學性能。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。
06 蒸發濃縮法
蒸發濃縮法是通過加熱對電鍍廢水進行蒸發,使液體濃縮達到回用的效果。一般適用於處理含鉻、銅、銀、鎳等重金屬濃度高的廢水,用其處理濃度低的重金屬廢水時耗能大,不經濟。
在處理電鍍廢水中,蒸發濃縮法常常與其他方法一起使用,可實現閉路循環,效果不錯,比如常壓蒸發器與逆流漂洗系統聯合使用。蒸發濃縮法操作簡單,技術成熟,可實現循環利用,但是濃縮後的干固體處置費用大,制約了它的應用,目前一般只作為輔助處理手段。
07 生物處理技術
生物處理法是利用微生物或者植物對污染物進行凈化,該方法運行成本低,污泥量少,無二次污染,對於水量大的低濃度電鍍廢水來說是不二之選。生物法主要包括生物絮凝法、生物吸附法、生物化學法和植物修復法。
1.生物絮凝法
生物絮凝法是一種利用微生物或微生物產生的代謝物進行絮凝沉澱來凈化水質的方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外、具有絮凝活性的代謝物,能使水中膠體懸浮物相互凝聚、沉澱。
生物絮凝劑與無機絮凝劑和合成有機絮凝劑相比,具有處理廢水安全無毒、絮凝效果好、不產生二次污染等優點,但其存在活體生物絮凝劑不易保存,生產成本高等問題,限制了它的實際應用。目前大部分生物絮凝劑還處在探索研究階段。
生物絮凝劑可以分為以下三類:
(1) 直接利用微生物細胞作為絮凝劑,如一些細菌、放線菌、真菌、酵母等。
(2) 利用微生物細胞壁提取物作為絮凝劑。微生物產生的絮凝物質為糖蛋白、黏多糖、蛋白質等高分子物質,如酵母細胞壁的葡聚糖、Ⅳ-乙醯葡萄糖胺、絲狀真菌細胞壁多糖等都可作為良好的生物絮凝劑。
(3) 利用微生物細胞代謝產物的絮凝劑。代謝產物主要有多糖、蛋白質、脂類及其復合物等。
近年來報道的生物絮凝劑主要為多糖類和蛋白質類,前者有ZS一7、ZL—P、H12、DP。152等,後者有MBF—W6、NOC—l等。陶穎等]利用假單胞菌Gx4—1胞外高聚物製得的絮凝劑對cr(Ⅳ)進行了絮凝吸附研究。
其研究結果表明,在適宜條件下Or(Ⅳ)的去除率可達51%。研究枯草芽孢桿菌NX一2制備的生物絮凝劑v一聚谷氨酸(T-PGA)對電鍍廢水的處理效果,實驗證明,T-PGA能有效地去除Cr3+、Ni等重金屬離子。
2.生物吸附法
生物吸附法是利用生物體自身的化學結構或成分特性來吸附水中的重金屬,然後通過固液分離,從水中分離出重金屬。
可以從溶液中分離出重金屬的生物體及其衍生物都叫做生物吸附劑。生物吸附劑主要有生物質、細菌、酵母、黴菌、藻類等。該方法成本低,吸附和解析速率快,易於回收重金屬,具有選擇性,前景廣闊。
研究各種因素對枯草芽胞桿菌吸附電鍍廢水中Cd效果的影響,結果表明:pH為8、吸附劑用量為10g/L(濕重)、攪拌轉數為800r/min、吸附時間為10min的條件下,廢水中鎘的去除率達93%以上。
吸附鎘後的枯草芽胞桿菌細胞膨大,色澤變亮,細胞之間相互粘連。Cd2+與細胞表面的鈉進行了離子交換吸附。
殼聚糖是一種鹼性天然高分子多糖,由海洋生物中甲殼動物提取的甲殼素經過脫乙醯基處理而得到,可以有效地去除電鍍廢水中的重金屬離子。
通過乳化交聯法制備了磁性二氧化硅納米顆粒組成的殼聚糖微球,然後用乙二胺和縮水甘油基三甲基氯化反應的季銨基團改性,所得生物吸附劑具有很高的耐酸性和磁響應。
用它來去除酸性廢水中的cr(VI),在pH為2.5、溫度為25℃的條件下,最大吸附能力為233.1mg/g,平衡時間為40~120min[取決於初始Cr(VI)的濃度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液進行吸附劑再生,解吸率達到95.6%,因此該生物吸附劑具有很高的重復使用性。
3.生物化學法
生物化學法是指微生物直接與廢水中的重金屬進行化學反應,使重金屬離子轉化為不溶性的物質而被去除。
從電鍍廢水中篩選分離出3株可以高效降解自由氰根的菌種,在最佳條件下可以將80mg/L的CN一去除到0.22mg/L。研究發現,有許多可以將cr(VI)還原成低毒cr(III)的微生物,如無色桿菌、土壤細菌、芽孢桿菌、脫硫弧菌、腸桿菌、微球菌、硫桿菌、假單胞菌等,其中除了大腸桿菌、芽孢桿菌、硫桿菌、假單胞菌等可以在好氧條件下還原Cr(VI),其餘大部分菌種只能在厭氧條件下還原cr(VI)。
R.S.Laxman等發現灰色鏈黴菌能在24~48h內把cr(VI)還原成cr(III),並能夠將cr(III)顯著地吸收去除。中科院成都生物研究所的李福、吳乾菁等從電鍍污泥、廢水及下水道鐵管內分離篩選出35株菌種,並獲得了SR系列復合功能菌,該功能菌具有高效去除Cr(VI)和其他重金屬的功效,並在此基礎上進行了工程應用,取得較好的效果。
4.植物修復法
植物修復法是利用植物的吸收、沉澱、富集等作用來處理電鍍廢水中的重金屬和有機物,達到治理污水、修復生態的目的。
該方法對環境的擾動較少,有利於環境的改善,而且處理成本低。人工濕地在這方面起著重要的作用,是一種發展前景廣闊的處理方法。
李氏禾是一種可富集金屬的水生植物,在去除水中重金屬方面具有很大的潛力。在人工濕地種植了李氏禾,用以處理含鉻、銅、鎳的電鍍廢水,使它們的含量分別降低了84.4%、97.1%和94_3%。當水力負荷小於0.3m/(m2·d1時,出水中的重金屬濃度符合電鍍污染物排放標準的要求;當進水鉻、銅和鎳的濃度為5、10和8mg/L時,仍能達標排放。
可見用李氏禾處理中低濃度的電鍍廢水是可行的。質量平衡表明,鉻、銅和鎳大部分保留在人工濕地系統的沉積物中。
08 吸附法
吸附法是利用比表面積大的多孔性材料來吸附電鍍廢水中的重金屬和有機污染物,從而達到污水處理的效果。
活性炭是使用最早、最廣的吸附劑,可以吸附多種重金屬,吸附容量大,但是活性炭價格昂貴,使用壽命短,需要再生且再生費用不低。一些天然廉價材料,如沸石、橄欖石、高嶺土、硅藻土等,也具有較好的吸附能力,但由於各種原因,幾乎沒有得到工程應用。
以沸石作為吸附劑處理電鍍廢水,發現在靜態條件下,沸石對鎳、銅和鋅的吸附容量分別達到5.9、4.8和2.7mg/g.先以磁性生物炭去除電鍍廢水中的Cr(vI),
然後通過外部磁場分離,使得cr(VI)的去除率達到97.11%。而在10rain的磁選後,濁度由4075NTU降至21.8NTU。其研究還證實了吸附過程後,磁性生物炭仍保留原來的磁分離性能。近年來又研製開發了一些新型吸附材料,如文中提到的生物吸附劑以及納米材料吸附劑。
納米技術是指在1~100nm尺度上研究和應用原子、分子現象,由此發展起來的多學科交叉、基礎研究與應用緊密聯系的科學技術。納米顆粒由於具有常規顆粒所不具備的納米效應,因而具有更高的催化活性。
納米材料的表面效應使其具有高的表面活性、高表面能和高的比表面積,所以納米材料在制備高性能吸附劑方面表現出巨大的潛力。雷立等l採用溫和水熱法一步快速合成了鈦酸鹽納米管(TNTs),並應用於對水中重金屬離子Pb(II)、cd(II)和Cr(III)的吸附。
結果表明:pH=5時,初始濃度分別為200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分別為513.04、212.46和66.35mg/L,吸附性能優於傳統吸附材料。納米技術作為一種高效、節能環保的新型處理技術,得到人們的廣泛認同,具有很大的發展潛力。
09 光催化技術
光催化處理技術具有選擇性小、處理效率高、降解產物徹底、無二次污染等特點。
光催化的核心是光催化劑,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化學穩定性好、無毒、兼具氧化和還原作用等諸多特點。TiO:在受到一定能量的光照時會發生電子躍遷,產生電子一空穴對。
光生電子可以直接還原電鍍廢水中的金屬離子,而空穴能將水分子氧化成具有強氧化性的OH自由基,從而把很多難降解的有機物氧化成為COz、H:0等無機物,被認為是最有前途、最有效的水處理方法之一。
以懸浮態的TiO2為催化劑,在紫外光的作用下對絡合銅廢水進行光催化反應。結果表明:當TiO2投加量為2g/L,廢水pH=4時,在300W高壓汞燈照射下,載入60mL/min的空氣反應40rain,對120mg/LEDTA絡合銅廢水中Cu(II)與COD的去除率分別達到96.56%和57.67%。實施了「物化一光催化一膜」處理電鍍廢水的工程實例,出水COD去除率達到70%以上,同時TiO2光催化劑可重復使用。
膜法的引入可大大提高水質,使處理後水質達到中水回用標准,提高了電鍍廢水的資源化利用率,回用率達到85%以上,大大節約了成本。然而光催化技術在實際應用中受到了很多的限制,如重金屬離子在光催化劑表面的吸附率低,催化劑的載體不成熟,遇到色度大的廢水時處理效果大幅下降,等等。不過光催化技術作為高效、節能、清潔的處理技術,將會有很大的應用前景。欣格瑞水處理專家
10 重金屬捕集劑
重金屬捕集劑又叫重金屬螯合劑,它能與廢水中的絕大部分重金屬離子產生強烈的螯合作用,生成的高分子螯合鹽不溶於水,通過分離就可以去除廢水中的重金屬離子。
重金屬捕集劑處理後的重金屬廢水中剩餘的重金屬離子濃度大部分都能達到國家排放標准。以二硫代氨基甲酸鹽重金屬離子捕集劑XMT探討了不同因素對Cu的捕集效果,對Cu去除率在99%以上,出水Cu濃度小於0.05mg/L,出水遠低於GB21900-2008的「表3」標准。
選取3種市售重金屬捕集劑對實際電鍍廢水中的Cu2+、Zn2+、Ni進行同步深度處理,發現三聚硫氰酸三鈉(簡稱TMT)對Cu的去除效果最為顯著,投加量少且效果穩定,但對Ni的去除效果較差。甲基取代的二硫代氨基甲酸鈉(以Me2DTC表示)的適用性最強,對3種重金屬離子均具有良好的去除效果,可達到GB21900-2008中的「表3」排放標准,且在DH=9.70時處理效果最佳。至於乙基取代的二硫代氨基甲酸鈉(Et2DTC),對Ni的去除效果不佳。
重金屬捕集劑因高效、低能、處理費用相對較低等特點而有很大的實用性。

⑧ 電鍍廢水處理是如何運用氧化還原法的

向廢水中投加還原劑將高價重金屬離子還原成微毒的低價重金屬離子後,再使其鹼化成 沉澱而分離去除的方法。工業上以化學還原法除鉻比較成熟。具體地講,工業上化學還原法 處理電鍍含鉻廢水的方法,有硫酸亞鐵­石灰法、亞硫酸鹽法、二氧化硫法、亞鐵鹽法、硫化 鹼法等。其中亞硫酸鹽法處理量大,綜合利用方便,在國內外應用最廣。如,六價鉻質量濃
度為140mg/L的某種電鍍廢水,用亞硫酸氫鈉進行處理,出水Cr 3+ 質量濃度可降為
0.7~1.0mg/L。另採用二氧化硫作還原劑處理高濃度大流量的含鉻廢水,國內已有工程實例。 亞鐵鹽還原沉澱法也是治理含鉻電鍍廢水的經典方法,被許多廠家採用。如某五金廠電鍍廢
水:六價鉻質量濃度為100mg/L,Ni 2+ 50mg/L,pH=4~6,經該法處理後出水達排放標准。目 前英、美等國應用水合肼對鍍鉻漂洗水進行槽內還原,反應速度快,處理效果好。
另外值得一提的是鐵屑法。鐵屑處理廢水最初就是從治理電鍍廢水開始的。國內外許多 文獻報導了生產規模的鐵屑處理電鍍廢水的情況。鐵屑法整個裝置易於定型化及設備製造工 業化,我國某些大型電鍍企業乃至鄉鎮企業鐵屑處理電鍍廢水的工業化裝置在運行中。 氧化還原法原理簡單,操作易於掌握,對某些類型的電鍍廢水是行之有效的,但是其出 水水質差,不能回用,處理混合廢水時,易造成二次污染,而且通用氧化劑還有供貨和毒性 的問題尚待解決。

⑨ 電鍍廢水處理的方法有哪些

目前國內外電鍍廢水的主要處理方法有:

·化學法 從近幾十年的國內外電鍍廢水處理技術發展趨勢來看,電鍍廢水有80%採用化學法處理, 化學法處理電鍍廢水在技術上較為成熟。化學法包括沉澱法、氧化還原法、鐵氧體法等,具 有投資少、處理成本低,操作簡單等優點,適用於各類電鍍金屬廢水處理。但化學法需要不 斷消耗化工原料,並有污泥產生,排出的水回用困難,且佔地面積較大
·化學沉澱法
化學沉澱法是使廢水中呈溶解狀態的重金屬轉變為不溶於水的重金屬化合物的方法,包 括中和沉澱和硫化物沉澱等。 (1)中和沉澱法。在含重金屬的廢水中加入鹼進行中和反應,使重金屬生成不溶於水的 氫氧化物沉澱形式加以分離。中和沉澱法操作簡單,是常用的處理廢水方法。 (2)硫化物沉澱法。加入硫化物使廢水中重金屬離子生成硫化物沉澱而除去的方法。與 中和沉澱法相比,硫化物沉澱法的優點是:重金屬硫化物溶解度比其氫氧化物的溶解度更低, 反應pH值在7­9之間,處理後的廢水一般不用中和,處理效果更好。但硫化物沉澱法的缺點 是:硫化物沉澱顆粒小,易形成膠體,硫化物沉澱在水中殘留,遇酸生成氣體,可能造成二 次污染。
·氧化還原法 向廢水中投加還原劑將高價重金屬離子還原成微毒的低價重金屬離子後,再使其鹼化成 沉澱而分離去除的方法。工業上以化學還原法除鉻比較成熟。具體地講,工業上化學還原法 處理電鍍含鉻廢水的方法,有硫酸亞鐵 石灰法、亞硫酸鹽法、二氧化硫法、亞鐵鹽法、硫化 鹼法等。其中亞硫酸鹽法處理量大,綜合利用方便,在國內外應用最廣。如,六價鉻質量濃 度為140mg/L的某種電鍍廢水,用亞硫酸氫鈉進行處理,出水Cr 3+ 質量濃度可降為 0.7~1.0mg/L。另採用二氧化硫作還原劑處理高濃度大流量的含鉻廢水,國內已有工程實例。 亞鐵鹽還原沉澱法也是治理含鉻電鍍廢水的經典方法,被許多廠家採用。如某五金廠電鍍廢 水:六價鉻質量濃度為100mg/L,Ni 2+ 50mg/L,pH=4~6,經該法處理後出水達排放標准。目 前英、美等國應用水合肼對鍍鉻漂洗水進行槽內還原,反應速度快,處理效果好。 另外值得一提的是鐵屑法。鐵屑處理廢水最初就是從治理電鍍廢水開始的。國內外許多 文獻報導了生產規模的鐵屑處理電鍍廢水的情況。鐵屑法整個裝置易於定型化及設備製造工 業化,我國某些大型電鍍企業乃至鄉鎮企業鐵屑處理電鍍廢水的工業化裝置在運行中。 氧化還原法原理簡單,操作易於掌握,對某些類型的電鍍廢水是行之有效的,但是其出 水水質差,不能回用,處理混合廢水時,易造成二次污染,而且通用氧化劑還有供貨和毒性 的問題尚待解決。

·鐵氧體法 鐵氧體法是根據生產鐵氧體的原理發展起來的處理方法。該法處理重金屬廢水,能一次 脫除多種金屬離子,尤其適用於混合重金屬電鍍廢水的一次性處理,具有設備簡單,投資少, 操作方便等特點,同時形成的污泥有較高的化學穩定性,容易進行微分離和脫水處理。此法 在國內電鍍業中應用較廣,但在形成鐵氧體過程中需要加熱(約70℃),能耗高,存在著處 理後鹽度高,而且不能處理含Hg和絡合物廢水的缺點。

·離子交換法 離子交換法是利用離子交換劑分離廢水中有害物質的方法,含重金屬廢水通過交換劑時, 交換劑上的離子同水中的金屬離子進行交換,達到去除水中金屬離子的目的。此法操作簡單, 殘渣穩定,無二次污染,但由於離子交換劑選擇性強,製造復雜,成本高,再生劑耗量大, 因此在應用上受到很大限制。

· 吸附法 吸附法是利用吸附劑的獨特結構去除重金屬離子的一種方法。傳統吸附劑有活性炭、腐 殖酸、聚糖樹脂、碴藻土等。實踐證明,使用不同吸附劑的吸附法,不同程度地存在投資大, 運行費用高,污泥產生量大等問題,處理後的水難於達標排放。

·電解法 電解法是利用金屬的電化學性質,在直流電作用下而除去廢水中的金屬離子,是處理含 有高濃度電沉積金屬廢水的一種有效方法,處理效率高,便於回收利用。但該法缺點是不適 用於處理含較低濃度的金屬廢水,並且電耗大,成本高,一般經濃縮後再電解經濟效益較好。

·蒸發濃縮法 蒸發濃縮法是對電鍍廢水進行蒸發,使重金屬廢水得以濃縮,並加以回收利用的一種處 理方法,一般適用於處理含鉻、銅、銀、鎳等重金屬廢水,對含重金屬離子濃度低的廢水, 直接應用蒸發濃縮回收法能耗大,成本高。蒸發濃縮處理重金屬廢水一般是與其它方法並用,

閱讀全文

與氧化還原處理電鍍廢水工程實例相關的資料

熱點內容
400加侖ro膜制水量 瀏覽:170
木頭泡澡桶太廢水怎麼辦 瀏覽:778
衢州什麼公司可以做空氣凈化器 瀏覽:157
日本普通公差標准樹脂 瀏覽:403
電動粉碎馬桶污水提升器 瀏覽:504
國產的除醛凈化器什麼牌子的好 瀏覽:989
空氣凈化器不通電了怎麼辦 瀏覽:926
凈水機按了復位怎麼辦 瀏覽:972
凈水機沒有出水量怎麼辦 瀏覽:838
果蔬凈化器怎麼使用 瀏覽:83
四川正規的油煙凈化器怎麼選 瀏覽:369
污水螺旋旋轉是什麼蟲 瀏覽:133
樹脂瓦檢驗報告書 瀏覽:777
食堂污水流量計算 瀏覽:448
提升網速是要網線光貓路由器都要千兆的嗎 瀏覽:101
棉花在凈水器中起什麼作用 瀏覽:343
農村污水人均多少公斤 瀏覽:808
能率凈水器是超濾 瀏覽:875
捷達車的空氣濾芯怎麼拆下來 瀏覽:15
電壺除垢劑怎麼用 瀏覽:149