❶ 顧夏聲的主要成就
長期從事教學和科研工作。發展處理高濃度有機廢水的理論,提出對升流式厭氧污泥層(UASB)反應器處理啤酒等廢水的新工藝,研究成果被列入「國家科技成果重點推廣計劃」和「國家環境保護最佳實用技術」,提出的二相UASB工藝對於處理含硫酸鹽廢水的發展前景以及廢水經酸化後,用自養型硫細菌進行生物脫硫,然後進行甲烷發酵和硫回收的新工藝,是對含高硫酸鹽有機廢水治理技術的重大突破。在國內外首次提出UASB反應器內厭氧顆粒污泥的結構模型和顆粒污泥形成機理的「晶核生長」學說,由此找出了培養顆粒污泥的優化條件和關鍵技術。
他在工程方面的主要成就表現在以下4個方面:
1:主持和指導有機廢水厭氧生物處理技術研究,成果達到國際先進水平。顧夏聲主持的「城鄉有機廢水厭氧生物處理機理及高效厭氧反應器研究」課題以及他指導的國家「七五」科技攻關項目「高濃度有機廢水的厭氧生物處理技術」,對升流式厭氧污泥層(UASB)反應器的理論與實踐,對其微生物學特性及工程應用等進行了系統研究,在國內外首次提出厭氧顆粒污泥的結構模型及形成的「晶核生長」學說,由此找到了培養顆粒污泥的優化條件和關鍵技術,為其後進行的中試和生產性UASB反應器內顆粒污泥的培養提供了理論指導和技術依據。在此基礎上開發的UASB反應器處理啤酒等廢水新工藝,達到國際先進水平。這些成果被列入「國家科技成果重點推廣計劃」和「國家環境保護最佳實用技術」,已應用於多個污水處理工程,其中北京啤酒廠污水處理系統是中國規模較大的常溫UASB生產性裝置,被列為國家環保局示範工程。
2:主持「硫酸鹽還原作用對厭氧消化的影響與控制」研究項目,使含高硫酸鹽有機廢水治理技術獲重大突破。造紙、味精、脂肪酸、糖蜜等生產廢水的有機物濃度高,由於含有大量硫酸鹽,嚴重妨礙厭氧消化技術的應用,成為世界各國廢水處理研究的重要課題之一。顧夏聲與同事們分析研究了「酸化」狀態下的微生物生態及控制「酸化」的措施,提出了二相UASB工藝對於處理含硫酸鹽廢水的發展前景,並提出廢水經酸化後,用自養型硫細菌進行生物脫硫,然後進行甲烷發酵和硫回收的新工藝,使該類廢水的處理技術獲得重大突破。
3:參與和指導難降解有機污染物的可生化性和處理工藝研究,提出經濟有效的處理途徑。顧夏生研究了厭氧—缺氧—好氧系統處理焦化廢水過程中微生物分布和有機物遷移轉化規律,並進行了新型硝化—反硝化系統的研究,將焦化廢水生物處理推向了一個新高度;對染料廢水中的各種主要化合物進行了較系統深入的好氧和厭氧降解性能及機理的研究,為去除這些物質提供了理論基礎,所獲得的用生物轉盤處理染色廢水的研究成果已用於工程設計之中。
4:參與氧化塘處理廢水的科技攻關,對氧化塘中碳、氮、磷的轉移規律進行了深入討論,在廢水生物脫磷方面的研究成果具有重要的理論意義。 夏聲學術造詣深,治學嚴謹,熱愛教育這一神聖的事業。在任教60餘年中,他始終堅持「要教好工科的書必須理論聯系工程實際」,講課堅持做到「深入淺出,少而精,條理清晰」。顧夏聲為中國市政工程和環境工程培養了一大批學術帶頭人和專家,有的已經成為中國工程院院士。
顧夏聲在60餘年教學生涯中,始終堅持「要教好工科的書必須理論聯系工程實際」,為我國市政工程和環境工程培養了一大批學術帶頭人和高級專家,包括我國自己培養的第一位環境工程博士。他曾任建設部高校給水排水及環境工程教材編審委員會主任和國家教委環境工程類專業教材委員會主任委員,組織研究明確了環境工程專業的學科歸屬、專業內容、培養目標等,制定了教學計劃和各課程基本要求,組織編寫系統教材,為環境工程、市政工程教育事業做出重大貢獻。曾獲北京市高教系統「教書育人」先進工作者、全國環境教育先進個人等稱號。他長期從事有機廢水厭氧生物處理技術研究,對升流式厭氧污泥床(UASB)反應器的理論與實踐及其微生物學特性和工程應用進行了系統研究,先後獲國家科學技術委員會三等獎、國家教委科技進步一等獎、北京市科技成果獎、全國環保科技成果獎等。
顧夏聲一貫重視教材建設。他本人或帶領年輕教師編寫了多本高質量的教材,並隨時把新的研究成果納入教材,給學生以最新的知識。如他與李獻文等合編的《水處理微生物學基礎》曾三次再版,受到師生們的好評。他同時擔任建設部高校給水排水及環境工程教材編審委員會主任和國家教委環境工程類專業教材委員會主任委員。在有關部門的領導下,他與其他委員一起,就環境工程專業的學科歸屬、專業內容、培養目標等問題進行了多次研究討論,明確了該專業的定位及培養目標,制定了教學計劃和各課程的基本要求,編寫教材18種,使環境工程專業有了比較系統、基本成套的試用教材,為環境工程、市政工程教育事業做出了重大貢獻。改革開放以來,顧夏聲培養出了中國第一位環境工程博士。他對研究生嚴格要求、精心培養;強調學生知識結構的合理性、適應性,尤其注意充實其基礎知識和拓寬其知識面;要求學生把書本知識應用到工程實際,同時以實際工作的經驗充實理論。顧夏聲言傳身教,培養的博士生業務素質好、思想覺悟高,多數已成為各個單位的業務骨幹。 學生:清華大學環境系教授、中國第一位環境工程博士張曉健 如顧夏聲與李獻文等合編的《水處理微生物學基礎》曾兩次再版
顧夏聲編寫過十八種教材,獲教委和建設部優秀教材獎。他提出UASB反應器處理啤酒等廢水的新工藝,被列入「國家科技成果重點計劃」和「國家環境保護最佳實用技術」。長期從事給水排水和環境工程的教學與研究。撰有論文《中國水污染控制技術與展望》、《生物接觸氧化法動力學模型》,主編《水處理工程》、《廢水生物處理數學模型》。
60年代中期,該講義得到學校的認同,並在校內進行鉛印作為教學材料下發。後建設部教材會討論決定正式編寫《水處理微生物學》,但後期編著工作因文化大革命而停止了。文革結束後,隨著教材指導委員會的恢復,全國進行課程改革,正式將「水處理微生物學」作為一門獨立課程在各高校環境工程專業開設。《水處理微生物學》最大的特點就是緊密結合專業,深入淺出地說明最基本的微生物作用於污水處理的運轉,比如通過觀察原生動物在污水處理中的變化來看污泥膨脹的問題等。後隨著科學理論和水處理技術的發展,第二、三版在內容上均有所增添。
顧先生1949年回國後即受聘到國立唐山工學院任教,後調至北京大學、清華大學任教,致力於給排水工程和環境工程的研究和教學,其中《水處理微生物學》是他和李獻文先生等人合編的專業基礎教材,該教材填補了中國在環境工程領域尤其是污水處理微生物教材的空白。《水處理微生物學》教材自1980年出版以來,曾3次修訂,《水處理微生物》(第三版)於2006年再次修訂,形成第四版——《水處理生物學》。
1陶葆楷、顧夏聲,沼氣池中糞便消化效能的研究,清華大學學報,1959,6(2)。
2顧夏聲、黃銘榮、錢易等,廢水處理與利用,中國建築工業出版社,1978。
3顧夏聲、李獻文,水處理微生物學基礎,第一版,中國建築工業出版社,1980。
4Gu Xiasheng,The Status and Trend of Water Pollution Control Technology in China,Water International,1982,7(2)
5顧夏聲,廢水生物處理數學模式,第一版,清華大學出版社,1982。
6顧夏聲、胡紀萃、俞毓馨、胡瓊玲,空氣混合活性污泥法處理合成氨裝置碳黑廢水的研究,清華大學學報,1983,23(1)。
7Hu Jicui,Gu Xiasheng,A Kinetic Model of the Biological Contact Oxidation Process,International Journal for Development Technology,1985,3:241~249
8顧夏聲、黃銘榮、王占生等,水處理工程,清華大學出版社,1985。
9吳唯民、胡紀萃、顧夏聲,厭氧升流式污泥層反應器內污泥顆粒化對固液分離效果的影響,環境科學學報,1986,6(1)。
10顧夏聲、李獻文、俞毓馨,水處理微生物學基礎,第二版,中國建築工業出版社,1987。
11Weimin Wu,Jicui Hu,Xiasheng Gu,Yizhang Zhao,Cultivation of Anearobic Granular Sludge in UASB Reactor with Aerobic Activated Sludge Seed,Wat.Res.,1987,21(7)
12吳唯民、胡紀萃、顧夏聲,厭氧污泥的最大比產甲烷速率的間歇試驗測定法,中國給水排水,1988,1(4)。
13Jicui Hu,Weimin Wu,Xiasheng Gu,A Study on the Feasibility of Using Activated Sludge as Seed Material for an Anaerobic Reactor,Wat.Sci.Tech.,1988,20(11/12)。
14趙健夫、錢易、顧夏聲,用厭氧酸化預處理焦化廢水的研究,環境科學,1990,11(3)。
15趙健夫、錢易、顧夏聲,焦化廢水中難降解物的分析,環境工程,1991,9(1)。
16Zhang Xiaojian,Wang Zhansheng,Gu Xiasheng,Simple Combination of Biodegradation and Carbon Adsorption-The Mechanism of the Biological Activated Carbon Process,Wat.Res.,1991,25(2)
17劉雙江、胡紀萃、顧夏聲,升流式厭氧污泥床處理豆製品廢水,中國給水排水,1992,8(1)。
18劉雙江、胡紀萃、顧夏聲,厭氧顆粒污泥形成過程中胞外多聚物作用的研究,中國沼氣,1992,10(1)。
19竺建榮、胡紀萃、顧夏聲,二相UASB工藝微生物生態學的研究,中國沼氣,1992,10(2)。
20周琪、袁嗣兵、竺建榮、胡紀萃、顧夏聲,升流式厭氧污泥床處理生活污水,中國給水排水,1992,8(4)。
21文湘華、錢易、顧夏聲,生物穩定塘碳、氮、磷物質遷移轉化模型的研究,生態學報,1992,12(1)。
22文湘華、錢易、顧夏聲,生物穩定塘常規運行狀態模擬與分析,環境科學,1992,13(3)。
23周岳溪、錢易、顧夏聲,生物除磷過程中乙酸鹽厭氧代謝機理的研究,環境科學研究,1992,5(3)。
24周岳溪、錢易、顧夏聲,假單胞菌磷代謝特性的研究,環境科學,1992,13(5)。
25周岳溪、錢易、顧夏聲,循序間歇式廢水生物除磷處理工藝微生物特性的研究,環境科學研究,1992,5(6)。
26顧夏聲,廢水生物處理數學模式,第二版,清華大學出版社,1993。
27竺建榮、胡貴平、胡紀萃、顧夏聲,胞外多聚物在污泥顆粒化過程中的作用研究,中國沼氣,1993,11(3)。
28耿艷樓、錢易、顧夏聲,簡捷硝化-反硝化過程處理焦化廢水的研究,環境科學,1993,14(3)。
29竺建榮、胡紀萃、顧夏聲,顆粒污泥的產甲烷細菌及結構模型初探,微生物學報,1994,33(4)。
30安仁虎、錢易、顧夏聲,厭氧過程在厭氧-好氧工藝處理染料工業廢水中的作用,環境科學研究,1994,7(3)。
31Mai Wenning,Jian Zhangpeng,Gu Xiasheng,A Test Method for Determining Biodegradability of Organic Substance,J.of Environmental Science,1995,7(2)
32左劍惡、袁琳、胡紀萃、顧夏聲,利用無色硫細菌氧化廢水中硫化物的研究,環境科學,1995,16(6)。
33王永儀、楊志華、蔣展鵬、顧夏聲、劉勇,H-酸廢母液的濕式空氣氧化處理,環境科學,1996,17(1)。
34何苗、張曉健、瞿福平、顧夏聲,焦化廢水中有機物在活性污泥法處理中的去除特性,中國給水排水,1997,13(1)。
35瞿福平、張曉健、何苗、顧夏聲,氯苯類有機物生物降解性及共代謝作用研究,中國環境科學,1997,17(2)。
36何苗、張曉健、瞿福平、顧夏聲,難降解有機物生物抑制特性的研究,環境科學,1997,18(2)。
37何苗、張曉健、顧夏聲,雜環化合物及多環方烴厭氧酸化降解性能的研究,中國給水排水,1997,13(3)。
38何苗、張曉健、瞿福平、顧夏聲,混合基質條件下難降解有機物生物降解性能,環境科學,1997,18(3)。
39顧夏聲、李獻文、竺建榮,水處理微生物學,第三版,中國建築工業出版社,1998。
40楊洋、左劍惡、卜德華、顧夏聲,好氧顆粒污泥亞硝化工藝的啟動與運行特性研究,環境科學,2007,28(11)。
41顧夏聲,胡洪營等,水處理生物學,第四版,中國建築工業出版社,2006。
❷ 怎樣去除水中 的硫酸鹽
1、如果水量較少:可採用化學方法,加入鋇鹽(如氯化鋇),使硫酸根變成硫酸鋇沉澱,然後過濾除去。
2、如果水量較多:可採用離子交換器了,通過一台陰離子交換器+一台陽離子交換器串聯在供水迴路中,即可達到目的。
Ba^(2+) + (SO4)^(2-)=(BaSO4)↓
陰離子交換器 又叫陰床,作用是用陰樹脂中的氫氧根交換掉水中的其他陰離子。
陽離子交換器 又叫陽床,根據其樹脂再生所用葯劑可分為氫型和鈉型;鈉離子交換器即軟化器是用於去除水中鈣離子、鎂離子,製取軟化水的離子交換器。
幾種重要硫酸鹽
硫酸鈣
自然界中的硫酸鈣以石膏礦的形式存在。含有兩個結晶水的硫酸鈣(CaSO4·2H2O)叫做石膏(也叫生石膏)。將石膏加熱到150℃,就會失去大部分結晶水而變成熟石膏(2CaSO4·H2O)。熟石膏與水混合成糊狀後會很快凝固,轉化為堅硬的生石膏。
利用石膏的這一性質,人們常利用它製作各種模型和醫療上用的石膏綳帶。在水泥生產中,可用石膏調節水泥的凝固時間。在石膏資源豐富的地方可以用它來制硫酸。
硫酸鋇
天然的硫酸鋇稱為重晶石,它是製取其他鋇鹽的重要原料。硫酸鋇不容易被X射線透過,在醫療上可用作檢查腸胃的內服葯劑,俗稱「鋇餐」。硫酸鋇還可以用作白色顏料,並可做高檔油漆、油墨、造紙、塑料、橡膠的原料及填充劑。
硫酸亞鐵
硫酸亞鐵的結晶水合物俗稱綠礬(FeSO4·7H2O)。在醫療上硫酸亞鐵可用於生產防治缺鐵性貧血的葯劑,在工業上硫酸亞鐵還是生產鐵系列凈水劑和顏料氧化紅鐵(主要成分為Fe2O3)的原料。
❸ 硫化氫硫化原料廢水處理用什麼原料處理
摘要 煉油、紡織、印染、焦炭、煤氣、紙漿、製革及多種化工原料的生產過程中都會排含有硫化物的工業廢水,含有硫酸鹽的廢水在厭氧條件下也可以還原產生硫化物成為含有硫化物的廢水。含硫化物廢水的處理方法有將硫化物轉化為硫化鹽進行絮凝沉澱和將硫化物轉化為硫化氫汽提兩類。
❹ 含硫酸鹽廢水怎麼處理
一般而言,如果想要將硫酸鹽處理干凈,只能加入含鋇溶液,比如,氯化鋇溶液回。
加入足量的氯化答鋇溶液後,由於鋇離子具有很強的毒性,需要加入碳酸鈉或碳酸鉀溶液以除去鋇離子(結合生成BaCO3沉澱)。之後除去碳酸根比較容易,加入稀酸調節即可。
❺ 污水處理入門必看的幾個關鍵點
1COD、CODcr、BOD、BOD5差別
B/C比是BOD5比CODcr,B不是BOD。以實例來看,如好氧進水CODcr=1000mg/L,BOD5=400 mg/L,出水CODcr=100 mg/L,BOD5=20 mg/L。那麼CODcr共去除900 mg/L,BOD5共去除不到400 mg/L。900-380 mg/L的CODcr怎麼去除的?
1))BOD-BOD5那一部分被生化;
2)污泥吸附(低負荷下要忽略些) 這個BOD5還是BOD都很復雜,出口的一般不是進水中的那些,而是基質、菌類的相關產物;詳細的說比較復雜,理解一二就可以,而且最主要的是認定不可降解的不會發生變化,其餘的可能都是變的。不可生物降解的是沒有變化的,除去吸附等等之類的作用,無論是厭氧還是好氧SMP都是一樣的。
一般情況,污水處理的CODcr可以達標,BOD5是都達標的。
2COD檢測方法的差別
嚴格規范的蒸餾法和快速消解法,以前者為准。操作中為了簡便想採取後者怎麼辦?取同濃度范圍內的實測水樣做兩種方法的對比試驗,找到二者的近似關系。
偷懶法:同濃度范圍內實測水樣,蒸餾一小時和蒸餾兩小時,對比試驗,找關系。
3關於溶解氧
好氧池中的溶解氧是曝氣設備供氧與有機物或無機物被活性微生物氧化或自然氧化兩種過程達到平衡之後的結果。或者可以說成曝氣供氧,發生生化或化學反應和散失兩個過程的殘余。所以曝氣池,控制溶氧2.0mg/L,只要設計與實際不差太多,那麼OK。
但是如果沒有持續的供氧,比如曝氣調節池的出水不在有氧氣供入(跌水曝氣之類的忽略),而有機物含量有比較高,碰巧還遇上可以利用氧的大量微生物(比如UASB污泥中的兼性細菌或者A池中的好氧細菌),那麼殘留的那一個左右的DO顯然不是成百上千的COD的對手。
4關於厭氧
厭氧是什麼?是UASB?是A2/O一部分?是水解酸化?是消化池?其實厭氧是一種生化反應的條件,它不是厭氧工藝,是厭氧的工藝。為什麼談到這個問題,歸根是有眾多諸如:XX厭氧和XX厭氧有什麼差異,溶解氧應該控制多少的問題;在這之前則需要搞明白厭氧這個條件是針對誰的。厭氧反應,主體是有機物逐步轉化為甲烷和CO2的過程,注意這里的「逐步」。
再者,很多人又說了厭氧反應器就得與空氣隔絕,所以要進行封頂。對此,想說以下幾點:
說厭氧反應器,明顯沒搞懂厭氧的是什麼?厭氧的是反應器?是水?還是微生物?
與空氣隔絕,這個更可悲了,姑且不說他分不清水中的溶解氧和微生物環境的溶解氧,單是溶解氧與空氣中的氧就搞不清楚。我們不妨回顧一下曝氣設備的氧利用率,穿孔管3-5%,曝氣軟管8-12%,曝氣頭10-20%。如果空氣向水中溶氧那麼無敵,那麼我們對出售曝氣頭的該如何處置?
對於封頂並不反對,厭氧消化池和EGSB等厭氧反應器都是利用封頂去收集沼氣,(當然UASB和IC不是,靠三分)還可以減少臭味擴散。不過把封頂放在廣泛使用的UASB上並且以此來隔絕空氣,實在是有些搞笑。
下面再簡單科普下厭氧的工藝如何簡單識記:
A、厭氧接觸:消化池+厭氧沉澱池+厭氧污泥迴流系統,這個與好氧工藝中的接觸氧化沒有關系,莫聯想到填料上。
B、UASB:上流式厭氧污泥床反應器,污水從下而上穿過污泥床體,但是有很多UASB的布水器是位於池頂的,也不是UASB就沒有迴流。
C、UBF:就是UASB+AF,形象點說UASB上面再加上填料層。
D、EGSB:UASB拉高,做上迴流,上流速度比UASB高很多,要力圖控制污泥顆粒化。
E、IC:甭管有沒有外迴流(水泵迴流),有內迴流就行。
F、ABR:上下折流板。
有關厭氧產甲烷去除水中有機物的原理在這里也多說幾句。
先是「厭氧產甲烷」,厭氧過程,如果我們不談釋放磷,常見的是水中有機物厭氧發酵的過程。有機物好氧發酵的過程,大家都清楚是一個氧化還原反應,進入水中的氧氣作為氧化劑,氧化水中的有機污染物變成CO2和H2O,使得(還原性的)COD得以氧化去除。所以很多人理所應當的認為,厭氧是個還原反應嘍。
這就有必要讓抱有該觀點的朋友先回憶一下初中化學,氧化反應和還原反應,可以剝離開嗎?
顯然是不能的,厭氧也是,在進行到產甲烷之前的厭氧發酵過程,基本上是有機物自身相互的氧化和還原(這話說得並不嚴謹,但是方便理解),也就是說有機物本身是還原性的,它反應之後變成一部分還原性更強,一部分還原性相對弱一些的兩種有機物,而這總體上相抵消。所以如果厭氧發酵未到產甲烷地步,COD變化可以忽略不計(這就是水解酸化COD去除率低下的原因)。
當這個過程進行的非常徹底時,產物逐漸轉化為CO2和CH4,主要體現還原性也就是導致水中COD的甲烷因為溶解度低,脫離水相,這是產甲烷過程去除有機物COD的原因。
5
關於水解酸化
水解酸化的目的是改善生化性,為下一個生化處理單元服務,其評價指標有酸化度、pH、B/C、COD去除率等,其中COD去除率是裡面可靠性最差的。
對於在上一環節說到的「水解酸化COD去除率低下」,有水友可能要反駁說「我的水解酸化去除率不低下呢」;對此,澄清下這一水解酸化去除率是從哪裡來的。
1)水解酸化純粹的控制到產甲烷之前,是不可能的,也就是說,或多或少總有一點甲烷產生;而且厭氧過程產生一點氫氣也很正常,有聽說過產氫產乙酸過程吧。所以,水解酸化池表面浮起的一個個泡泡,也許就是你想找的原因之一。
2)細菌不管是什麼樣的,總有繁殖下一代的職責,水解酸化菌群也是,它們或多或少的總要利用有機物合成點細胞物質。
3)進水SS如果量很大,會被水解酸化污泥吸附相當量的一部分,這個對COD的影響不可忽略,有時甚至十分巨大。
6
工藝中的兩級與兩相
眾所周知,不同的水質決定不同的工藝。產甲烷是厭氧去除水中有機物的關鍵因素,兩級和兩相的差別也就在第一個厭氧反應器是否產甲烷上;如果第一個產甲烷,第二個有機負荷勢必要小很多,這是問題的關鍵。
一般來說,兩級厭氧適應的水質是較高濃度的廢水,它的生化性並不很差,第一級通過沉降和發酵產氣降低第二級的負荷。兩相厭氧,一是主要針對難生化降解廢水,靠第一相改善生化性,二是針對硫酸鹽廢水,靠第一相進行硫酸鹽還原,然後去除硫化物再進第二相產甲烷,三是針對易酸化廢水易波動廢水,放在前面徹底酸化掉以穩定pH。
如酒精項目常用兩級,那些幾萬以上的,如果生化性不差並且水量不小,個人建議也用兩級,但是控制其實並不簡單,尤其是第一級在高濃度、高VFA下運行。生化性較差用兩相的就很多了,其實生化性不差的也常常用兩相。
有的工藝是用水解酸化+氧化(處理COD較低的廢水),有的是UASB+氧化(一相厭氧,處理COD高的廢水),有的是水解酸化+UASB+氧化(就相當於兩相厭氧);對此分析如下:
1)水解+好氧工藝,處理的廢水濃度確實常見的要低一些,因為水解並不能提供較有力的COD消解能力,當然這個工藝相比較直接好氧而言,更多的可以用在進水COD1k-2k之間的項目,這種水質進厭氧節約的曝氣能耗和提升水用的動力能耗差不多,厭氧降解程度上優勢也不明顯,但是直接進好氧濃度又偏高。因此常搞出水解+好氧,利用水解過程微量講解和吸附去除COD來減少好氧的負擔。當然這是在不討論改善生化性方面的前提下。
2)假如水解酸化+UASB+氧化就相當於兩相厭氧,有文章說「厭氧發酵產生沼氣過程可分為水解階段、酸化階段、乙酸化階段和甲烷階段等四個階段。水解池(水解池進行的就是水解酸化反應吧)是把反應控制在第二階段完成之前,不進入第三階段。」
那麼水解酸化產生的應該是有機酸吧,那乙酸化階段在哪發生的?兩相厭氧的產酸相產的是什麼酸?它的乙酸化階段又是在哪發生的呢?
產乙酸這個詞和產乙酸階段是應該分開的,因為在產酸階段就會產生一部分乙酸了但並不一定作為過程的主體,這要看廢水的有機物組成。產乙酸階段,這裡麵包含了兩類反應,一是更長碳鏈的VFA以及乳酸、丙酮酸和醇類等分解產生乙酸,二是同型產乙酸菌,利用CO2和H2的無機組合進行產乙酸。兩相的水解酸化過程中產生的有機酸,有可能是甲酸、乙酸、丙酸、丁酸…以及乳酸中的任一種,也有可能是未完全降解的長鏈脂肪酸。
個人認為在實際工程中,兩相的分界線並不徹底分明,水解酸化相先後延伸至產乙酸甚至少量產甲烷都是經常遇見的。至於產甲烷相,它就沒有不含水解酸化這兩個過程的時候,產甲烷相四個過程都會存在,只不過前兩個過程被之前的相分擔了一部分。乙酸化發生在哪裡,這個過程應該大部分在後一相,兩相的定義並不是「水解酸化階段+乙酸化產甲烷階段」,只要在流程上將其主體分開即可叫做兩相,至於分界線模糊,沒有關系。
基於水解和酸化兩個過程無法分開的事實,三相取決於產乙酸和產甲烷是否可以分開。
對於三相分離器的工作原理大致可表述為:氣液固三相在氣體擾動和液體升流的作用下從下方進入三相分離器;污泥(固)撞擊在三相分離器上,上面吸附的沼氣氣泡釋放出來;沼氣氣體被三角形集氣罩收集;脫離氣體的泥水(固液相)穿過三相分離器集氣罩之間的縫隙,到達沉澱區;污泥(固)在沒有氣體擾動的條件下沉澱,落回三相分離器下方。核心是氣體被收集和污泥沉澱。
❻ 蜜棗廢水的處理工藝
蜜棗廢水的處理工藝:
蜜棗廢水中的糖類屬於大分子有機物,大多數微生物並不能直接利用,因此先把大分子的糖類物質首先分解為小分子的物質,比如葡萄糖、氨基酸等等,在分解過程完成之後就可以利用好氧池的曝氣效果,去除去廢水中的有機物了。在蜜棗廢水的處理中,通常情況下採用UASB反應器來將大分子有機物分解為小分子有機物,反應器的厭氧發酵過程很好的降低了大分子有機物的含量,大大增加了微生物可利用的有機物的含量,從而讓後續反應可以順利進行。
UASB反應器廢水被盡可能均勻的引入反應器的底部,污水向上通過包含顆粒污泥或絮狀污泥的污泥床。厭氧反應發生在廢水和污泥顆粒接觸的過程。在厭氧狀態下產生的沼氣(主要是甲烷和二氧化碳)引起了內部的循環,這對於顆粒污泥的形成和維持有利。在污泥層形成的一些氣體附著在污泥顆粒上,附著和沒有附著的氣體向反應器頂部上升。上升到表面的污泥撞擊三相反應器氣體發射器的底部,引起附著氣泡的污泥絮體脫氣。氣泡釋放後污泥顆粒將沉澱到污泥床的表面,附著和沒有附著的氣體被收集到反應器頂部的三相分離器的集氣室。
蜜棗廢水屬於食品製造業裡面的高糖度有機廢水,這類廢水有機物含量非常高,處理不當的話,進入水體,非常容易就造成水環境的破壞,包括水體富營養化,藻類大量繁殖等,進而引發水中生物的缺氧死亡,引起水體的黑臭現象。
❼ 含硫廢水密閉靜置氨氮和硫化物會降低嗎
近年來,厭氧生物處理技術因其剩餘污泥量少、節能、資源化程度高,成為國內外高濃度有機廢水處理技術的發展趨勢。用厭氧生物法取代目前製革廢水普遍採用的好氧生物法對於降低產品成本、提高污水處理深度具有經濟和環境的雙重效益。但是,製革廢水中高濃度的硫化物、硫酸鹽對厭氧微生物的毒性抑制,使得這一技術在處理製革廢水時受到諸多限制。此外,製革廢水氨氮的達標排放也一直是困擾生化法的一項難題。 本課題針對這一問題,重點分析了低濃度氨氮廢水亞硝化過程的影響因素,為SHARON反應器在製革廢水中的應用進行了嘗試性的探索。此外,研究了硫化物在厭氧污泥中的分布,廢水中硫化物的毒性效應及其脫除機制,並結合UASB反應器的運行特點,微生物的特性分布、種群組成、生長變化規律等,探討了UASB處理含硫有機廢水的有效途徑,為製革廢水厭氧生物處理提供理論和實踐依據,研究主要結果為: (1)低氨氮、低鹼度廢水快速實現亞硝化過程的控制因素為:進水鹼度、pH值和FA.等。出水的pH值可以通過控制反應器內部的鹼度來進行調節。控制進水鹼度在113.1mg/L~269.7mg/L,HRT為48h,其亞硝酸累積率可達到67.15%,可完全實現低氨氮的亞硝化,其出水再經反硝化則氨氮有望達標。 (2)硫化鈉對污泥產甲烷活性抑製作用主要有2個原因,硫化鈉濃度低於120mgS/L時,產甲烷活性抑制主要由pH增加引起,超過120mgS/L後,抑製作用主要由液相中高濃度的硫化物引起;隨著硫化物加入量的增加,液相硫化物濃度、污泥吸附量及H<,2>S逸出量均顯著增加,而H<,2>S逸出量在160mgS/L時達到最大,污泥吸附趨於飽和: (3)pH對硫化物的逸出具有復雜的影響:pH酸性時,污泥產甲烷活性嚴重受抑可使氣提效果不佳而限制H<,2>S的逸出速率,pH增加,污泥活性增加與H<,2>S釋放量有明顯對應趨勢,pH>8後,液相中游離的H<,2>S逐漸減少,H<,2>S逸出受到抑制,大量的S<'2->集存於液相中,污泥對硫化物的吸附趨於飽和狀態;溫度升高,有利於污泥吸附的硫化物向液相中轉移和H<,2>S逸出,35℃後,硫化物對產甲烷活性抑制變化不大。 (4)氣提作用有助於水體中H<,2>S的脫除,硫化物濃度較高時利於硫脫除;進水流量、pH的升高,不利於H<,2>S的脫除;污泥吸附也隨之增大。在進水pH穩定在6前提下,氣提對硫化物的脫除效果最好。 (5)兩相UASB反應器40d運行穩定後,兩反應器底部的微生物活性均好於項部,產酸相中產酸菌大量富集,相分離較成功。整個運行中,進水有機負荷從 3.6KgCOD/(m<'3>·d)增至17.41KgCOD/(m<'3>·d),COD去除率穩定在80%左右。 (6)穩定運行時,進水COD和硫化物濃度分別為3000~4500mg/L和80~120mgS/L左右,pH9~10,系統運行參數為:進水流量1.0L/h左右,脫硫裝置氣提流量為30~35L/h。經系統處理後,總的COD去除率達到90%以上,出水COD濃度維持在300 mg/L,出水硫化物濃度均在10mg/L以內。 通過研究證明,含硫有機廢水通過一級UASB+氣提+二級UASB的組合工藝能有效的達到去除目的,同時也為製革工業廢水中硫的回收和資源化利用提供了一個可行的途徑。而含氮廢水經前期處理後的低氨氮廢水經亞硝化+反硝化工藝為製革廢水的達標排放確立了新的方向。
收起∧
❽ 廢水處理問題,在線等,急.....
1、出現浮泥可能是污泥解絮造成的,解絮是因為負荷過低,污泥發生自身的氧化,白色的泡沫是表面活性物質過多或者是洗滌劑過多,也可能是負荷過高
2、UASB里有很多的厭氧微生物,厭氧消化過程中的主要微生物
主要介紹其中的發酵細菌(產酸細菌)、產氫產乙酸菌、產甲烷菌等。
①、發酵細菌(產酸細菌):
發酵產酸細菌的主要功能有兩種: 水解——在胞外酶的作用下,將不溶性有機物水解成可溶性有機物; 酸化——將可溶性大分子有機物轉化為脂肪酸、醇類等;
主要的發酵產酸細菌:梭菌屬、擬桿菌屬、丁酸弧菌屬、雙岐桿菌屬等;水解過程較緩慢,並受多種因素影響(pH、SRT、有機物種類等),有時回成為厭氧反應的限速步驟;產酸反應的速率較快;大多數是厭氧菌,也有大量是兼性厭氧菌;可以按功能來分:纖維素分解菌、半纖維素分解菌、澱粉分解菌、蛋白質分解菌、脂肪分解菌等。
②產氫產乙酸菌:
產氫產乙酸細菌的主要功能是將各種高級脂肪酸和醇類氧化分解為乙酸和H2;為產甲烷細菌提供合適的基質,在厭氧系統中常常與產甲烷細菌處於共生互營關系。
主要的產氫產乙酸反應有:
乙醇:
丙酸:
丁酸:
注意:上述反應只有在乙酸濃度很低、系統中氫分壓也很低時才能順利進行,因此產氫產乙酸反應的順利進行,常常需要後續產甲烷反應能及時將其主要的兩種產物乙酸和H2消耗掉。
主要的產氫產乙酸細菌多為:互營單胞菌屬、互營桿菌屬、梭菌屬、暗桿菌屬等;多數是嚴格厭氧菌或兼性厭氧菌。
○3、產甲烷菌
❾ 想問下污水處理UASB工藝和ABR工藝的使用范圍是哪些以及UBF工藝的缺點請安問題回答,謝謝
UASB和ABR都是抄用於高濃度污水厭氧的工藝,具體范基本上都圍繞著高濃度,COD≥800mg/L的污水而言的,低於這個濃度個人認為水解酸化或者直接好氧工藝就行了。只要污水中沒有危害微生物的成分,PH合理水溫合理基本上都能用。
ABR比UASB有更好的分區處理的效果,能夠養出專屬菌群,避免前後相互干擾,但是後幾級的分級的處理效率會明顯下降,甚至是沒效果,更糟糕的是還有副作用(比如在SRB硫酸鹽還原菌作用下會出現更多的硫化氫危害後續好氧工藝令其中毒,需要用CAF可以簡單緩解)。
UBF是UASB的改良加強版,目前很常見,同樣尺寸的效果比UASB好些一般COD去除效率能強10~20%,微生物也有很好的載體利於培養特別是世代時間很差的甲烷菌。當然缺點也很明顯,除了投資增加外,畢竟內部金屬零件支架多了更容易被硫化氫腐蝕(厭氧構築物通病),防腐需要認真做、好好做,盡量避免使用太多的金屬材質,而且如果填料沒有選擇好日後更換的機會都沒有。