A. 什麼是酵母循環處理系統
它可把廢水處理後所產生的污泥作為飼料或肥料而加以利用。而以前利用細菌的活性污泥法,則是將處理後的污泥進行燃燒處理。兩種方法相比,酵母循環系統不僅能夠有效利用資源,而且處理能力強,還可節省能源。因此該系統一問世,就倍受人們的注目。長期以來,在食品行業中酵母主要是用來促使醬油和豆醬等釀造發酵食品的生成。而這次開發的新式處理系統引入注目之處,就是把酵母用於廢水處理。
B. 微生物能處理廢水的原理是什麼
廢水處理有物理方法、化學方法和生物方法,而用微生物處理廢水的生物方法以效率高、成本低受到了廣泛使用。能除掉毒物的微生物主要是細菌、黴菌、酵母菌和一些原生動物。它們能把水中的有機物變成簡單的無機物,通過生長繁殖活動使污水凈化。有種芽孢桿菌能把酚類物質轉變成醋酸吸收利用,除酚率可以達到99%;一種耐汞菌通過人工培養可將廢水中的汞吸收到菌體中,改變條件後,菌體又將汞釋放到空氣中,用活性炭就可以回收。有的微生物能把穩定有毒的DDT轉變成溶解於水的物質而解除毒性。每年在運輸中有150萬噸的原油流入世界水域使海洋污染,清除這些油類,真菌比細菌能力更強。在去毒凈化中,不同的微生物各有「高招」!枯草桿菌、馬鈴薯桿菌能清除已內酷胺;溶膠假單孢桿菌可以氧化劇毒的氰化物;紅色酵母菌和蛇皮癬菌對聚氯聯苯有分解能力。
用微生物處理廢水常用生物膜法。所有的污水處理裝置都有固定的濾料介質如碎石、煤渣及塑料等,在濾料介質的表面覆蓋著一層由各類微生物組成的粘狀物稱為生物膜。生物膜主要是由細菌菌膠團和大量真菌菌絲組成,在表面還棲息著很多原生動物。當污水通過濾料表面時,生物膜大量地吸附水中各種有機物,同時膜上的微生物群利用溶解氧將有機物分解,產生可溶性無機物隨水流走,產生的二氧化碳和氫氣等釋放到大氣中,使污水得到凈化。
還有一種活性污泥法。所謂活性污泥是由能形成菌膠團的細菌和原生動物為主組成的微生物類群,及它們所吸附的有機的和無機懸浮物凝聚而成的棕色的絮狀泥粒,它對有機物具有很強的吸附力和氧化分解能力。
利用微生物凈化污水雖然取得了可喜的成就,但在提高工作效益方面還有不少工作要做,因此還不能廣泛應用於消除污染。
C. 酵母菌、黴菌和食用菌(比如蘑菇)分別能處理什麼廢水
一:酵母菌和食用菌屬於真菌,可以獨立生存
二: 細菌也可以獨立生存
三: 病毒不可以獨立生存,必須依附生命體,不具備生命特徵。
具體可以再查閱生物學中的物種分類
D. 酵母菌在污水處理中的作用
酵母菌作為一種極為寶貴的微生物資源,由於它具有良好的耐酸、耐滲透壓等特專點美因茨廣泛地應用屬於高濃度有機廢水的處理,包括有毒、含難降解污染物廢水的處理,其處理能力優於馴化後的活性污泥系統,同時具有吸附重金屬的作用;酵母菌能將大部分有機物轉化成無毒且營養豐富的細胞蛋白供人類利用。隨著酵母菌研究的深入和其他相關水處理技術的開發,酵母菌在廢水處理中將得到更多更好更深的應用,實現環境、社會和經濟等可持續發展。
具體可以參考網路文庫資料哦~http://wenku..com/view/49d8ed2431126edb6f1a10e3.html
E. 1g酵母粉提供多少cod
1g酵母粉提供68.8%cod。
澱粉是由許多脫水葡萄糖單元經糖苷鍵連接而成,每個脫水葡萄糖單元的2、3、6三個位置上各有一個羥基,因此,澱粉分子中存在著大量可反應的基團,澱粉衍生物是通過其分子中葡萄糖單元上羥基與某些化學品在一定條件下反應而製得的。
利用生產魔芋精粉後的下腳料,以尿素作催化劑,通過磷酸鹽酯化製成絮凝劑1號,其cod去除率68.8%,色度去除率達92%。在等以澱粉為原料進行處理,研究結果表明,對懸浮物、cod、色度的去除率較高且產污泥量少,處理後的廢水水質得到較大改善。
F. 發酵工程的應用
發酵工程,是指採用現代工程技術手段,利用微生物的某些特定功能,為人類生產有用的產品,或直接把微生物應用於工業生產過程的一種新技術。發酵工程的內容包括菌種的選育、培養基的配製、滅菌、擴大培養和接種、發酵過程和產品的分離提純等方面。
它是一級學科「輕工技術與工程」中的一個重要分支和重點發展的二級學科,在生物技術產業化過程中起著關鍵作用。
1)「發酵」有「微生物生理學嚴格定義的發酵」和「工業發酵」,詞條「發酵工程」中的「發酵」應該是「工業發酵」。
(2)工業生產上通過「工業發酵」來加工或製作產品,其對應的加工或製作工藝被稱為「發酵工藝」。為實現工業化生產,就必須解決實現這些工藝(發酵工藝)的工業生產環境、設備和過程式控制制的工程學的問題,因此,就有了「發酵工程」。
(3)發酵工程是用來解決按發酵工藝進行工業化生產的工程學問題的學科。發酵工程從工程學的角度把實現發酵工藝的發酵工業過程分為菌種、發酵和提煉(包括廢水處理)等三個階段,這三個階段都有各自的工程學問題,一般分別把它們稱為發酵工程的上游、中游和下游工程。
(4)微生物是發酵工程的靈魂。近年來,對於發酵工程的生物學屬性的認識愈益明朗化,發酵工程正在走近科學。
(5)發酵工程最基本的原理是發酵工程的生物學原理。
發酵工程是指採用工程技術手段,利用生物(主要是微生物)和有活性的離體酶的某些功能,為人類生產有用的生物產品,或直接用微生物參與控制某些工業生產過程的一種技術。人們熟知的利用酵母菌發酵製造啤酒、果酒、工業酒精,乳酸菌發酵製造乳酪和酸牛奶,利用真菌大規模生產青黴素等都是這方面的例子。隨著科學技術的進步,發酵技術也有了很大的發展,並且已經進入能夠人為控制和改造微生物,使這些微生物為人類生產產品的現代發酵工程階段。現代發酵工程作為現代生物技術的一個重要組成部分,具有廣闊的應用前景。例如,用基因工程的方法有目的地改造原有的菌種並且提高其產量;利用微生物發酵生產葯品,如人的胰島素、干擾素和生長激素等。
已經從過去簡單的生產酒精類飲料、生產醋酸和發酵麵包發展到今天成為生物工程的一個極其重要的分支,成為一個包括了微生物學、化學工程、基因工程、細胞工程、機械工程和計算機軟硬體工程的一個多學科工程。現代發酵工程不但生產酒精類飲料、醋酸和麵包,而且生產胰島素、干擾素、生長激素、抗生素和疫苗等多種醫療保健葯物,生產天然殺蟲劑、細菌肥料和微生物除草劑等農用生產資料,在化學工業上生產氨基酸、香料、生物高分子、酶、維生素和單細胞蛋白等。
G. 酵母菌用來處理工業廢水的優缺點
酵母茵作為一種極為寶貴的微生物資源,既具有細菌單細胞、生長快、能形成很好的絮體、適應於各種不同的反應器等特點,又具有真菌細胞大、代謝旺盛,耐酸、耐高滲透壓、耐高濃度的有機底物等特性,因此廣泛地應用於廢水的處理。隨著對酵母茵研究的深入和其他相關水處理技術的開發,酵母茵在廢水處理中將得到更多、更好、更深的應用,在實現環境、社會和經濟等可持續發展具有特殊的優越性。
關鍵詞:酵母菌廢水處理高濃度有機廢水有毒廢水重金屬離子廢水酵母菌是一大類單細胞真核微生物的總稱,主要分成兩類:(1) 發酵型酵母,是一種只能利用六碳糖進行酒精發酵的酵母;大部分酵母菌是屬於此類;(2)氧化型酵母,它包括假絲酵母、球擬酵母、漢遜酵母等,這類氧化型酵母菌正是水處理所利用的重點對象;因為它能利用多種有機物(簡單糖,有機酸、醇等),有的種能利用復雜化合物,因為酵母菌體內含有特殊的氧化分解酶[1]。除了強悍的代謝能力,因為菌體較大,因此也比較容易沉降。另外,酵母菌在快速分解污
染物的同時,還能能獲得酵母蛋白[5],既消除了環境污染,又進行綜合利用,形成良性的生態循環,符合綠色化學的理念[2]。一般廢水可分為高濃度有機廢水,含有重金屬離子的廢水,有毒、含難降解污染物廢水,以及生活廢水[3],本文將通過酵母菌對這幾種廢水的處理簡述一下酵母菌在廢水處理中的應用。
H. 微生物是怎樣凈化污水的
目前,廢水處理有物理方法、化學方法和生物方法,而用微生物處理廢水的生物方法以效率高、成本低受到了廣泛關注。
能除掉毒物的微生物主要是細菌、黴菌、酵母菌和一些原生動物。它們能把水中的有機物變成簡單的無機物,通過生長繁殖活動使污水凈化。
有種芽孢桿菌能把酚類物質轉變成醋酸吸收利用,除酚率可以達到99%;一種耐汞菌通過人工培養可將廢水中的汞吸收到菌體中,改變條件後,菌體又將汞釋放到空氣中,用活性炭就可以回收。
有的微生物能把穩定有毒的DDT轉變成溶解於水的物質而解除毒性。
每年在運輸中有150萬噸的原油流入世界水域使海洋污染,清除這些油類,真菌比細菌能力更強。在去毒凈化中,不同的微生物各有「高招」!枯草桿菌、馬鈴薯桿菌能清除體內酷胺;溶膠假單孢桿菌可以氧化劇毒的氰化物;紅色酵母菌和蛇皮癬菌對聚氯聯苯有分解能力。
用微生物處理廢水常用生物膜法。所有的污水處理裝置都有固定的濾料介質如碎石、煤渣及塑料等,在濾料介質的表面覆蓋著一層由各類微生物組成的黏狀物稱為生物膜。
生物膜主要是由細菌菌膠團和大量真菌菌絲組成,在表面還棲息著很多原生動物。當污水通過濾料表面時,生物膜大量地吸附水中各種有機物,同時膜上的微生物群利用溶解氧將有機物分解,產生可溶性無機物隨水流走,產生的二氧化碳和氫氣等釋放到大氣中,使污水得到凈化。
I. 工業廢水的生物處理方法
廢水生物處理法 biological treatment of wastewater 廢水生物處理是利用微生物的生命活動,對廢水中呈溶解態或膠體狀態的有機污染物降解作用,從而使廢水得到凈化的一種處理方法。 廢水生物處理技術以其消耗少、效率高、成本低、工藝操作管 理方便可靠和無二次污染等顯著優點而備受人們的青睞。
廢水生物處理技術常採用的方法有厭氧生物處理法、活性污泥法、生物膜法、氧化塘法。
厭氧生物處理法
此法主要用於處理污水中的沉澱污泥,又稱污泥消化,也用於處理高濃度的有機廢水。這種方法是在厭氧細菌或兼性細菌的作用下將污泥中的有機物分解,最後產生甲烷和二氧化碳等氣體,這些氣體是有經濟價值的能源。 厭氧生物處理過程分為3個階段:第一階段水解酸化,在水解酶的催化下,將復雜的多糖類水解為單糖類,將蛋白質水解為氨基酸,並將脂肪水解為甘油和脂肪酸;第二階段產酸,在產酸菌的作用下將第1階段的產物進一步降解為比較簡單的揮發性有機酸等,如 乙酸、丙酸、丁酸等揮發性有機酸,以及醇類、醛類等,同時生成二氧化碳和新的微生物細胞;第三階段產甲烷,在甲烷菌的作用下將第2階段產生的揮發酸轉化成甲烷和二氧化碳。處理後的污泥所含致病菌大大減少,臭味顯著減弱,肥分變成速效 的,體積縮小,易於處置。
活性污泥法
活性污泥法是一種應用最廣、工藝比較成熟的廢水生物處理技術。它利用含有好氧微生物的活性污泥,在通氣條件下,使污水凈化的生物學方法。根據曝氣方式的不同。分為普通曝氣法、完 全混合曝氣法、逐步曝氣法、旋流式曝氣法和純氧曝氣法。活性污泥法不僅用於處理生活污水、而且在印染、煉油、石油化工、農葯、造紙和炸葯等許多工業廢水處理中,都取得很好的凈化效果 活性污泥中的微生物以細菌為主,還包括真菌、藻 類、原生動物等。此法最大的弱點是產生大量的剩餘污泥,剩餘污泥已成為令人頭疼的難以解決的疑難問題,研究開發從源頭上不產生或少產生污泥的污水處理技術成為研究的熱點。
生物膜法
生物膜法和活性污泥法一樣都是利用微生物來去除廢水中有機物的方法。生物膜是微生物高度密集的物質,是由好氧菌、厭氧菌、兼性菌、真菌、原生動物等組成的生態系統,主要用於去除廢水中呈溶解的和膠體狀有機污染物 根據不同的理裝置,又分為生物濾池法、生物轉盤法、生物接觸氧化池法、流化床生物膜法、懸浮穎粒生物膜法等。它廣泛應用於石油、印染、造紙、農葯、食品等工業廢水的處理。它具有不存在污泥膨脹問題;對廢水水質、水量的變化有較好的適應性;剩餘污泥量少等優點。
氧化塘法
又稱生物塘法或穩定塘法,是利用一些適宜的自然池塘或人工池塘,由於污水在塘內停留的時間較長,通過水中的微生物代謝活動可以將有機物降解,從而使污水得到凈化的一種方法。在氧化塘中,廢水中的有機物主要是通過有機菌藻 共生作用去除的 氧化塘中同時可以進行好氧和厭氧性分解作用和光合作用,3種作用互相影響。氧化塘的效率較低,並需要較大的空間位置,氧化有機物所需的氧氣來源常不足,引起氧化作用不完全,因而常常產生較大的臭味。由於它是一個開放系統,所以它的處理效率受季節溫度波動的影響很大,這種處理系統只能在溫暖的地方使用。
J. 啤酒釀造的三廢處理
在啤酒釀造生產工藝流程分六個工段,即粉碎、糖化、麥汁、冷卻、發酵、過濾灌裝,每個工段都有以廢水為主的廢棄物產生。污染源頭主要有廢麥糟、廢酵母、熱冷蛋白凝固物、廢硅藻土等固液混和物及排渣水、洗糟水、廢酒花、洗酵母水、洗瓶水、酒頭排放殺菌廢水和各種洗滌水。啤酒廢水濃度高、流量大、污染區域廣,直接污染地表水和地下水。這樣大量的工業廢水該如何處理?首先是廢棄物的源頭的削減和利用。
源頭分段治理:
1、使用干排槽。在廢麥槽排出時將水流輸送改為氣流輸送、濕排槽改為干排槽,此項處理能減少廢水排放量,同時能加工麥糟干飼料向市場出售。
2、進行酵母回收。通過建立酵母回收系統,改造酵母烘乾設備,提高酵母回收能力,減少有機高濃度水排放量。
3、對廢硅藻土和冷熱凝固物的利用。硅藻土用作啤酒助濾劑,廢硅藻土含有大量酵母和其他有機物,冷熱凝固物含有大量蛋白質,將其混合加工作飼料可大大減少廢水中的污染物質。
4、回收酒瓶標簽紙的篩濾。灌裝工段每天加收一定量廢酒瓶,洗滌酒瓶的廢水中含有一些紙漿,紙漿水增加了廢水的排污負荷。在洗滌車間排污口設置篩網,經篩將大部分的紙漿濾出曬干用於造紙,廢液匯入總排集中治理。
5、清潔水的回收利用。
末端治理:
啤酒污染物源頭分段治理後,接著就是對啤酒廢水的末端治理。廢水主要來源為各類設備、窗口管道的洗滌水。主要污染物有澱粉、蛋白質、酵母菌殘體、廢酒花、殘留啤酒、少量酒糟、麥糟及洗滌發酵罐的廢鹼液。
1、酸化—SBR法處理啤酒廢水,其主要處理設備是酸化柱和SBR反應器。這種方法在處理啤酒廢水時,在厭氧反應中,放棄反應時間長、控制條件要求高的甲烷發酵階段,將反應控制在酸化階段。
2、UASB—好氧接觸氧化工藝處理啤酒廢水,主要處理設備是上流式厭氧污泥床和好氧接觸氧化池,該工藝處理效果好、操作簡單、穩定性高。上流式厭氧污泥床和好氧接觸氧化池相串聯的啤酒廢水處理工藝具有處理效率高、運行穩定、能耗低、容易調試和易於每年的重新啟動等特點。
3、新型接觸氧化法處理啤酒廢水,該處理工藝有以下主要特點:
(1)VTBR反應器由廢舊酒精罐改造而成,節省了投資;
(2)使罐中始終保持較高的溫度,提高了生物的活性。
4、生物接觸氧化法處理啤酒廢水,該工藝採用水解酸化作為生物接觸氧化的預處理,水解酸化菌通過新陳代謝將水中的固體物質水解為溶解性物質,將大分子有機物降解為小分子有機物。水解酸化不僅能去除部分有機污染物,而且提高了廢水的可生化性,有益於後續的好氧生物接觸氧化處理。