❶ 急急急!!!污水中氮和磷對環境有哪些危害分析生物脫氮除磷過程中不同階段微生物作用的特點
第1 卷第1 期
2 0 0 0 年2 月
環境污染治理技術與設備
Techniques and Equipment for Environmental Pollution Control
Vol . 1 , No . 1
Feb . , 2 0 0 0
生物脫氮除磷工藝中的
微生物及其相互關系
X
郭勁松 黃天寅 龍騰銳
(重慶建築大學城市建設學院,重慶400045)
摘 要
本文著重對近年來脫氮除磷微生物學方面的研究進展進行了綜述,分析了生物脫氮除磷
反應器中各類功能微生物間的相互作用關系,營養物代謝機理和對處理效率的貢獻,討論了
脫氮除磷生物學應深入研究的一些問題。
關鍵詞:廢水處理 脫氮除磷 微生物
一、前 言
生物方法脫氮除磷由於其處理效率高、運行成本較低、污泥相對易處理,受到廣泛重
視。目前已經發展了諸如A/ O、A2/ O、Bardenpho 、UCT、VIP、SBR 及氧化溝等較為成功
的脫氮除磷工藝。在生物脫氮除磷過程中,微生物的種類、數量和代謝活性以及它們之間
相互作用關系所形成的微生態系統的特徵,直接影響著廢水處理的效率。因此,分析研究
脫氮除磷微生物的種類及其相互作用的關系,對於生物脫氮除磷工藝的優化控制管理和
開發新工藝將會起到重要作用。
二、生物脫氮除磷活性污泥微生物組成
11 脫氮微生物
一般生物廢水處理反應器內的微生物都能降解蛋白質、多肽、氨基酸、尿素等含氮化
合物以獲得生命活動所需能量和其它小分子物質,並生成氨氮,這個過程稱為氨化[1 ] 。
蛋白質的分解過程如下[2 ] :
蛋白質
蛋白酶
蛋白腖
蛋白酶
多肽
肽酶
氨基酸
不同微生物所具有的蛋白酶也不盡相同,如枯草桿菌有明膠酶和酪蛋白酶,而大腸桿
菌沒有這兩種酶,因此不能分解明膠和酪蛋白。污水中能分解蛋白質的微生物種類很多,
特別是假單胞菌屬、牙孢菌屬中某些種均能產生蛋白酶。真菌中的麴黴、毛霉和木霉也能
X 本研究得到國家自然科學基金資助(59838300)
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
產生蛋白酶分解蛋白質。
氨基酸被吸收進入微生物細胞後,有的轉化為另一種氨基酸用於合成菌體蛋白質或
某些含氮化合物的合成。而另一部分氨基酸的降解主要通過脫氨基和脫羧基兩種方式。
由於微生物類型、氨基酸種類與環境條件不同,脫氨方式也不同,主要有:
a. 氧化脫氮:在有氧條件下好氧微生物將氨基酸氧化成酮基酸和氨。
b. 還原脫氮:在厭氧條件下,專性厭氧菌和兼性厭氧菌將氨基酸還原成飽和脂肪酸和
氨。
c. 水解脫氮和減飽和脫氮:不同氨基酸經此兩種方式脫氨生成不同的產物。如大腸
桿菌及變形桿菌水解色氨酸,生成吲哚、丙酮酸及氨;糞鏈球菌使精氨酸產生瓜氨酸;大腸
桿菌、變形桿菌、枯草桿菌和酵母菌等能將半胱氨酸分解為丙酮酸、氨和硫化氫。
硝化反應是在好氧狀態下由亞硝酸菌( Nit rosomonas ) 與硝酸菌( Nit robacter) 共同完
成的。亞硝酸菌有亞硝酸單胞菌屬、亞硝酸螺桿菌屬和硝酸球菌屬等,硝酸菌有硝酸桿
菌、螺菌屬和球菌屬等,兩者都屬專性好氧菌。硝化細菌幾乎生活在所有污水處理過程
中,它們都是革藍氏染色陰性,具有強烈的好氧性,不能在酸性條件下生長,由於這兩類細
菌不需要有機物作為養料,且是通過氧化無機的氮化合物得到所需的能量,故它們是化能
自養型的細菌[3 ] 。亞硝酸菌和硝酸菌以無機化合物CO2 -
3 、HCO -
3 及CO2 等為碳源,以
NH+
4 及NO -
2 為電子供體,O2 為電子受體,使氨氮氧化並合成新細胞,反應式可表示為:
55NH+
4 + 76O2 + 109HCO-
3
亞硝酸菌
C5H7NO2 + 54NO -
2 + 57H2O + 104H2CO3
400NO -
2 + NH+
4 + 4H2CO3 + HCO -
3 + 195O2
硝酸菌
C5H7NO2 + 3H2O + 400NO -
3
污水生物處理系統中微生物在無氧條件下大多具有反硝化能力,常見的有變形桿菌、
微球菌屬、假單胞菌屬、芽胞桿菌屬等[4 ] 。這些細菌利用硝酸鹽中的氧進行呼吸,氧化分
解有機物,將硝態氮還原為N2 或N2O ,其過程如下[5 ] :
NO -
3
硝酸鹽還原酶
NO -
2
亞硝酸鹽還原酶
NO
氧化氮還原酶
N2O
氧化亞氮還原酶
N2
Payne[6 ] (1973) 系統回顧了具有反硝化能力的廢水處理微生物,指出有些類群只具有
硝酸鹽還原酶,故只能將NO -
3 還原至NO-
2 ,如無色桿菌屬、放線桿菌屬、氣單胞菌屬、瓊
脂桿菌屬、芽孢桿菌屬等;而其它類群由於具有反硝化中的全部酶系,因此能將NO-
3 還
原成N2 ,如微球桿菌屬、丙酸桿菌屬、螺菌屬等。在所有反硝化菌中,有些是專性好氧菌,
有些是兼性厭氧菌。它們在好氧、厭氧或缺氧條件下,即使利用相同的有機基質,但通過
不同的呼吸途徑,產生的能量不同,同時細胞產量也不同。此外,少數專性和兼性自養細
菌也能還原硝酸鹽,如硫桿菌屬細菌能以氫氣還原性H2S 等無機物為電子供體,在厭氧
條件下利用NO -
3 作為電子受體來氧化還原性硫。
Kuenen J G等[7 ] (1987) 及Robert son L A. 等[8 ] (1992) 發現,許多異養型硝化細菌能
進行好氧反硝化反應,在產生NO -
3 和NO -
2 的過程中將這些產物還原,這為在同一反應
器中在同一條件下完成生物脫氮提供了可能。Vandegraaf 等[9 ] (1995) 研究發現異養硝
化、好氧反硝化細菌Thiosphaera pantot ropha 能把NH+
4 氧化成NO-
2 ,爾後通過反硝化途
徑將NO-
2 (與外源提供的NO -
2 和NO -
3 一起) 還原為N2 ,從而完成脫氮。
1 期 郭勁松等:生物脫氮除磷工藝中的微生物及其相互關系 9
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Mnlder A 等[10 ] (1995) 發現氨確實可以直接作為電子供體進行反硝化反應,並稱之
為Anaerobic Ammonium Oxidation (厭氧氨生物氧化) 。Vandegraaf 等[11 ] (1996) 通過研
究,證實了厭氧氨生物氧化是一個微生物過程,在厭氧分批培養中,氨與硝酸鹽同時被轉
化,僅有微量的亞硝酸鹽積累,一旦硝酸鹽耗盡,氨轉化即停止,但其中起作用的菌屬還待
進一步研究。
21 除磷微生物
在有氧條件下攝取磷,在厭氧條件下釋放磷原理[12 ,13 ,14 ,15 ] ,目前已被普遍接受。
Fuhs 等[16 ] (1975) 對Baltimore Black River 和Seneca Falls 這兩個具有很好除磷效果的污
水廠曝氣池中的活性污泥進行檢測,發現不動桿菌屬( Acinetobacter) 與磷的去除密切相
關。Buchan[17 ] (1983) 研究分析了除磷效果良好的幾個試驗裝置及污水廠的曝氣活性污
泥,表明不動桿菌是其中的優勢菌種,他認為廢水生物除磷過程首先是富集不動桿菌屬,
然後通過該菌過量吸收磷達到除磷的目的。此後,Lotter[18 ] (1985) ,Cloete 等[19 ] (1985) ,Bay2
ly 等[20 ] (1989) 和Beacham[21 ] (1990) 也分別在除磷活性污泥中檢測到了大量的不動桿菌屬。
然而,Brodich 等[22 ] (1983) 發現其生物除磷試驗裝置活性污泥的微生物中,不動桿菌屬是少
數菌屬,只佔總量的1 %~10 %,而優勢菌屬為氣單胞菌屬和假單胞菌屬。Hiraishi 等[23 ]
(1989) 比較了生物除磷工藝活性污泥與非除磷工藝活性污泥的微生物組成,發現兩者中的
不動桿菌都不佔優勢,在除磷A/ O 法活性污泥中不動桿菌屬只佔大約1 %。由此可見不動
桿菌並不是唯一的除磷微生物,還有其它微生物的除磷能力也不容忽視。
Mino[24 ] (1987) 提出內源糖通過EMP 途徑(酵解途徑) 降解,獲得的能量用來吸收醋
酸以合成PHB(聚羥基丁酸鹽) ,除磷菌在厭氧段降解內源糖的反應式為:
CH2O + 0. 083C6H10O5 (CH) + 0. 44HPO2 -
3 + 0. 023H2O
1. 33CH1. 5O0. 5 (PHB) + 0. 17CO2 + 0. 44H3PO4
圖1 厭氧狀態放磷[ 21 ]
在好氧或有NO -
3 存在條件下,因消耗
PHB 及內源碳而建立起的三羧酸循環和呼
吸鏈產生氫離子,為維持細胞質子動力pmf
的恆定趨向,細胞吸收過量磷,並合成豐富的
Poly - P[25 ] 。除磷菌生化反應模型如圖2 所
示。
31 具有反硝化能力的除磷菌(DPB)
在污水生物處理中,生物除磷通常是與
生物脫氮(硝化與反硝化) 工藝一起應用。如
圖2 所示,有些除磷菌亦能利用NO -
3 作為電子受體,在吸收磷的同時進行反硝化。許多
研究者[27 ] [28 ,29 ,30 ]在活性污泥系統和實驗室培養中發現了具有反硝化能力的除磷菌
(DPB) 。NO -
3 被用來氧化細胞內儲存的PHB ,然後以氮分子的形式從廢水中排除。這樣
引起水體富營養化的氮、磷兩大主要元素都被去除。Kuba[31 ] (1994) 發現DPB 除磷能力
與傳統A/ O 工藝中普通除磷菌相似,同時也具有建立在內源PHB 和糖類物質(Carbohy2
drate) 基礎上類似的生物代謝機理。在特定的條件下,除磷菌具有很強的反硝化能力。
1 0 郭勁松等:生物脫氮除磷工藝中的微生物及其相互關系 1 卷
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Kuba[32 ] (1997) 在Holten 污水處理廠的研究表明,約有50 %的除磷菌參與了反硝化活動。
圖2 好氧/ 缺氧狀態吸磷[ 26 ]
三、生物脫氮除磷工藝反應器中微生物關系
一般來說[33 ] ,微生物的相互關系有三種可能:第一,一種微生物的生長和代謝對另一
種微生物的生長產生有利影響,或者相互有利,形成有利關系,如生物間的共生和互生;第
二,一種微生物的生長與代謝對另一種微生物的生長產生不利影響,或者相互有害,形成
有害關系,如微生物間的拮抗、競爭、寄生和捕食;第三,兩種微生物生活在一起,兩者間發
生無關緊要、沒有意義的相互影響,表現出彼此對生長和代謝無明顯的有利或有害影響,
形成中性關系,如種間共處。
11 有利關系
微生物之間的有利關系可分為互生關系和共生關系。互生關系是微生物間比較鬆散
的聯合,在聯合中可以是一方得利,即一方為另一方提供或改善生活條件,或者是雙方都
得利。而共生關系是兩種微生物緊密地結合在一起,當這種關系高度發展時,就形成特殊
的共同體,在生理上表現出一定的分工,在組織和形態上產生新的結構。
生物脫氮系統中,互生關系主要表現為在化學水平的協作,即微生物間相互提供生長
因子、代謝刺激物或降解對方的代謝抑制物,平衡pH 值,維持適當的氧化還原電位或消
除中間產物的累積。氨化細菌,亞硝酸菌,硝酸菌及反硝化菌之間就表現為互生關系。在
氮素轉化過程中,氨化細菌分解有機氮化合物產生氨,為亞硝酸菌創造了必需的生活條
件,但對氨化細菌則無害也無利。亞硝酸菌氧化氨,生成亞硝酸,又為硝酸菌創造了必要
的生活條件。Chai Sung Gee 等[34 ]研究了亞硝化單胞菌屬與硝化桿菌在反應器內的相互
作用,運用懸浮生長實驗獲得的穩態氨和亞硝酸氧化的數據確定了這兩種細菌數量的生
長參數,得出結論:硝化桿菌的活性依賴於硝化桿菌對亞硝化單胞菌的數量比例,而亞硝
化單胞菌的活性則不受兩者之間數量比例的影響。可以斷定這兩個種群之間必然存在著
酶促共棲或生物化學的能量轉移。反硝化菌則在厭氧條件下將NO-
3 、NO -
2 還原為N2 氣
體,從污水的液相中排出,為亞硝化菌和硝化菌解除抑制因子,同時反硝化過程還提高了
反應器內的鹼度,部分地補充了硝化過程所消耗的鹼度,有利於反應器內pH 值穩定在硝
化菌活性較大的范圍內。
❷ 污水中BOD類物質、氮、磷以及重金屬類物質對水環境有什麼影響針對水體自凈,這些影響的不同之處在哪
BOD、氮、磷超標,將造成水體富營養化,產生綠藻,微生物不能生存。
重金屬超標,破壞微生物在水體的正常生存,而且對水體造成不能食用,使用後,人體將有嚴重的後患。
❸ 污水中氮和磷對環境有哪些危害
污水中的話主要導致水體富營養化,進一步導致水中藻類或水生植物的大爆發增值,導致水中含氧量下降,水中生物缺氧死亡,進一步加劇水體污染。嚴重時會堵塞航行,湖泊等靜水生態系統的滅絕。
❹ 氮氧化物的污染對環境的影響
氮氧化物與空氣中的水結合最終會轉化成硝酸和硝酸鹽,硝酸是酸雨的成因之一;它與其他污染物在一定條件下能產生光化學煙霧污染。
酸雨危害是多方面的,包括對人體健康、生態系統和建築設施都有直接和潛在的危害。酸雨可使兒童免疫功能下降,慢性咽炎、支氣管哮喘發病率增加,同時可使老人眼部、呼吸道患病率增加。酸雨還可使農作物大幅度減產,特別是小麥,在酸雨影響下,可減產 13% 至 34%。大豆、蔬菜也容易受酸雨危害,導致蛋白質含量和產量下降。酸雨對森林和其他植物危害也較大,常使森林和其他植物葉子枯黃、病蟲害加重,最終造成大面積死亡。
❺ 生活污水對環境的影響
未經處理的生活污水如果直接排入江河或湖泊,污水中含有的氮、磷等有機物就造成水體富營養化,大量消耗水中的的氧氣,造成魚類等生物死亡,水中大量增生水藻,使江河或湖泊出現水藻爆發,水質變臭。嚴重影響自然生態。例如,每年太湖的藻類爆發就是一個例子。
❻ 氮污染的氮污染的危害
水體中的氮主要來自生物體的代謝和腐敗以及工業廢水、生活污水的排放、氮肥的流失等。
污水中的氮有4種形態,即有機氮、氨氮、亞硝酸氮(少量)和硝酸鹽氮(硝化過程的最終產物),典型污水中總氮含量約為40~50mg/L。
水體中有過量氮會造成富營養化,使水質惡化,影響水生生物的生長與繁殖。
最嚴重的影響當屬富養水(所含氮養分過多)造成的「死亡水域」。氮流入到河流湖泊中後,為水域中藻類植物提供了豐富的營養,導致其快速生長,消耗了水中大部分的氧氣,任何水生動物都因缺氧而無法生存,以至於該水域成為「死水」。在墨西哥海灣密西西比河的入海口處就有一片面積達8000平方英里的「死亡水域」(約20480平方公里)。據統計,全世界約有400塊這樣的區域,總面積高達24.5萬平方公里。
❼ 氨氮超標有什麼危害
由於NH4+-N的氧化,會造成水體中溶解氧濃度降低,導致水體發黑發臭,水質下降,對水生動植物的生存造成影響。
在有利的環境條件下,廢水中所含的有機氮將會轉化成NH4+-N,NH4+-N是還原力最強的無機氮形態,會進一步轉化成NO2--N和NO3--N。根據生化反應計量關系,1gNH4+-N氧化成NO2--N消耗氧氣3.43 g,氧化成NO3--N耗氧4.57g。
水中氮素含量太多會導致水體富營養化,進而造成一系列的嚴重後果。由於氮的存在,致使光合微生物(大多數為藻類)的數量增加,即水體發生富營養化現象,結果造成堵塞濾池,造成濾池運轉周期縮短,從而增加了水處理的費用。
(7)含氮污水對環境的影響擴展閱讀:
注意事項:
1、廢水含量在100mg/L以下:建議加葯量按氨氮含量的30倍左右進行投加。
2、廢水含量在100-200mg/L以下:建議加葯量按氨氮含量的20倍左右進行投加。
3、廢水含量在200mg/L以上:建議加葯量按氨氮含量的15-20倍左右進行投加。
4、在氨氮污水處理工程中,由於工藝原理的不同,在投放氨氮去除劑的時候,選擇的投放位置也有所不同。通常情況下投放地點應選擇在沉澱池後的清水池或回調池,可以充分實現氨氮去除劑的作用,將污水中氨氮進行清除。
❽ 污水對環境有什麼危害
污水對環境的危害:
(1)含色、臭、味的廢水影響水體外觀、工業產品質量,專水生生物受這種有臭屬味廢水的影響,也帶有臭味,這不僅使魚貝類的質量下降,甚至使之無法食用。
(2)有機物污染微生物快速繁殖,使水中缺氧,引起有機物的嫌氣發酵, 分解出惡臭氣體,污染環境,毒害水生生物,它是水體污染最主要的方面。
(3)無機物污染 使水體PH值發生變化,破壞其自然緩沖作用、消滅或抑制細菌及微生物的生長,阻礙水體自凈作用。同時,增加水中無機鹽類和水的硬度,給工業和生活用水帶來不利因素,也會引起土壤鹽漬化。
(4)有毒物質的污染 毒害生物,影響人體健康,造成水俁病、骨痛病等公害病。
(5)富營養化污染 造成藻類大量繁殖,使水中缺氧,導致魚類死亡。水中氮化合物的增加,對人畜健康帶來很大的影響,輕則中毒,重則致癌。
(6)油的污染 不僅有害於水的利用,還造成魚類死亡、海灘變壞,休養地、風景區被破壞,鳥類也遭到危害。
(7)熱污染 熱電廠等的冷卻水是熱污染的主要來源,直接排入水體,可引起水溫升高,溶解氧減少,某些毒物的毒性升高,導致魚類死亡或水生生物種群改變。
(8)病原微生物污水 使受污染地區疾病流行。
❾ 含氮磷化合物的生活污水大量排放會使水體富營養化為什麼正確 那含磷洗衣粉的廢水為什麼不能排放
水中N、P含量過高會直接造成水體富營養化:先引起藍綠藻等藻類的大量繁殖,降低水體當中的溶解氧,使大量魚類死亡,水質嚴重惡化。
❿ 生活污水對環境的影響及處理方式
可以分如下幾點寫
1、氮磷的污染造成富營養化(設立專門除氮,除磷或在污水處內理廠進行深容度處理)
2、有機物污染(COD,BOD等)(建立污水處理設施,處理水達標排放)
3.、對景觀的破壞(可新建管網等公共設施)
4、病毒引起的疾病等(出水時消毒)