㈠ 電鍍廢水如何進行廢水零排放處理
當前的電鍍金屬廢水處理主要採用物理化學方法處理:利用選擇性樹脂吸附廢水回中的重金屬,利用答次氯酸鈉的氧化能力來破壞絡合劑、氰根離子,利用膜處理來濃縮重金屬離子,利用電解絮凝來沉澱金屬離子,利用氫氧化鈉提高廢水的酸鹼度來沉澱重金屬離子,利用生化處理來處理有機質,利用電解回收重金屬離子.等等,但是電鍍廢水實際上不能做到零排放,當前能實際做到60%的回用率就很好了.當然,有人宣稱可以利用薄膜蒸發等技術將廢水濃縮成固體廢物,從清潔生產的角度,這不是有效、低耗的合理方法.
㈡ 環保越來越嚴格,電鍍污水應該怎麼處理
【污水處理廠運營】電鍍廢水處理技術工藝詳解
電鍍廢水已經是我們必須要處理的一種廢水,大家也知道,如果不處理,對其放之任之,不管不顧的話,那麼會對我們的生態環境造成嚴重的破壞,最後承受惡果的一定是我們自己。
但是,電鍍廢水不是說處理就能處理的,我們需要專業的技術,所以近些年來,我們各大環保企業也一直在電鍍廢水處理技術上加大研究,國家也一直予以支持,接下來,就為大家做個電鍍廢水處理技術工藝詳解。
電鍍廢水的強制閉路循環
在電鍍生產過程中,當採取了先進的漂洗方法和降低漂洗耗水量的措施之後,漂洗水的耗量仍大於槽液的減量(耗量)時,此時,就不能實現廢水的自然循環,需要採取人工的強制措施,實現廢水的閉路循環系統,稱為廢水的強制循環,強制循環的處理技術,效果比較好的有以下幾種:
逆流漂洗-薄膜蒸發法
把電鍍生產過程中逆流漂洗系統中第一級漂洗槽的廢水引入薄膜蒸發器內進行蒸發濃縮,達到所要求的濃度後返回鍍槽重復利用,蒸發過程中產生的冷凝水(即凈化後的水)返回末級漂洗槽,作為漂洗水循環利用,從而構成廢水的閉路循環系統。
逆流漂洗-反滲透法
把逆流漂洗的第一級漂洗槽的漂洗水引入反滲透裝置,經反滲透處理後,濃水進行回收,返回鍍槽,淡水返回一級漂洗槽,構成閉路循環系統。處理過程中反滲透器只消耗一定的動力,不需要化學葯劑,不產生廢渣,無二次污染。節省能源。是處理電鍍廢水比較理想的技術裝備。在反滲透處理技術中,起關鍵作用的是反滲透膜,國內廣泛應用的有兩種膜,一種是醋酸纖維素膜,適用於處理鍍鎳廢水及其他接近中性溶液的電鍍廢水。另一種是聚碸醯胺膜,適用於用。對鉀鹽鍍鋅廢水宜採用雙陽柱串聯全飽和及初純水循環的基本工藝流程,實現回收氯化鋅和水的循環利用。
離子交換法
採用離子交換法處理電鍍廢水,需根據不同水質選用不同的流程,廢水中的金屬陽離子採用陽樹脂交換去除,陰離子採用陰樹脂交換去除。處理後的水為初級純水返回漂洗槽循環利用,樹脂再生下來的再生液回收金屬返回鍍槽重復利用,從而實現電鍍廢水的閉路循環系統,不外排廢水。如果回收的金屬溶液其濃度或純度不能滿足使用要求時,則需加濃縮裝置或凈化裝置,以保證回收的金屬廢液全部返回鍍槽使用。對於電鍍含鉻廢水,宜採用酸性陽柱同三個陰柱串聯全飽和初級純水循環的基本工藝流程,實現鉻酸回收和水循環利用。對於鍍鎳廢水,宜採用雙陽柱串聯全飽和及初級純水循環的基本工藝流程。實現硫酸鎳回收和水的循環利用。對於氰化鍍銅和銅錫合金廢水宜採用除氰陰柱與除銅陽柱串聯的基本工藝流程,實現回收鋼氰化鈉和氰化鈉及水的循環利用。對鉀鹽鍍鋅廢水宜採用雙陽柱串聯全飽和及初純水循環的基本工藝流程,實現回收氯化鋅和水的循環利用。
關於電鍍廢水處理技術工藝,綠日環境為大家介紹了以上4點,分別是電鍍廢水的強制閉路循環,逆流漂洗-薄膜蒸發法,逆流漂洗-反滲透法,離子交換法,當然,其工藝還遠不止這些,不過就不在這里說了。
㈢ 常用的電鍍廢水處理方法都有哪些
①現就處理重金屬方法的七種方法:1.硫酸亞鐵+石灰法 2.硫酸亞鐵+燒鹼法 3. 硫酸亞鐵+燒鹼+硫化鈉法 4.硫酸亞鐵+石灰+硫化鈉法 5.重金屬捕集劑一步法 6.重金屬捕集劑二步法 7.硫化鈉法。
②硫酸亞鐵:利用Fe2+在酸性環境下置換絡合態Cu2+,再加入鹼把PH調到9.5-11.5,讓重金屬離子以氫氧化物的形態沉澱下來。
③在置換過程中硫酸亞鐵需要大量過量,一般的情況需要過量4-5倍。按原水含銅31mg/L計算,需要含量為90%硫酸亞鐵(FeSO4.7H2O)400-500g/噸廢水。還調PH調到9.5-11.5需要大量的鹼性物質。大約需要0.8-0.9kg燒鹼或石灰(含量70%)1.0-1.2kg。
④如果採用石灰的話,將產生大量的污泥,1kg100%石灰將產生2.3kg污泥(干基)。換算成含水50%的污泥將是3.83kg,這些污泥因為含銅量低<0.5%,毫無利用價值,處理需要大量的人力、污泥處理設施、壓濾設備和污泥處理費用。因此硫酸亞鐵+石灰法處理PCB廢水表面上費用低,如果加上污泥處理費用成本是十分高。
⑤硫酸亞鐵法處理的水質一般情況銅離子含量是難以到達0.5mg/L,往往需要加入硫化鈉處理才能確保出水銅離子含量<0.5mg/L。由於此時廢水PH=9.5-10.5,進入生化系統還需要加硫酸回調到PH=6.0-9。因此,此方法操作十分繁瑣。亞鐵本身也會產生污泥,1kg亞鐵可產生0.6kg (含水量60%)的污泥。
⑥使用石灰的污泥含銅量低,無利用價值。 這種污泥屬於危險固體物,污泥處理費根據城市不同,價格差距比較大,另外需要場地堆放,每班至少得增加一位操作人員。另外石灰加葯系統復雜,容易堵塞管道,動力消耗大。
⑦使用燒鹼的污泥含銅較高一般是>1.5%,有一定利用價值,無需花錢請人處理,相反可以賣給有資質的單位。
⑧採用硫化鈉有不安全隱患,在加酸過程中,可能出現局部酸度過大,產生硫化氫氣體,危及人們生命安全。硫酸亞鐵法由於沉澱物是氫氧化物,有二次污染的可能。
⑨重金屬捕集劑法:重金屬捕集劑是有機硫、氮化合物,對重金屬離子有強力的螯合作用。無二次污染,無硫化氫氣體產生,處理PCB廢水的PH在6-9之間,不需要硫酸回調,處理的水質好,銅離子可以做到0.05mg/L,重金屬捕集劑在水中不殘留,對水體無害。污泥量少,污泥的含銅量2.5%,回收價值高。尤其是二步法,處理成本低廉,操作簡單可靠,是PCB廢水處理的發展方向。
⑩硫化鈉法礬花細小,難以沉澱,水體溶液發黑,氣味有時較大,成本高,COD容易超標,存在安全隱患,極少採用。
㈣ 含銅電鍍廢水的處理有哪些方法
1.1
中和沉澱法
目前國內常採用化學中和法、混凝沉澱法處理含銅綜合電鍍廢水,在對廢水中的酸、鹼進行中和的同時,銅離子形成氫氧化銅沉澱,然後再經固液分離裝置去除沉。單一含銅廢水在pH值6.92時,就能使銅離子沉澱去除而達標,一般電鍍廢水中的銅與鐵共存時,控制pH值在8~9,也能使其達到排放標准。然而對既含銅又含其它重金屬及絡合物的混合電鍍廢水,銅的去除效果不好,往往達不到排放標准,主要是因為此方法的處理實質是調節廢水pH值,而各種金屬最佳沉澱的pH值不同,使得去除效果不好;再者如果廢水中含有氰、銨等絡合離子,與銅離子形成絡合物,銅離子不易離解,使得銅離子不能達標排放。特別是對含有氰的含銅混合廢水經處理後,銅離子的濃度和CN-的濃度幾乎成正比,只要廢水中的CN-存在,出水中的銅離子濃度就不會達標[1]。這就使得利用中和沉澱法處理含銅混合廢水的出水效果不好,特別是對於銅的去除效果不佳。
1.2硫化物沉澱法
硫化物沉澱法處理重金屬廢水具有很大的優勢,可以解決一些弱絡合態重金屬不達標的問題,硫化銅的溶解度比氫氧化銅的溶解度低得多,而且反應的pH值范圍較寬,硫化物還能沉澱部分銅離子絡合物,所以不需要分流處理[2]。然而,由於硫化物沉澱細小,不易沉降,限制了它的應用,另外氰根離子的存在影響硫化物的沉澱,會溶解部分硫化物沉澱。沉澱法處理電鍍廢水應用最為廣泛,除了以上兩種常見的方法之外,
很多研究者把研究的重點放到了重金屬沉澱劑的開發上。用澱粉黃原酸酯(ISX)處理含銅電鍍廢水,銅脫除率大於99%。YijiuLi等利用二乙基氨基二硫代甲酸鈉(DDTC)
作為重金屬捕獲劑,當DDTC與銅的質量比為0.8~1.2時,銅的去除率可以達到99.6%[3],該捕獲劑已經工業應用。重金屬沉澱劑的研究將更有利於化學沉澱法的發展。
1.3電化學法
電化學方法處理重金屬廢水具有高效、可自動控制、污泥量少等優點,且處理含銅電鍍廢水能直接回收金屬銅,處理時對廢水含銅濃度的范圍適應較廣,尤其對濃度較高(銅的質量濃度大於
1g/L時)的廢水有一定的經濟效益,但低濃度時電流效率較低。該方法主要用於硫酸銅鍍銅廢水等酸性介質的含銅廢水,是較為成熟的處理含銅電鍍廢水的方法之一,國內有商品設備供應。目前,常用的除平板電極電解槽外,還有含非導體顆粒的平板電極電解槽和流化床電解槽等多種形式的電解槽。近年來的試驗研究該方法也能用於氰化銅、焦磷酸鍍銅等電鍍廢水處理。L.Szpyrkowicz等利用不銹鋼電極在pH值為13時直接氧化氰化銅廢水,在1.5h 內使得含銅廢水中銅的質量濃度由470mg/L降到0.25mg/L,回收金屬銅335.3mg[4],同時指出不銹鋼電極的表面狀態對氧化銅氰化合物具有重要的影響,特別是水力條件對電化學反應器破銅氰絡合物的影響,並提出了新的反應器的動力和電流效率的精確數值[5]。研究者又不斷地改進電極,大大提高了電流效率和回收能力,然而由於電極很容易污染,耗能、處理費用高等缺點限制了電化學法處理含銅電鍍廢水的應用。2離子交換法處理含銅電鍍廢水離子交換法是處理重金屬廢水的主要方法之一。而各種離子交換劑不斷推陳出新。離子交換劑種類很多。近年來,纖維素物質開始受到青睞;絡合劑對該方法處理含銅電鍍廢水的影響較小。
2.1離子交換樹脂
離子交換樹脂除銅效果頗佳,樹脂法處理含高濃度氨銅漂洗液已見報道;也有工廠採用弱
酸性陽離子交換樹脂處理酸性硫酸鹽鍍銅漂洗廢水;有些企業用強鹼性陰離子交換樹脂處
理焦磷酸鹽鍍銅廢水,使部分水循環利用[6]。另外鰲合樹脂具有選擇性好、吸附容量
大、快速等優點受到水處理專家的青睞,許多研究者合成了多種多樣的鰲合樹脂用於銅的
去除和回收,宋吉明等[7]利用鈉型氨基磷酸鰲合樹脂使得處理後的出水Cu2+的質量濃度不大於0.015mg/L,M.R.Lutfor等[8]通過將聚丙烯晴嫁接在澱粉上制備含氨基功能團的鰲合樹脂,在pH值為6時對銅的吸附能力高達3.0mmol/g,並且交換速度快。然而由於這些鰲合樹脂價格昂貴,大多停留在試驗階段,較少在工業中大規模應用。
2.2離子交換纖維
離子交換纖維是近年來發展較快的一種離子交換新材料,在重金屬廢水處理領域也有較大的發展。改性聚丙烯腈纖維對電鍍廢水中銅的吸附研究表明,含銅電鍍廢水經改性聚丙烯腈纖維吸附後,銅離子的含量顯著低於國家排放標准[9]。近年來天然纖維研究成為熱點,天然纖維價格低廉,來源廣泛,是一種很有前途的離子交換劑,利用椰子外殼,棕櫚纖維和稻米外殼等天然纖維去除重金屬離子的研究效果很好。
3膜分離技術處理含銅電鍍廢水
膜法處理工業廢水一般選用反滲透、超濾及二者的結合技術,膜法處理工業廢水的關鍵是
根據分離條件選擇合適的膜。利用反滲透膜分離技術對含銅電鍍廢水的處理已見報道很多
[10],該方法對含銅絡合物的電鍍廢水處理效果也不錯,有的已應用於工業,並與其它水處理技術連用取得很好的效果。另外液膜法處理重金屬廢水在美國、日本、德國均有報道,有的已獲得經驗性規律,F.valenzuela等[11]利用Span-80-水楊醛肟液膜體系對酸性采礦廢水中的銅進行處理,並建立了攪拌條件下去除銅的動力模型。
4吸附法處理含銅電鍍廢水
吸附法處理重金屬廢水具有很多優點,成為水處理研究的重點,開發了許多性能良好的吸附劑,特別是利用工業廢棄物和農作物余物作吸附劑,並且對現有的吸附劑改性提高其吸附性能,成為近年來研究的熱點。沸石和麥飯石價格低廉,應用較廣泛,麥飯石對銅離子的吸附可以達到95%以上;藍晶石在適當的條件下對銅離子可以達到100%的吸附效果;煙煤灰、爐渣等可以用作吸附劑處理含銅電鍍廢水, 而且從煙煤灰中合成4A沸石可以吸附多種重金屬,對銅離子的吸附效果很好[12]。另外對現有的吸附劑進行改性可以大大提高交換容量和效率。李愛陽[13]對斜發沸石改性,提高了吸附性能,有效去除銅,並同時去除鋅、隔、鉛等重金屬離子,工業運行效果良好;SelvaajRengaraj等[14]對多空滲水性釩土進行氨化和質子化改性,實現了對含銅的質量濃度為100mg/L的廢水去除達到95%,為低濃度的含銅廢水的處理開辟了道路。目前研究重點轉向了一些植物和動物的廢棄物作
為吸附劑,為了增大吸附量和吸附選擇性,進行改性,改性後的吸附劑對銅離子的吸附效果顯著提高。經酒石酸改性後的谷殼大大提高對銅離子的吸附效果[15],通過鹼液處理後的雞羽毛吸附銅離子的容量大大提高,吸附效果很好[16]。利用木屑吸附混合電鍍廢水中的銅離子,
效果優於單一廢水中銅的處理[17]。
5生物法處理含銅電鍍廢水
生物法處理重金屬廢水最大的特點是在運行過程中微生物能不斷地增殖,生物質去除金屬離子的量隨生物質量的增加而增加。生物法在應用上具有很多優點,如綜合處理能力較強,使廢水中的銅、六價鉻、鎳、鋅、隔、鉛等有害金屬離子得到有效的去除;處理方法簡便實用;過程式控制制簡單;污泥量少,二次污染明顯減少。然而生物法處理重金屬廢水存在著功能菌繁殖速度和反應速率慢,處理水難以回用的缺點。目前一些微生物已經應用於含銅電鍍廢水的凈化,生物吸附是利用一定種類的生物群積聚廢水中的重金屬,生物群可以被認為是生物吸附的離子交換劑。微生物有機體屬於不同的種屬,如細菌、真菌、酵母菌、藻類等,這些天然的、豐富的、價廉的微生物可以用作有效的生物吸附劑選擇性地去除廢水中的銅離子,有關利用微生物去除銅離子的報道很多[18-20]。雖然活性微生物的吸附量和吸附效率高於非活性微生物,通常仍選用非活性微生物,主要是非活性微生物不受環境毒性、營養物、生長介質的限制,解吸容易,微生物可以再利用,過程式控制制簡單,生物體停留時間較長,生物吸附迅速。採用微生物處理重金屬廢水的研究已成為熱點。
㈤ 電鍍廢水處理的方法有哪些
目前國內外電鍍廢水的主要處理方法有:
·化學法 從近幾十年的國內外電鍍廢水處理技術發展趨勢來看,電鍍廢水有80%採用化學法處理, 化學法處理電鍍廢水在技術上較為成熟。化學法包括沉澱法、氧化還原法、鐵氧體法等,具 有投資少、處理成本低,操作簡單等優點,適用於各類電鍍金屬廢水處理。但化學法需要不 斷消耗化工原料,並有污泥產生,排出的水回用困難,且佔地面積較大
·化學沉澱法
化學沉澱法是使廢水中呈溶解狀態的重金屬轉變為不溶於水的重金屬化合物的方法,包 括中和沉澱和硫化物沉澱等。 (1)中和沉澱法。在含重金屬的廢水中加入鹼進行中和反應,使重金屬生成不溶於水的 氫氧化物沉澱形式加以分離。中和沉澱法操作簡單,是常用的處理廢水方法。 (2)硫化物沉澱法。加入硫化物使廢水中重金屬離子生成硫化物沉澱而除去的方法。與 中和沉澱法相比,硫化物沉澱法的優點是:重金屬硫化物溶解度比其氫氧化物的溶解度更低, 反應pH值在79之間,處理後的廢水一般不用中和,處理效果更好。但硫化物沉澱法的缺點 是:硫化物沉澱顆粒小,易形成膠體,硫化物沉澱在水中殘留,遇酸生成氣體,可能造成二 次污染。
·氧化還原法 向廢水中投加還原劑將高價重金屬離子還原成微毒的低價重金屬離子後,再使其鹼化成 沉澱而分離去除的方法。工業上以化學還原法除鉻比較成熟。具體地講,工業上化學還原法 處理電鍍含鉻廢水的方法,有硫酸亞鐵 石灰法、亞硫酸鹽法、二氧化硫法、亞鐵鹽法、硫化 鹼法等。其中亞硫酸鹽法處理量大,綜合利用方便,在國內外應用最廣。如,六價鉻質量濃 度為140mg/L的某種電鍍廢水,用亞硫酸氫鈉進行處理,出水Cr 3+ 質量濃度可降為 0.7~1.0mg/L。另採用二氧化硫作還原劑處理高濃度大流量的含鉻廢水,國內已有工程實例。 亞鐵鹽還原沉澱法也是治理含鉻電鍍廢水的經典方法,被許多廠家採用。如某五金廠電鍍廢 水:六價鉻質量濃度為100mg/L,Ni 2+ 50mg/L,pH=4~6,經該法處理後出水達排放標准。目 前英、美等國應用水合肼對鍍鉻漂洗水進行槽內還原,反應速度快,處理效果好。 另外值得一提的是鐵屑法。鐵屑處理廢水最初就是從治理電鍍廢水開始的。國內外許多 文獻報導了生產規模的鐵屑處理電鍍廢水的情況。鐵屑法整個裝置易於定型化及設備製造工 業化,我國某些大型電鍍企業乃至鄉鎮企業鐵屑處理電鍍廢水的工業化裝置在運行中。 氧化還原法原理簡單,操作易於掌握,對某些類型的電鍍廢水是行之有效的,但是其出 水水質差,不能回用,處理混合廢水時,易造成二次污染,而且通用氧化劑還有供貨和毒性 的問題尚待解決。
·鐵氧體法 鐵氧體法是根據生產鐵氧體的原理發展起來的處理方法。該法處理重金屬廢水,能一次 脫除多種金屬離子,尤其適用於混合重金屬電鍍廢水的一次性處理,具有設備簡單,投資少, 操作方便等特點,同時形成的污泥有較高的化學穩定性,容易進行微分離和脫水處理。此法 在國內電鍍業中應用較廣,但在形成鐵氧體過程中需要加熱(約70℃),能耗高,存在著處 理後鹽度高,而且不能處理含Hg和絡合物廢水的缺點。
·離子交換法 離子交換法是利用離子交換劑分離廢水中有害物質的方法,含重金屬廢水通過交換劑時, 交換劑上的離子同水中的金屬離子進行交換,達到去除水中金屬離子的目的。此法操作簡單, 殘渣穩定,無二次污染,但由於離子交換劑選擇性強,製造復雜,成本高,再生劑耗量大, 因此在應用上受到很大限制。
· 吸附法 吸附法是利用吸附劑的獨特結構去除重金屬離子的一種方法。傳統吸附劑有活性炭、腐 殖酸、聚糖樹脂、碴藻土等。實踐證明,使用不同吸附劑的吸附法,不同程度地存在投資大, 運行費用高,污泥產生量大等問題,處理後的水難於達標排放。
·電解法 電解法是利用金屬的電化學性質,在直流電作用下而除去廢水中的金屬離子,是處理含 有高濃度電沉積金屬廢水的一種有效方法,處理效率高,便於回收利用。但該法缺點是不適 用於處理含較低濃度的金屬廢水,並且電耗大,成本高,一般經濃縮後再電解經濟效益較好。
·蒸發濃縮法 蒸發濃縮法是對電鍍廢水進行蒸發,使重金屬廢水得以濃縮,並加以回收利用的一種處 理方法,一般適用於處理含鉻、銅、銀、鎳等重金屬廢水,對含重金屬離子濃度低的廢水, 直接應用蒸發濃縮回收法能耗大,成本高。蒸發濃縮處理重金屬廢水一般是與其它方法並用,
㈥ 電鍍含鉻廢水處理有幾個方法
電鍍含鉻廢水的鉻的存在形式有Cr6+和Cr3+兩種,其中以Cr6+的毒性最大。含鉻廢水的處理方法較多,常用的有電解法、化學法、離子交換法等。
工具/原料
亞硫酸鹽
硫酸亞鐵
方法/步驟
電解法
電解還原處理含鉻廢水是利用鐵板作陽極,在電解過程中鐵溶解生成亞鐵離子,在酸性條件下,亞鐵離子將六價鉻離子還原成三價鉻離子。同時由於陰極上析出氫氣,使廢水pH逐漸上升,最後呈中性,此時Cr3+、Fe3+都以氫氧化物沉澱析出,達到廢水凈化的目的。
電解還原處理含鉻廢水的工藝參數:
① 含鉻廢水Cr6+濃度為50~200mg/L;
② 廢水pH≤6.5,一般含鉻25~150mg/L之間的廢水,pH值為3.5~6.5,故不需調節pH值;
③ 溫度影響不大,一般處理後水溫約上升1~2℃。
電解還原法具有體積小、佔地少、耗電低、管理方便、效果好等特點。缺點是鐵板耗量較多,污泥中混有大量的氫氧化鐵,利用價值低,需妥善處理。
化學法
電鍍廢水中的六價鉻主要以CrO42-和Cr2O72--兩種形式存在,在酸性條件下,六價鉻主要以Cr2O72形式存在,鹼性條件下則以CrO42-形式存在。六價鉻的還原在酸性條件下反應較快,一般要求pH<4,通常控制pH2.5~3。常用的還原劑有:焦亞硫酸鈉、亞硫酸鈉、亞硫酸氫鈉、連二亞硫酸鈉、硫代硫酸鈉、硫酸亞鐵、二氧化硫、水合肼、鐵屑鐵粉等。還原後Cr3+以Cr(OH)3沉澱的最佳pH為7~9,所以鉻還原以後的廢水應進行中和。
(1)亞硫酸鹽還原法
目前電鍍廠含鉻廢水化學還原處理常用亞硫酸氫鈉或亞硫酸鈉作為還原劑,有時也用焦磷酸鈉,六價鉻與還原劑亞硫酸氫鈉發生反應:
4H2CrO4+6NaHSO3+3H2SO4=2Cr2(SO4)3+3Na2SO4+10H2O
2H2CrO4+3Na2SO3+3H2SO4= Cr2(SO4)3+3Na2SO4+5H2O
還原後用NaOH中和至pH=7~8,使Cr3+生成Cr(OH)3沉澱。
採用亞硫酸鹽還原法的工藝參數控制如下:
① 廢水中六價鉻濃度一般控制在100~1000mg/L;
② 廢水pH為2.5~3
③ 還原劑的理論用量為(重量比):亞硫酸氫鈉∶六價鉻=4∶1
焦亞硫酸鈉∶六價鉻=3∶1
亞硫酸鈉∶六價鉻=4∶1
投料比不應過大,否則既浪費葯劑,也可能生成[Cr2(OH)2SO3]2-而沉澱不下來;
④ 還原反應時間約為30min;
⑤ 氫氧化鉻沉澱pH控制在7~8,沉澱劑可用石灰、碳酸鈉或氫氧化鈉,可根據實際情況選用。
(2)硫酸亞鐵還原法
硫酸亞鐵還原法處理含鉻廢水是一種成熟的較老的處理方法。由於葯劑來源容易,若使用鋼鐵酸洗廢液的硫酸亞鐵時,成本較低,除鉻效果也很好。硫酸亞鐵中主要是亞鐵離子起還原作用,在酸性條件下(pH=2~3),其還原反應為:
H2Cr2O7+6FeSO4+6H2SO4=Cr2(SO4)3+3Fe 2(SO4)3+7H2O
用硫酸亞鐵還原六價鉻,最終廢水中同時含有Cr3+和Fe3+,所以中和沉澱時Cr3+和Fe3+一起沉澱,所得到的污泥是鉻與鐵氫氧化物的混合污泥,產生的污泥量大,且沒有回收價值,這是本法的最大缺點。其主要工藝參數為:
① 廢水的六價鉻濃度為50~100mg/L;
② 還原時廢水的pH=1~3;
③ 還原劑用量一般控制在Cr6+∶ FeSO4·7H2O=1∶25~30
④ 反應時間不小於30min
⑤ 中和沉澱的pH控制在7~9
(3)鐵氧體法
鐵氧體法實質上是硫酸亞鐵法的演變與發展,其特點是投加亞鐵鹽還原六價鉻,調節pH沉澱後,需要加熱至60~80℃,並較長時間的曝氣充氧。形成的鉻鐵氧體沉澱屬尖晶石結構,Cr3+占據部分Fe3+位置,其他二價金屬陽離子占據了部分Fe2+的位置,即進入鐵氧體的晶格中。進入晶格的三價鉻離子極為穩定,在自然條件或酸性和鹼性條件都不為水所浸出,因而不會造成二次污染,從而便於污泥的處置。鐵氧體法的工藝條件為:
① 硫酸亞鐵投加量FeSO4·7H2O∶CrO3=16∶1;
② 加NaOH沉澱pH=8~9;
③ 加熱溫度控制在60~80℃之內,不宜超過80℃;
④ 壓縮空氣曝氣,既充氧又攪拌。
(4)化學還原氣浮分離法
氣浮法處理含鉻廢水實際是化學還原法在固液分離方法上的發展,硫酸亞鐵還原氣浮法主要是利用Fe(OH)3凝膠體的強吸附能力,吸附廢水中包括Cr(OH)3在內的其它氫氧化物沉澱,形成共絮體,這種共絮體能有效地被氣泡拈著並浮上去除。氣浮法固液分離技術適應性強,可處理鍍鉻廢水,也可處理含鉻鈍化廢水以及混合廢水,處理量大。不僅可去除重金屬氫氧化物,也可以同時去除其他懸浮物、乳化油、表面活性劑等,加上整個過程可以連續處理,管理較為方便,可以操作自動化。
(5)水合肼還原法
水合肼N2H4·H2O在中性或微鹼性條件下,能迅速地還原六價鉻並生成氫氧化鉻沉澱。
4CrO3+3N2H4=4Cr(OH)3+3N2
這種方法可以處理鍍鉻生產線第二回收槽帶出的含鉻廢水,也可以處理鉻酸鹽鈍化工藝中所產生的含鉻漂洗水。水合肼還原法產生的污泥量少,含鉻量高,便於回收利用。特別在中性或微鹼性條件處理含鉻廢水,不會引入中性鹽,顯然改善了排放廢水的水質。水合肼方法處理含鉻鈍化廢水時,Zn、Cd、Fe、Ni等重金屬也可同時去除。
3
離子交換法
離子交換法是利用一種高分子合成樹脂進行離子交換的方法。應用離子交換法處理含鉻廢水是使用離子交換樹脂對廢水中六價鉻進行選擇性吸附,使六價鉻與水分離,然後再用試劑將六價鉻洗脫下來,進行必要的凈化,富集濃縮後回收利用。用這種方法可以回收六價鉻、回用部分水。但由於鈍化含鉻廢水、地面沖洗含鉻廢水等,除了含六價鉻外,還含大量的其他重金屬陽離子以及多種酸根陰離子。組分比鍍鉻漂洗水復雜得多。因而離子交換法處理鍍鉻廢水比較容易,而處理其他含鉻廢水比較困難,雖然該方法在技術上有獨特之處,在資源回收和閉路循環方面發揮了主導作用,但其投資費用大、操作管理復雜,一般的中小型企業難於適應。
以上就是幾種方法的詳細介紹,如需了解更多信息至http://www.weidian65.com/望採納。
㈦ 電鍍廠的廢水如何處理,有沒有環保顧問可以解答
電鍍廢水主要污染物是各種離子,其次酸鹼物質,還有劇毒類氯化物。根據不同的電鍍廠生產和排污情況,有不同的工藝處理。具體的可以找專業的環保顧問解答.
㈧ 電鍍廢水是如何處理的
①現就處理重金屬方法的七種方法:1.硫酸亞鐵+石灰法 2.硫酸亞鐵+燒鹼法 3. 硫酸亞鐵+燒鹼+硫化鈉法 4.硫酸亞鐵+石灰+硫化鈉法
5.重金屬捕集劑一步法 6.重金屬捕集劑二步法 7.硫化鈉法。
②硫酸亞鐵:利用Fe2+在酸性環境下置換絡合態Cu2+,再加入鹼把PH調到9.5-11.5,讓重金屬離子以氫氧化物的形態沉澱下來。
③在置換過程中硫酸亞鐵需要大量過量,一般的情況需要過量4-5倍。按原水含銅31mg/L計算,需要含量為90%硫酸亞鐵(FeSO4.7H2O)400-500g/噸廢水。還調PH調到9.5-11.5需要大量的鹼性物質。大約需要0.8-0.9kg燒鹼或石灰(含量70%)1.0-1.2kg。
④如果採用石灰的話,將產生大量的污泥,1kg100%石灰將產生2.3kg污泥(干基)。換算成含水50%的污泥將是3.83kg,這些污泥因為含銅量低<0.5%,毫無利用價值,處理需要大量的人力、污泥處理設施、壓濾設備和污泥處理費用。因此硫酸亞鐵+石灰法處理PCB廢水表面上費用低,如果加上污泥處理費用成本是十分高。
⑤硫酸亞鐵法處理的水質一般情況銅離子含量是難以到達0.5mg/L,往往需要加入硫化鈉處理才能確保出水銅離子含量<0.5mg/L。由於此時廢水PH=9.5-10.5,進入生化系統還需要加硫酸回調到PH=6.0-9。因此,此方法操作十分繁瑣。亞鐵本身也會產生污泥,1kg亞鐵可產生0.6kg
(含水量60%)的污泥。
⑥使用石灰的污泥含銅量低,無利用價值。
這種污泥屬於危險固體物,污泥處理費根據城市不同,價格差距比較大,另外需要場地堆放,每班至少得增加一位操作人員。另外石灰加葯系統復雜,容易堵塞管道,動力消耗大。
⑦使用燒鹼的污泥含銅較高一般是>1.5%,有一定利用價值,無需花錢請人處理,相反可以賣給有資質的單位。
㈨ 電鍍廢水怎麼處理才能達標排放
電鍍廢水的處理與回用對節約水資源以及保護環境起著至關重要的作用。本文綜述了各種電鍍廢水處理技術的優缺點,以及一些新材料在電鍍廢水處理上的應用。
01 化學沉澱法
化學沉澱法是通過向廢水中投入葯劑,使溶解態的重金屬轉化成不溶於水的化合物沉澱,再將其從水中分離出來,從而達到去除重金屬的目的。
化學沉澱法因為操作簡單,技術成熟,成本低,可以同時去除廢水中的多種重金屬等優點,在電鍍廢水處理中得到廣泛應用。
1.鹼性沉澱法
鹼性沉澱法是向廢水中投加NaOH、石灰、碳酸鈉等鹼性物質,使重金屬形成溶解度較小的氫氧化物或碳酸鹽沉澱而被去除。該法具有成本低、操作簡單等優點,目前被廣泛使用。
但是鹼性沉澱法的污泥產量大,會產生二次污染,而且出水pH偏高,需要回調pH。NaOH由於產生污泥量相對較少且易回收利用,在工程上得到廣泛應用。欣格瑞水處理專家
2.硫化物沉澱法
硫化物沉澱法是通過投加硫化物(如Na2S、NariS等)使廢水中的重金屬形成溶度積比氫氧化物更小的沉澱,出水pH在7~9,無需回調pH即可排放。
但是硫化物沉澱顆粒細小,需要添加絮凝劑輔助沉澱,使處理費用增大。硫化物在酸性溶液中還會產生有毒的HS氣體,實際操作起來存在局限性。
3.鐵氧體法
鐵氧體法是根據生產鐵氧體的原理發展起來的,令廢水中的各種重金屬離子形成鐵氧體晶體一起沉澱析出,從而凈化廢水。該法主要是通過向廢水中投加硫酸亞鐵,經過還原、沉澱絮凝,最終生成鐵氧體,因其設備簡單、成本低、沉降快、處理效果好等特點而被廣泛應用。
pH和硫酸亞鐵投加量對鐵氧體法去除重金屬離子的影響,確定鎳、鋅、銅離子的最佳絮凝pH分別為8.00~9.80、8.00~10.50和10.00,投加的亞鐵離子與它們摩爾比均為2~8,而六價鉻的最佳還原pH為4.00~5.50,最佳絮凝pH則為8.00~10.50,最佳投料比為20。出水的鎳含量小於0.5mg/L,總鉻含量小於1.0mg/L,鋅含量小於1.0mg/L,銅含量小於0.5mg/L,達到《電鍍污染物排放標准》(GB21900—2008)中「表2」的要求。
化學沉澱法的局限性
隨著污水排放標準的提高,傳統單一的化學沉澱法很難經濟有效地處理電鍍廢水,常常與其他工藝組合使用。
採用鐵氧體-CARBONITE(一種具有物理吸附與離子交換功能的材料)聯合工藝處理Ni含量約為4000mg/L的高濃度含鎳電鍍廢水:先以鐵氧體法控制pH為11.0,在Fe/Fe。摩爾比O.55,FeSO4·7H2O/Ni質量比21,反應溫度35℃的條件下攪拌反應15min,出水Ni平均濃度從4212.5mg/L降至6.8mg/L,去除率達99.84%;然後採用CARBONITE處理,在CARBONITE投加量1.5g/L,pH=6.5,溫度35℃的條件下反應6h,Ni去除率可達96.48%,出水Ni濃度為0.24mg/L,達到GB21900-2008中的「表2」標准。
採用高級Fenton一化學沉澱法處理含螯合重金屬的廢水,使用零價鐵和過氧化氫降解螯合物,然後加鹼沉澱重金屬離子,不僅可以去除鎳離子(去除率最高達98.4%),而且可以降低COD化學需氧量。
02 氧化還原法
1.化學氧化法
化學氧化法在處理含氰電鍍廢水上的效果尤為明顯。該方法把廢水中的氰根離子(CN一)氧化成氰酸鹽(CNO-),再將氰酸鹽(CNO-)氧化成二氧化碳和氮氣,可以徹底解決氰化物污染問題。
常用的氧化劑包括氯系氧化劑、氧氣、臭氧、過氧化氫等,其中鹼性氯化法應用最廣。採用Fenton法處理初始總氰濃度為2.0mg/L的低濃度含氰電鍍廢水,在反應初始pH為3.5,H202/FeSO4摩爾比為3.5:1,H202投加量5.0g/L,反應時間60min的最佳條件下,氰化物的去除率可達93%,總氰濃度可降至0_3mg/L。
2.化學還原法
化學還原法在電鍍廢水處理中主要針對含六價鉻廢水。該方法是在廢水中加入還原劑(如FeSO、NaHSO3、Na2SO3、SO2、鐵粉等)把六價鉻還原為三價鉻,再加入石灰或氫氧化鈉進行沉澱分離。上述鐵氧體法也可歸為化學還原法。
該方法的主要優點是技術成熟,操作簡單,處理量大,投資少,在工程應用中有良好的效果,但是污泥量大,會產生二次污染。採用硫酸亞鐵作為還原劑,處理80t/d的含總鉻7O~80mg/L的電鍍廢水,出水總鉻小於1.5mg/L,處理費用為3.1元/t,具有很高的經濟效益。
以焦亞硫酸鈉為還原劑處理含80mg/L六價鉻、pH為6~7的電鍍廢水,出水六價鉻濃度小於0.2mg/L。
03 電化學法
電化學法是指在電流的作用下,廢水中的重金屬離子和有機污染物經過氧化還原、分解、沉澱、氣浮等一系列反應而得到去除。
該方法的主要優點是去除速率快,可以完全打斷配合態金屬鏈接,易於回收利用重金屬,佔地面積小,污泥量少,但是其極板消耗快,耗電量大,對低濃度電鍍廢水的去除效果不佳,只適合中小規模的電鍍廢水處理。
電化學法主要有電凝聚法、磁電解法、內電解法等。
電凝聚法是通過鐵板或者鋁板作為陽極,電解時產生Fe2+、Fe或Al,隨著電解的進行,溶液鹼性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通過絮凝沉澱去除污染物。
由於傳統的電凝聚法經過長時間的操作,會使電極板發生鈍化,近年來高壓脈沖電凝聚法逐漸替代傳統的電混凝法,它不僅克服了極板鈍化的問題,而且電流效率提高20%~30%,電解時間縮短30%~40%,節省電能30%~40%,污泥產生量少,對重金屬的去除率可達96%~99%。欣格瑞水處理專家
採用高壓脈沖電絮凝技術處理某電鍍廠的電鍍廢水,Cu2十、Ni2、CN一和COD的去除率分別達到99.80%、99.70%、99.68%和67.45%。
電混凝法通常也與其他方法結合使用,利用電凝聚法和臭氧氧化法聯合處理電鍍廢水,以鐵和鋁做極板,出水六價鉻、鐵、鎳、銅、鋅、鉛、TOC(總有機碳)、COD的去除率分別為99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年來內電解法受到廣泛關注。內電解法利用了原電池原理,一般向廢水中投加鐵粉和炭粒,以廢水作為電解質媒介,通過氧化還原、置換、絮凝、吸附、共沉澱等多種反應的綜合作用,可以一次性去除多種重金屬離子。
該方法不需要電能,處理成本低,污泥量少。通過靜態試驗研究了鐵碳微電解法對模擬電鍍廢水的COD及銅離子的去除效果,去除率分別達到了59.01%和95.49%。然而,採用微電解反應柱研究連續流的運行結果顯示,14d後微電解出水的COD去除率僅為10%~15%,銅的去除率降低至45%~50%之間,可見需要定期更換填料或對填料進行再生。
04 膜分離技術
膜分離技術主要包括微濾(MF)、超濾(UF)、納濾(NF)、反滲透(RO)、電滲析(ED)、液膜(Lv)等,利用膜的選擇透過性來對污染物進行分離去除。
該方法去除效果好,可實現重金屬回收利用和出水回用,佔地面積小,無二次污染,是一種很有發展前景的技術,但是膜的造價高,易受污染。
對膜技術在電鍍廢水處理中的應用和效果進行了分析,結果表明:結合常規廢水處理工藝與膜生物反應器(MBR)組合工藝,電鍍廢水被處理後的水質達到排放標准;電鍍綜合廢水經UF凈化、RO和NF兩段脫鹽膜的集成工藝處理後,水質達到回用水標准,RO和NF產水的電導率分別低於100gS/cm和1000gS/cm,COD分別約為5mg/L和10mg/L;鍍鎳漂洗廢水通過RO膜後,鎳的濃縮高達25倍以上,實現了鎳的回收,RO產水水質達到回用標准。
投資與運行費用分析表明:工程運行1年多即可收回RO濃縮鎳的設備費用。
液膜法並不是採用傳統的固相膜,而是懸浮於液體中很薄的一層乳液顆粒,是一種類似溶劑萃取的新型分離技術,包括制膜、分離、凈化及破乳過程。
美籍華人黎念之(NormanN.Li)博士發明了乳狀液膜分離技術,該技術同時具有萃取和滲透的優點,把萃取和反萃取兩個步驟結合在一起。乳化液膜法還具有傳質效率高、選擇性好、二次污染小、節約能源和基建投資少的特點,對電鍍廢水中重金屬的處理及回收利用有著良好的效果。
05 離子交換法
離子交換法是利用離子交換劑對廢水中的有害物質進行交換分離,常用的離子交換劑有腐殖酸物質、沸石、離子交換樹脂、離子交換纖維等。離子交換的運行操作包括交換、反洗、再生、清洗四個步驟。
此方法具有操作簡單、可回收利用重金屬、二次污染小等特點,但離子交換劑成本高,再生劑耗量大。
研究強酸性離子交換樹脂對含鎳廢水的處理工藝條件及鎳回收方法。結果表明:pH為6~7有利於強酸性陽離子交換樹脂對鎳離子的去除。離子交換除鎳的適宜溫度為30℃,適宜流速為15BV/h(即每小時l5倍樹脂床體積)。適宜的脫附劑為10%鹽酸,脫附液流速為2BV/h。前4.6BV脫附液可回用於配製電鍍槽液,平均鎳離子質量濃度達18.8g/L。
Mei.1ingKong等研究了CHS—l樹脂對cr(VI)的吸附能力,發現Cr(VI)在低濃度時,樹脂的交換吸附率是由液膜擴散和化學反應控制的。CHS一1樹脂對Cr(VI)的最佳吸附pH為2~3,在298K下其飽和吸附能力為347.22mg/g。CHS一1樹脂可以用5%的氫氧化鈉溶液和5%氯化鈉溶液來洗脫,再生後吸附能力沒有明顯的下降。
使用鈦酸酯偶聯劑將1一Fe203與丙烯酸甲酯共聚,在鹼性條件下進行水解,制備出磁性弱酸陽離子交換樹脂NDMC一1。
通過對重金屬Cu的吸附研究發現,NDMC—l樹脂粒徑較小、外表面積大,因而具有較快的動力學性能。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。
06 蒸發濃縮法
蒸發濃縮法是通過加熱對電鍍廢水進行蒸發,使液體濃縮達到回用的效果。一般適用於處理含鉻、銅、銀、鎳等重金屬濃度高的廢水,用其處理濃度低的重金屬廢水時耗能大,不經濟。
在處理電鍍廢水中,蒸發濃縮法常常與其他方法一起使用,可實現閉路循環,效果不錯,比如常壓蒸發器與逆流漂洗系統聯合使用。蒸發濃縮法操作簡單,技術成熟,可實現循環利用,但是濃縮後的干固體處置費用大,制約了它的應用,目前一般只作為輔助處理手段。
07 生物處理技術
生物處理法是利用微生物或者植物對污染物進行凈化,該方法運行成本低,污泥量少,無二次污染,對於水量大的低濃度電鍍廢水來說是不二之選。生物法主要包括生物絮凝法、生物吸附法、生物化學法和植物修復法。
1.生物絮凝法
生物絮凝法是一種利用微生物或微生物產生的代謝物進行絮凝沉澱來凈化水質的方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外、具有絮凝活性的代謝物,能使水中膠體懸浮物相互凝聚、沉澱。
生物絮凝劑與無機絮凝劑和合成有機絮凝劑相比,具有處理廢水安全無毒、絮凝效果好、不產生二次污染等優點,但其存在活體生物絮凝劑不易保存,生產成本高等問題,限制了它的實際應用。目前大部分生物絮凝劑還處在探索研究階段。
生物絮凝劑可以分為以下三類:
(1) 直接利用微生物細胞作為絮凝劑,如一些細菌、放線菌、真菌、酵母等。
(2) 利用微生物細胞壁提取物作為絮凝劑。微生物產生的絮凝物質為糖蛋白、黏多糖、蛋白質等高分子物質,如酵母細胞壁的葡聚糖、Ⅳ-乙醯葡萄糖胺、絲狀真菌細胞壁多糖等都可作為良好的生物絮凝劑。
(3) 利用微生物細胞代謝產物的絮凝劑。代謝產物主要有多糖、蛋白質、脂類及其復合物等。
近年來報道的生物絮凝劑主要為多糖類和蛋白質類,前者有ZS一7、ZL—P、H12、DP。152等,後者有MBF—W6、NOC—l等。陶穎等]利用假單胞菌Gx4—1胞外高聚物製得的絮凝劑對cr(Ⅳ)進行了絮凝吸附研究。
其研究結果表明,在適宜條件下Or(Ⅳ)的去除率可達51%。研究枯草芽孢桿菌NX一2制備的生物絮凝劑v一聚谷氨酸(T-PGA)對電鍍廢水的處理效果,實驗證明,T-PGA能有效地去除Cr3+、Ni等重金屬離子。
2.生物吸附法
生物吸附法是利用生物體自身的化學結構或成分特性來吸附水中的重金屬,然後通過固液分離,從水中分離出重金屬。
可以從溶液中分離出重金屬的生物體及其衍生物都叫做生物吸附劑。生物吸附劑主要有生物質、細菌、酵母、黴菌、藻類等。該方法成本低,吸附和解析速率快,易於回收重金屬,具有選擇性,前景廣闊。
研究各種因素對枯草芽胞桿菌吸附電鍍廢水中Cd效果的影響,結果表明:pH為8、吸附劑用量為10g/L(濕重)、攪拌轉數為800r/min、吸附時間為10min的條件下,廢水中鎘的去除率達93%以上。
吸附鎘後的枯草芽胞桿菌細胞膨大,色澤變亮,細胞之間相互粘連。Cd2+與細胞表面的鈉進行了離子交換吸附。
殼聚糖是一種鹼性天然高分子多糖,由海洋生物中甲殼動物提取的甲殼素經過脫乙醯基處理而得到,可以有效地去除電鍍廢水中的重金屬離子。
通過乳化交聯法制備了磁性二氧化硅納米顆粒組成的殼聚糖微球,然後用乙二胺和縮水甘油基三甲基氯化反應的季銨基團改性,所得生物吸附劑具有很高的耐酸性和磁響應。
用它來去除酸性廢水中的cr(VI),在pH為2.5、溫度為25℃的條件下,最大吸附能力為233.1mg/g,平衡時間為40~120min[取決於初始Cr(VI)的濃度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液進行吸附劑再生,解吸率達到95.6%,因此該生物吸附劑具有很高的重復使用性。
3.生物化學法
生物化學法是指微生物直接與廢水中的重金屬進行化學反應,使重金屬離子轉化為不溶性的物質而被去除。
從電鍍廢水中篩選分離出3株可以高效降解自由氰根的菌種,在最佳條件下可以將80mg/L的CN一去除到0.22mg/L。研究發現,有許多可以將cr(VI)還原成低毒cr(III)的微生物,如無色桿菌、土壤細菌、芽孢桿菌、脫硫弧菌、腸桿菌、微球菌、硫桿菌、假單胞菌等,其中除了大腸桿菌、芽孢桿菌、硫桿菌、假單胞菌等可以在好氧條件下還原Cr(VI),其餘大部分菌種只能在厭氧條件下還原cr(VI)。
R.S.Laxman等發現灰色鏈黴菌能在24~48h內把cr(VI)還原成cr(III),並能夠將cr(III)顯著地吸收去除。中科院成都生物研究所的李福、吳乾菁等從電鍍污泥、廢水及下水道鐵管內分離篩選出35株菌種,並獲得了SR系列復合功能菌,該功能菌具有高效去除Cr(VI)和其他重金屬的功效,並在此基礎上進行了工程應用,取得較好的效果。
4.植物修復法
植物修復法是利用植物的吸收、沉澱、富集等作用來處理電鍍廢水中的重金屬和有機物,達到治理污水、修復生態的目的。
該方法對環境的擾動較少,有利於環境的改善,而且處理成本低。人工濕地在這方面起著重要的作用,是一種發展前景廣闊的處理方法。
李氏禾是一種可富集金屬的水生植物,在去除水中重金屬方面具有很大的潛力。在人工濕地種植了李氏禾,用以處理含鉻、銅、鎳的電鍍廢水,使它們的含量分別降低了84.4%、97.1%和94_3%。當水力負荷小於0.3m/(m2·d1時,出水中的重金屬濃度符合電鍍污染物排放標準的要求;當進水鉻、銅和鎳的濃度為5、10和8mg/L時,仍能達標排放。
可見用李氏禾處理中低濃度的電鍍廢水是可行的。質量平衡表明,鉻、銅和鎳大部分保留在人工濕地系統的沉積物中。
08 吸附法
吸附法是利用比表面積大的多孔性材料來吸附電鍍廢水中的重金屬和有機污染物,從而達到污水處理的效果。
活性炭是使用最早、最廣的吸附劑,可以吸附多種重金屬,吸附容量大,但是活性炭價格昂貴,使用壽命短,需要再生且再生費用不低。一些天然廉價材料,如沸石、橄欖石、高嶺土、硅藻土等,也具有較好的吸附能力,但由於各種原因,幾乎沒有得到工程應用。
以沸石作為吸附劑處理電鍍廢水,發現在靜態條件下,沸石對鎳、銅和鋅的吸附容量分別達到5.9、4.8和2.7mg/g.先以磁性生物炭去除電鍍廢水中的Cr(vI),
然後通過外部磁場分離,使得cr(VI)的去除率達到97.11%。而在10rain的磁選後,濁度由4075NTU降至21.8NTU。其研究還證實了吸附過程後,磁性生物炭仍保留原來的磁分離性能。近年來又研製開發了一些新型吸附材料,如文中提到的生物吸附劑以及納米材料吸附劑。
納米技術是指在1~100nm尺度上研究和應用原子、分子現象,由此發展起來的多學科交叉、基礎研究與應用緊密聯系的科學技術。納米顆粒由於具有常規顆粒所不具備的納米效應,因而具有更高的催化活性。
納米材料的表面效應使其具有高的表面活性、高表面能和高的比表面積,所以納米材料在制備高性能吸附劑方面表現出巨大的潛力。雷立等l採用溫和水熱法一步快速合成了鈦酸鹽納米管(TNTs),並應用於對水中重金屬離子Pb(II)、cd(II)和Cr(III)的吸附。
結果表明:pH=5時,初始濃度分別為200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分別為513.04、212.46和66.35mg/L,吸附性能優於傳統吸附材料。納米技術作為一種高效、節能環保的新型處理技術,得到人們的廣泛認同,具有很大的發展潛力。
09 光催化技術
光催化處理技術具有選擇性小、處理效率高、降解產物徹底、無二次污染等特點。
光催化的核心是光催化劑,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化學穩定性好、無毒、兼具氧化和還原作用等諸多特點。TiO:在受到一定能量的光照時會發生電子躍遷,產生電子一空穴對。
光生電子可以直接還原電鍍廢水中的金屬離子,而空穴能將水分子氧化成具有強氧化性的OH自由基,從而把很多難降解的有機物氧化成為COz、H:0等無機物,被認為是最有前途、最有效的水處理方法之一。
以懸浮態的TiO2為催化劑,在紫外光的作用下對絡合銅廢水進行光催化反應。結果表明:當TiO2投加量為2g/L,廢水pH=4時,在300W高壓汞燈照射下,載入60mL/min的空氣反應40rain,對120mg/LEDTA絡合銅廢水中Cu(II)與COD的去除率分別達到96.56%和57.67%。實施了「物化一光催化一膜」處理電鍍廢水的工程實例,出水COD去除率達到70%以上,同時TiO2光催化劑可重復使用。
膜法的引入可大大提高水質,使處理後水質達到中水回用標准,提高了電鍍廢水的資源化利用率,回用率達到85%以上,大大節約了成本。然而光催化技術在實際應用中受到了很多的限制,如重金屬離子在光催化劑表面的吸附率低,催化劑的載體不成熟,遇到色度大的廢水時處理效果大幅下降,等等。不過光催化技術作為高效、節能、清潔的處理技術,將會有很大的應用前景。欣格瑞水處理專家
10 重金屬捕集劑
重金屬捕集劑又叫重金屬螯合劑,它能與廢水中的絕大部分重金屬離子產生強烈的螯合作用,生成的高分子螯合鹽不溶於水,通過分離就可以去除廢水中的重金屬離子。
重金屬捕集劑處理後的重金屬廢水中剩餘的重金屬離子濃度大部分都能達到國家排放標准。以二硫代氨基甲酸鹽重金屬離子捕集劑XMT探討了不同因素對Cu的捕集效果,對Cu去除率在99%以上,出水Cu濃度小於0.05mg/L,出水遠低於GB21900-2008的「表3」標准。
選取3種市售重金屬捕集劑對實際電鍍廢水中的Cu2+、Zn2+、Ni進行同步深度處理,發現三聚硫氰酸三鈉(簡稱TMT)對Cu的去除效果最為顯著,投加量少且效果穩定,但對Ni的去除效果較差。甲基取代的二硫代氨基甲酸鈉(以Me2DTC表示)的適用性最強,對3種重金屬離子均具有良好的去除效果,可達到GB21900-2008中的「表3」排放標准,且在DH=9.70時處理效果最佳。至於乙基取代的二硫代氨基甲酸鈉(Et2DTC),對Ni的去除效果不佳。
重金屬捕集劑因高效、低能、處理費用相對較低等特點而有很大的實用性。
㈩ 酚醛樹脂廢水,電鍍廢水處理的處理方法工藝
微電解技術是目前處理高濃度、難降解有機廢水的一種理想工藝、又稱內電回解。它是在無需外接電答源的情況下自身產生1.2伏電位差對廢水進行電解處理能達到降解有機污染的目的。當系統通水後設備內會形成無數的微電池系統構成磁場產生電位差。鐵在酸性條件下釋放鐵離子生成新生態Fe2+。Fe2+具有氧化--還原的作用、能與廢水中的許多組分發生氧化還原反;⑴將六價鉻還原為三價鉻;⑵將汞離子還原為單質貢;⑶將硝基還原為氨基;⑷將偶氮廢水的有色基團或助色基團氧化--還原;達到降解脫色作用;提高了廢水的可生化性。生成的Fe2+加減調PH值進一步產生Fe3+;Fe3+是一種很好的絮凝劑。它們的水合物具有較強的吸附-絮凝作用、Fe3+在減的作用下進一步產生氫氧化亞鐵和氫氧化鐵膠體絮凝劑。它們的吸附能力遠遠高於那些外加化學葯劑水解得到的絮凝劑;分散在水污中的懸浮物、、有毒物、金屬離子及有極大分子能被吸附-絮凝沉澱。其工作原理:電化學、氧化—還原、物理吸附及絮凝--沉澱的共同作用對廢水進行處理。
其它數據以及產品圖片可以查看參考資料內容