『壹』 處理含鉻(Cr)工業廢水的原理是將Cr2O2-7轉化為Cr3+,再將Cr3+轉化為沉澱.已知轉化過程中,廢水pH與Cr2
(1)操作1過濾所需儀器為玻璃棒、漏斗、燒杯、鐵架台(附鐵圈),故答案為:玻璃棒、漏斗、燒杯;
(2)由題給框圖之三可得:Fe2+過量,調節PH,產生Cr(OH)3、Fe(OH)3和Fe(OH)2三種沉澱物,故答案為:Cr(OH)3、Fe(OH)3和Fe(OH)2;
(3)根據廢水pH與Cr2O72-轉化為Cr3+的關系圖1可知:當pH<1時,Cr2O72-轉化為Cr3+的轉化率接近100%,故答案為:調節廢液pH<1;
(4)步驟②中電解要產生Fe2+,所以陽極的材料鐵,電極反應為:Fe-2e-=Fe2+,陰極溶液中的氫離子放電,電極反應式為:2H++2e-=H2↑;
Cr2O72-有較強氧化性,Fe2+有一定的還原性,在酸性介質中發生氧化還原反應,Cr2O72-在酸性條件下將Fe2+氧化為Fe3+,自身被還原為Cr3+,離子方程式為:Cr2O72-+14H++6Fe2+=2Cr3++6Fe3++7H2O;
故答案為:鐵棒;2H++2e-=H2↑;Cr2O72-+14H++6Fe2+=2Cr3++6Fe3++7H2O;
(5)Cr2O2-7具有強氧化性,能腐蝕鹼式滴定管的橡皮管,所以放在酸式滴定管中;
取上述溶液X20.00mL,調節pH後置於錐形瓶中,用濃度為0.0001mol/L的KI溶液滴定,至滴定終點時,用去KI溶液9.00mL.已知酸性條件下,I-被Cr2O2-7氧化為I2,
Cr2O72-+6I-+14H+=2Cr3++3I2+7H2O,
1 6
n(Cr2O72-) 9×10-3L×0.0001mol/L
n(Cr2O72-)=1.5×10-7mol,
廢水1L中n(Cr2O72-)=1.5×10-7mol×50=7.5×10-6mol,廢水1L中n(
+6 |
Cr |
+6 |
Cr |
『貳』 高濃度含鉻廢水處理可以怎麼處理
兩種情況:
1、三價鉻,常規加鹼沉澱,去掉大部分,利用特種離子交換樹脂處理
2、六內價鉻,加還原劑還原大容部分六價鉻為三價鉻,利用1的方法處理
當然,這只是從操作簡便、造價上說的,還要看水質的處理的具體要求,做取捨
『叄』 納米材料及其在環保中的應用
納米技術具有極大的理論和應用價值,納米材料被譽為「21世紀最有前途的材料」。納米技術研究在0.1~100nm尺度范圍內物質具有的特殊性能及其應用。廣義的納米材料是指在三維空間中,至少有一維達到納米尺度范圍,或以其為基本單位所構成的材料[1]。納米材料具有輻射、吸收、殺菌、吸附等特性,眾多研究表明這些新特性將在環境保護領域產生深遠的影響。本文就納米材料及其在環境保護領域的應用進行了闡述。 1 納米材料的基本性質[2,3] 1.1 表面效應 用高倍電子顯微鏡對金超微顆粒(直徑為2.1~3μm)進行電視攝像,實時觀察發現這些顆粒沒有固定的形態,隨著時間的變化會自動形成各種形狀(如立方八面體,十面體,二十面體等)的晶型,既不同於一般固體,又不同於液體,是一種准固體。在電子顯微鏡的電子束照射下,表面原子彷彿進入了「沸騰」狀態,尺寸大於10μm後才看不到這種顆粒結構的不穩定性,這時微顆粒具有穩定的結構狀態。 超微顆粒的表面具有很高的活性,在空氣中金屬顆粒會迅速氧化而燃燒。如要防止自燃,可採用表麵包覆或有意識地控制氧化速率,使其緩慢氧化生成一層極薄而緻密的氧化層,確保表面穩定化。利用表面活性,金屬超微顆粒可望成為新一代的高效催化劑和貯氣材料以及低熔點材料。 1.2 小尺寸效應 隨著顆粒尺寸的量變,在一定條件下會引起顆粒性質的質變。由於顆粒尺寸變小所引起的宏觀物理性質的變化稱為小尺寸效應。對超微顆粒而言,尺寸變小,同時其比表面積亦顯著增加,從而產生特殊的光學、熱學、磁學、力學、聲學、超導電性、介電性能以及化學性能等一系列新奇的性質。 2 納米材料在大氣污染治理方面的應用 2.1 空氣中硫氧化物的凈化 二氧化硫、一氧化碳和氮氧化物是影響人類健康的有害氣體,如果在燃料燃燒的同時加入納米級催化劑不僅可以使煤充分燃燒,不產生一氧化硫氣體,提高能源利用率,而且會使硫轉化成固體的硫化物。如用納米Fe2O3作為催化劑,經納米材料催化的燃料中硫的含量小於0.01%,不僅節約了能源,提高能源的綜合利用率,也減少了因為能源消耗所帶來的環境污染問題,而且使廢氣等有害物質再利用成為可能。 2.2 汽車尾氣凈化 汽車尾氣排放直接污染人們的生活空間及呼吸層,對人體健康影響極大。開發替代燃料或研究用於控制汽車尾氣對大氣污染材料,對凈化環境具有重要的意義。用納米復合材料制備與組裝的汽車尾氣感測器[4],通過汽車尾氣排放的監控,可及時對超標排放進行報警,並通過調整合適的空燃比,減少富油燃燒,達到降低有害氣體排放和燃油消耗的目的。納米稀土鈦礦型復合氧化物對汽車尾氣所排放的NO、CO等具有良好的催化轉化作用,可以替代昂貴的重金屬催化劑用作汽車尾氣催化劑。 2.3 室內空氣凈化 新裝修房間空氣中的有機物濃度大大高於室外,而光催化劑可以很好地降解甲醛、甲苯等污染物,納米TiO2的降解效果最佳。納米TiO2經光催化產生的空穴和形成於表面的活性氧膜化能與細菌細胞或細胞內組成成分進行生化反應,使細菌頭單元失活而導致細胞死亡,並且使細菌死亡後產生的內毒素分解,即利用納米TiO2的光催化性能不僅能殺死環境中的細菌,而且能同時降解由細菌釋放出的有毒復合物[5]。在醫院的病房、手術室及生活空間安放納米TiO2光催化劑可具有殺菌、除臭作用。 3 在水污染治理方面的應用 3.1 處理無機污染廢水 污水中的重金屬對人體的危害很大,重金屬的流失也是資源的浪費。納米粒子能對水中的重金屬離子通過光電子產生很強的還原能力[6]。如納米TiO2能將高氧化態汞、銀、鉑等貴重金屬離子吸附於表面,井將其還原為細小的金屬晶體,既消除了廢水的毒性,又回收了貴重金屬。 3.2 處理有機污染廢水 大量研究表明納米TiO2等作為光催化劑,在陽光下催化氧化水中的有機污染物,使其迅速降解。至今為止己知納米TiO2能處理80餘種有毒污染物,它可以將水中的各種有機物很快完全催化氧化成水和CO等無害物質圖。例如Pintar等在間歇式反應器中納米Ru/TiO2作催化劑,對酸性或鹼性牛皮紙漂白廢水進行光催化降解,廢水中的有機總碳TOC的去除率可達到99.6%,並使廢水完全脫色。經光催化濕空氣氧化處理後的工廠廢水對弧菌的毒性的實驗表明,用該方法處理後的工廠漂白廢水完全可以進一步生物降解。 3.3 自來水的凈化處理 新型納米級凈水劑[7]的吸附能力和絮凝能力是普通凈水劑Al2O3的10~20倍,能將污水中懸浮物完全吸附並沉澱,然後採用納米磁性物質、纖維和活性炭凈化裝置,有效地除去水中的鐵銹、泥沙以及異味等。再經過由帶有納米孔徑的處理膜和帶有不同納米孔徑的陶瓷小球組裝的處理裝置後,可以100%除去水中的細菌、病毒,得到高質量的純凈水。這是因為細菌、病毒的直徑比納米大,在通過納米孔徑的膜和陶瓷小球時,會被過濾掉,水分子及水分子直徑以下的礦物質、元素則保留下來。 4 在其它環保領域的應用 4.1 雜訊控制 飛機、車輛、船舶等發動機工作的雜訊可達上百分貝,容易對環境造成雜訊污染。當機器設備等被納米技術微型化以後,其互相撞擊、磨擦產生的交變機械作用力將大為減少,雜訊污染便可得到有效控制。運用納米技術開發的潤滑劑,既能在物體表面形成永久性的固態膜,產生極好的潤滑作用,大大降低機器設備運轉時的雜訊,又能延長設備的使用壽命[8]。 4.2 固體廢物處理 納米技術及納米材料應用於城市固體垃圾處理,主要有兩個方面[9]:一是可以將橡膠製品、塑料製品、廢印刷電路板等製成超微粉末,除去其中的異物,成為再生原料回收;二是利用納米TiO2催化技術可以使城市垃圾快速降解,其速度可達到大顆粒TiO2的10倍以上,從而緩解大量城市垃圾給城市環境帶來的壓力。 4.3 防止電磁輻射 近年來電磁場對人體健康的影響問題已經成為一個新的研究熱點。在強烈輻射區工作並需要電磁屏蔽時,通過在牆內加入納米材料層或塗上納米塗料,能大大提高遮擋電磁波輻射性能。中科院理化所利用納米技術研究出了新一代手機電磁屏蔽材料,可以實現手機信號抗干擾能力,同時大大降低電磁波輻射。 4.5 在照明工程方面的應用 火力發電排放的CO2、SO2、煙塵懸浮物等會引起溫室效應、酸雨和環境污染,通過照明節電可以帶來巨大的社會、經濟和生態效益[10]。在照明工程中,最理想的節電措施是充分利用太陽光來照明,利用一些納米材料的光致發光特性是可行的辦法,白晝吸收自然光並貯存起來,晚上再直接把光射到需要的地方。這從多孔硅光致發光現象得到了驗證。 5 結語 隨著納米科技和納米材料的研究深入,特別是納米科技與環境保護和環境治理的進一步有機結合,許多環保難題將會得到解決。有理由相信,納米科技作為一門新興科學,必將對環境保護產生深遠的影響,利用納米科技解決環境污染問題將成為未來環境保護發展的必然趨勢。 參考文獻 [1] Swlli E, Morris S. Photocatalysis for water purification[J]. Water Res, 1999, 33(8): 5-7. [2] 李泉, 曾廣斌. 納米粒子[J]. 化學通報, 1995, 6: 29-31. [3] 李良果, 鄭慶龍, 張克. 納米粒子結構分析[J]. 化工新型材料, 1991, 19(12) : 12-13. [4] 覃愛苗, 廖雷. 納米技術及納米材料在環境治理中的應用[J]. 中山大學學報(自然科學版), 2004, 43(增刊): 225-228. [5] 楊健森. 納米環保技術的發展現狀與前景[J]. 科技通報, 2002, 18(4): 340-343. [6] 馬榮萱, 李繼忠. 納米技術及其材料在環境保護中的應用[J]. 環境科學與技術, 2006, 29(7): 112-115. 來源:[ http://www.jdzj.com ]機電之家·機電行業電子商務平台!
『肆』 腐殖酸包覆的Fe3O4磁性納米粒子可以高效去除水中的重金屬離子,可是這種材料能否再生循環使用
可以循環再生使用,但再生後肯定會產生一定數量的重金屬廢液,應設法妥善處理,避免二次污染。
『伍』 超磁分離技術可以取代污水處理哪個工藝段
磁分離利用廢水中雜質顆粒的磁性進行分離,對於水中非磁性或弱磁性的顆粒,利用磁內性接種技容術可使它們具有磁性。藉助外力磁場的作用,將廢水中有磁性的懸浮固體分離出來,從而達到凈化水的目的。
與沉降、過濾等常規方法相比較,磁力分離法具有處理能力大、效率高、能量消耗少、設備
簡單緊湊等一系列優點。山東博斯達環保 為您解答,謝謝
『陸』 含鉻廢液的處理
含鉻廢洗液可用廢鐵屑還原殘留的六價鉻為三價鉻,再用鹼液或石灰中和生成低毒的氫氧化鉻沉澱後集中處理。
『柒』 怎麼處理含鉻廢水
含鉻廢水的處來理方法如自下:
葯劑還原沉澱法,本原理是在酸性條件下向廢水中加入還原劑,將Cr6+還原成Cr3+,然後再加入石灰或氫氧化鈉,使其在鹼性條件下生成氫氧化鉻沉澱,從而去除鉻離子。可作為還原劑的有:SO2、FeSO4 、Na2SO3、NaHSO3、Fe等。
SO2還原法,其反應原理為3SO2 + Cr2O72- + 2H+ = Cr3+ + 3SO42- + H20
Cr3+ + 30H- = Cr(OH)3↓二氧化硫是有害氣體,對操作人員有影響,處理池需用通風沒備。
『捌』 含鉻廢水處理有哪些好的處理方法
含鉻廢水處理常用方法
葯劑還原沉澱法
還原沉澱法是目前應用較為廣泛的含鉻廢水處理方法。基本原理是在酸性條件下向廢水中加入還原劑,將Cr6+還原成Cr3+,然後再加入石灰或氫氧化鈉,使其在鹼性條件下生成氫氧化鉻沉澱,從而去除鉻離子。可作為還原劑的有:SO2、FeSO4 、Na2SO3、NaHSO3、Fe等。還原沉澱法具有一次性投資小、運行費用低、處理效果好、操作管理簡便的優點,因而得到廣泛應用,但在採用此方法時,還原劑的選擇是至關重要的一個問題。
SO2還原法
二氧化硫還原法設備簡單、效果較好,處理後六價鉻含量可達到0.l mg/L 。但二氧化硫是有害氣體,對操作人員有影響,處理池需用通風沒備,另外對設備腐蝕性較大,不能直接回收鉻酸。煙道氣中的二氧化硫處理含鉻(VI)廢水,充分利用資源,以廢治廢,節約了處理成本,但也同樣存在以上的問題。
鐵氧體法
鐵氧體法實際上是硫酸亞鐵法的發展,向含鉻廢水中投加廢鐵粉或硫酸亞鐵時,Cr6+ 可被還原成Cr3+。再加熱、加鹼、通過空氣攪拌,便成為鐵氧體的組成部分,Cr3+轉化成類似尖晶石結構的鐵氧體晶體而沉澱。鐵氧體是指具有鐵離子、氧離子及其他金屬離子所組成的氧化物。
鐵氧體法不僅具有還原法的一般優點,還有其特點,即鉻污泥可製作磁體和半導體,這樣不但使鉻得以回收利用,又減少了二次污染的發生,出水水質好,能達到排放標准。但是,鐵氧體法也有試劑投量大,能耗較高,不能單獨回收有用金屬,處理成本較高的缺點。
鐵屑鐵粉處理法
鐵屑鐵粉由於原料易得,價格便宜,處理含鉻(VI)等重金屬廢水效果較好,但該法要消耗較多的酸(電鍍廠可用車間生產的廢酸),同時污泥量較大,鐵屑處理含鉻廢水有多種作用:(1)還原作用,由於鐵屑中含有雜質,它們與鐵的電位不同,鐵作為陽極溶解,給出電子成為二價鐵離子,電子轉移到陰極被Cr2O72-和H+接受成為Cr3+和H2 ,陰極生成的二價鐵離子叉將Cr2O72-還原;(2)置換作用,廢水中電位比鐵正的金屬離子與金屬鐵屑粉末發生置換作用;(3)凝聚作用,反應生成的氫氧化鐵本身就是一種凝聚劑,有利於最後氫氧化鉻等的沉降;(4)中和作用,由於反應中要消耗太量的酸,隨著反應進行PH值不斷升高,使Fe呈氫氧化鐵析出;(5)吸附作用,經X射線微量分析,在鐵粉表面可見到吸附的金屬,因此認為鐵粉具有吸附作用。
鋇鹽法
利用溶解積原理,向含鉻廢水中投加溶度積比鉻酸鋇大的鋇鹽或鋇的易溶化合物,使鉻酸根與鋇離子形成溶度積很小的鉻酸鋇沉澱而將鉻酸根除去。廢水中殘余Ba2+再通過石膏過濾,形成硫酸鋇沉澱,再利用微孔過濾器分離沉澱物。
鋇鹽法優點是工藝簡單,效果好,處理後的水可用於電鍍車間水洗工序,還可回收鉻酸,復生BaCO3;其缺點是過濾用的微孔塑料管加工比較復雜,容易阻塞,清洗不便,處理工藝流程較為復雜。
電解還原法
電解還原法是鐵陽極在直流電作用下,不斷溶解產生亞鐵離子,在酸性條件下,將Cr6+還原為Cr3+。
用電解法處理含鉻廢水,優點是效果穩定可靠,操作管理簡單,設備佔地面積小,廢水中的重金屬離子也能通過電解有所降低。缺點是耗電量較大,消耗鋼板,運行費用較高,沉渣綜合利用等問題有待進一步解決。
離子交換法
離子交換法是藉助於離子交換劑上的離子和水中的離子進行交換反應除去水中有害離子。目前在水處理中廣泛使用的是離子交換樹脂。對含鉻廢水先調pH值,沉澱一部分Cr3+後再行處理。將廢水通過H型陽離子交換樹脂層,使廢水中的陽離子交換成H+而變成相應的酸,然後再通過OH型陰離子交換成OH-,與留下的H+結合生成水。吸附飽和後的離子交換樹脂,用NaOH進行再生。
離子交換法的優點是處理效果好,廢水可回用,並可回收鉻酸。尤其適用於處理污染物濃度低、水量小、出水要求高的廢水。缺點是工藝較為復雜,且使用的樹脂不同,工藝也不同;一次投資較大,佔地面積大,運行費用高,材料成本高,因此對於水量很大的工業廢水,該法在經濟上不適用。
『玖』 鐵氧體處理含鉻廢水為什麼要加過氧化氫
其實是起到氧化金屬離子的作用。
加入少量的H2O2使部分Fe2+氧化為版Fe3+,當二權者的氫氧化物的比例為1:2左右時,可生
成組成類似於Fe3O4·xH2O的磁性氧化物(鐵氧體),其組成可寫成Fe2+·Fe3+「Fe3O4」·xH2O,其中部分Fe3+可以被Cr3+取代,使Cr3+成為鐵氧體的組分而沉澱出來,反應原理可表示為: Fe3++ Fe2+ +Cr3+ +OH- →Fe2+· Fe3+「Fe(1-y)3+Cry3+O4」·xH2O(s)
『拾』 磁性納米材料處理含油廢水屬於什麼方法
磁性納米材料處理含油廢水屬於化學方法。
該方法先將含油廢水超聲專,並在超聲同時屬將油溶性四氧化三鐵納米粒子投加到含油廢水中,超聲分散,四氧化三鐵就可以藉助其疏水的烷基表面進入廢水微油滴中,形成攜帶疏水四氧化三鐵粒子的磁性微油滴,再結合磁分離達到去除污水中微油滴的目的。