導航:首頁 > 污水知識 > 含煤廢水硬度范圍

含煤廢水硬度范圍

發布時間:2022-08-20 17:00:50

1. 江蘇省廢水排放標准中總硬度的標准

標准裡面沒有硬度要求,這個查標准就知道了(GB 8978-1996污水綜合排放標准)
回用的專話有再生屬水規范(GB 50335-2002 污水再生利用工程設計規范)
規范里污水回用做雜用水或冷卻水應該都有硬度要求。

2. 煤礦酸性水水化學特徵及其環境地球化學信息研究

摘 要 以水化學數據為依據,應用相關分析,結合地質、水文勘探資料,對煤礦酸性礦排水( AMD) 的水化學特點及其成因進行了研究。煤礦 AMD 在一定的物質條件和環境條件下形成,只要條件適宜,不管是高硫煤還是低硫煤均可產生酸性水; 低 pH、高 Eh、高 TDS 及高硬度是煤礦 AMD 的重要特徵,水中的 SO42 -與其 EC 之間以及 Fe3 +/ Fe2 +比值與其 Eh 值走勢具有良好的一致性,水中微量元素及重金屬來源較復雜,如 Ni、Cu、Co、Zn 等來源於黃鐵礦的氧化溶解,但 Pb、Sr 等主要來自 AMD 對煤系地層中煤及岩石中礦物的淋濾作用。

任德貽煤岩學和煤地球化學論文選輯

一、引言

煤礦在開采過程中,因含煤地層中所含硫化物( 主要為黃鐵礦) 的賦存環境變化而自發進行氧化還原反應,可導致產生酸性礦排水( AMD) 。AMD 的低 pH 值和較高的礦化度特徵,說明其有很強的溶解性和侵蝕性,這種礦排廢水能攜帶大量的重金屬及有害化學物質進入環境。煤礦酸性礦井水在我國分布廣泛,北方主要分布在陝、晉、魯和內蒙等省區,南方分布在川、桂、貴、浙、閩等省區。目前,對 AMD 的研究多集中在金屬礦床、礦尾庫等的酸性礦排水治理方面,而對含煤地層環境下產生的 AMD 的水化學數據中所蘊含的豐富環境地球化學信息的解讀還不多見。煤礦 AMD 的化學特徵在一定程度上反映了相應地區的物質組成、主要水—岩反應和水中組分的相互作用等環境信息,對這些信息的研究可了解煤礦AMD 的產生、變化過程及可能產生的環境效應,為煤礦環境治理及模擬預測提供可靠依據。筆者通過對福建省永安及上京兩個礦區的井下現場勘查,系統採集和測試了煤層、頂底板岩石、黃鐵礦以及礦井中的酸性水樣品,通過綜合分析這些數據,試圖總結煤系酸性水的水化學特徵,並探討其中所反映的環境信息。

二、研究區地質環境

區內地層主要由上石炭統船山組、下二疊統棲霞組、文筆組、童子岩組、上二疊統翠屏山組及第四系殘坡積物層組成。下二疊統童子岩組為主要含煤地層,由一套海陸過渡相岩性組成,以泥質岩為主,次為粉砂岩和砂質岩,砂岩多為鈣質膠結。普遍含形態各異、含量不等的菱鐵礦和黃鐵礦結核。童子岩組內由下而上分為第 1、第 2、第 3 段,其中第 1 和第 3 段為含煤段。在永安礦區,第 3 段為主要含煤段,自上而下有 0 ~11 號煤層,其中 1 號、2 號、5 +6 號、9 號為主採煤層。在上京礦區,第 1 段為主要含煤段,煤層自上而下為 22 ~ 49 號煤,其中 33、34、38、45、48 等 16 層煤層為可採煤層。

研究區溝谷發育,植被茂盛,海拔最高點標高為809m,最低點為300m。本區為亞熱帶潮濕氣候區,年平均降雨量和氣溫分別為1565mm、18.9℃,氣溫最高39.2℃,全年相對濕度平均79%。水文地質條件屬簡單—中等類型,下部棲霞灰岩富水性較強,但遠離煤層(距煤層200m左右),正常情況下對煤層沒有影響。大氣降水是礦坑水的直接或間接補給水源。另外煤系構造裂隙發育,但富水性弱,岩性為砂岩,鑽孔涌水量Q=0.57~4.5L/s,滲透系數K=0.073~0.15m/d。裂隙水水質為HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,總礦化度0.016~0.15g/L,屬低礦化度具侵蝕性水。

三、樣品採集與檢測

為全面了解永安礦區童子岩組內整個含煤地層酸性水的情況,在永安礦區東坑仔礦的0號、1號、9號和上京礦區小華煤礦的34、38、48號等主採煤層的頂底板、煤和水及部分黃鐵礦進行采樣。在井下現場測定了水樣溫度、Eh值和pH值,其餘水質項目按取樣標准處理後送核工業北京地質研究院測定。用等離子質譜法(ICP-MS)測定水中陽離子及痕量元素含量;離子色譜法(IC)測定氯離子、氟離子、溴離子、硝酸根離子和硫酸根含量;採用容量法測定碳酸根、重碳酸根、氫氧根的濃度。對煤樣、煤層頂底板岩樣及黃鐵礦樣品進行了X射線衍射(XRD)分析和等離子質譜分析。

四、結果與討論

1.井下AMD的環境特徵

在井下調研時發現,大量褐紅色氧化鐵沉澱物與酸性水伴生,可視其為存在酸性水或曾經有酸性水產出的標志。酸性水常常出現在鬆散、破碎的煤層頂板處及平巷上部的采空區下方,這些現象表明酸性水明顯受環境條件的控制,這可能與含氧水的進入有關。在無破碎區,地表水中有限溶解氧在緩慢的下滲過程中,被淺部地層中的物質消耗,不足以氧化較深部的含硫礦物而產生酸性水。

地質勘探資料表明,本區煤系由以鋁、硅酸鹽礦物為主的泥岩、粉砂岩及砂岩組成,地層中碳酸鹽岩組分相對很少,CaCO3僅以脈狀或鈣質膠結物形式產出。有關黃鐵礦氧化動力學實驗表明[1],在有碳酸鹽岩存在時,產酸能力受到抑制。Holmstrom[2]等的研究表明,尾礦是否產生酸性排水和釋放重金屬主要取決於碳酸鹽礦物的含量,而不是硫化物的含量。永安礦區煤中總硫含量小於1%,為低硫煤,但卻產生了pH值低達2.75的酸性水,這一事實表明不管是高硫煤還是低硫煤均可產生酸性水。

2.煤層AMD的水化學特徵

所取水樣有3種類型:煤層酸性水樣、煤層非酸性水樣、地表水樣。各水樣的化學組成檢測結果見表1,樣品中除JS8為地表水外,其餘為井下礦排水。

根據礦井原鑽孔資料,未經淋濾的地層裂隙水的水質為HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,總礦化度0.016~0.15g/L。而經淋濾煤層後形成的酸性水的組成變化很大,按庫爾洛夫表達式計算後,水質類型變為SO4-Ca-Mg(如DS2)和SO4-Mg-Fe-Ca(如HS5)型水,TDS為1.64~4.398g/L,為高礦化度水。

表1 永安礦區煤層礦井水水化學常量組分含量w單位:mg·L-1

注:-為未檢出;表中硬度以CaCO3計。

由表1可以得出本區煤礦酸性有如下特點:

(1)pH值變化范圍較大,可從5點幾至2點幾,而在pH≤3.00的水中,HCO3含量均為未檢出。根據水中碳酸系統平衡關系,此時水中的碳酸鹽組分以H2CO3或游離CO2形式存在,即水的總鹼度趨於零,具有較強的侵蝕性。

(2)酸性水具有SO42-高、總硬度高和TDS高的三高特徵。SO2-4含量在陰離子中占絕對優勢,表1中HS7水樣硫酸根離子濃度達3239.9mg/L,煤礦酸性水水化學類型一般為SO2-4-Ca、Mg(Fe、Al)型。酸性水使地層中碳酸鹽類及鋁硅酸鹽類礦物大量溶解,而造成水的高硬度和高TDS,TDS>1g/L。如,HS7的TDS達4398.5mg/L。酸性水中硫酸鹽是其礦化度主要貢獻者,水中SO2-4離子濃度與其電導率(EC)具有良好的對應關系(圖1)。

(3)煤礦酸性水的Eh范圍在600~800mv,是一種高氧化態水,水中的多價態元素以高價態存在,如Fe3+、V5+、Mn4+、Cr6+等。檢測結果表明,Fe3+/Fe2+比值在多數情況下與環境的Eh值有良好的相關性(圖2),Eh隨Fe3+/Fe2+值增加而增加,Fe3+/Fe2+比值在井下酸性水環境中起到決定電勢作用。

圖1 電導率與SO42-含量走勢相關圖

圖2 Eh與Fe3+/Fe2+走勢相關圖

3.AMD中微量組分來源分析

造岩礦物及礦石礦物中的微量元素通常以類質同象形式存在,而天然水中微量元素的分布通常受環境中水—岩相互作用控制。對永安礦區酸性礦坑水樣中50多種微量元素進行了ICP—MS測定。對7個礦井水樣中含量100×10-9以上的微量元素與水樣中的主要特徵元素進行了相關分析(表2)。綜合分析上述數據,並結合煤、岩及黃鐵礦樣品的XRD分析結果,可得出以下初步結論:

(1)pH值與大多數組分呈負相關,說明各組分的溶解度隨介質pH的降低而增大,尤其對Fe和Al溶解度影響較大。同時也可能與它們在pH增大時易形成氫氧化物膠體而沉澱有關。膠體形成後對其他微量元素的吸附產生共沉澱是pH對微量元素含量的一個間接影響。

(2)Ni、Co、Zn、Y等與Fe、SO2-4高度相關,相關系數大於0.94,說明它們的來源與黃鐵礦的氧化溶解密切相關。Ni、Co、Zn均為過渡元素,常在黃鐵礦中與鐵形成類質同象替代,而在黃鐵礦風化過程中被釋放進入溶液;與Fe、SO2-4有較高相關性的還有Na、Cu、Mg、Mn元素,這些元素在地球化學上與鐵元素常親密共生,說明黃鐵礦是其部分來源,或是黃鐵礦的氧化溶解對它們的釋放遷移有重要影響。

(3)水中Pb-K和Pb-Al的相關系數分別為0.77和0.64,而與Fe和SO2-4的相關系數較低,分別為0.39和0.41。ICP-MS對煤、岩、礦的分析結果表明,大多數煤樣品中的Pb含量高於同層位中黃鐵礦的Pb含量,且由於本區為低硫煤,因此黃鐵礦對礦井水中Pb的貢獻相對較小,即本區酸性水樣中的Pb除來源於黃鐵礦的氧化溶解外,還來源於地層中的含鉛礦物,如鉀長石、黑雲母的水解反應:

任德貽煤岩學和煤地球化學論文選輯

(4)鍶是廣泛存在於地下水中的一種微量元素。它在造岩礦物中的分配主要受鈣和鉀的互帶性控制[3],Sr2+主要是以類質同象的形式存在於含鈣、鉀的鋁硅酸鹽礦物中,隨著含鍶的鈣長石、鉀長石、白雲母等礦物的水解,鍶被釋放而進入地下水中。

本研究水樣中鍶含量在幾百~上千μg/L,Sr與Ca呈正相關,相關系數為0.79,與K的相關系數僅為0.27。本水樣中的鍶可能主要來源於鈣長石的水解反應。趙廣濤(1998)[4]對嶗山礦泉水的研究得出Ca-Sr的相關系數為0.6636,而K-Sr的正相關則不明顯。這一結論與本文結果較為吻合,但是否具有代表性還有待研究。

表2 永安酸性煤礦坑水中特徵組分及微量元素間的相關系數矩陣

五、結論

(1)煤礦AMD可產生於高硫煤或低硫煤層中,含氧水沿破碎帶入滲和地層中相對少量的碳酸鹽岩是產生煤礦AMD的重要條件。

(2)低pH、高礦化度和高硬度是煤礦AMD的水化學的典型特徵。水中的硫酸鹽是其礦化度的主要貢獻者;煤礦酸性水中的SO2-4含量與其電導率具有良好的對應關系;Eh隨Fe3+/Fe2+比值的增加而增加,Fe3+/Fe2+比值決定著煤礦酸性水的電勢。

(3)煤礦AMD中含有眾多重金屬及其他微量元素。其中Ni、Co、Zn、As等主要有害微量元素來源於黃鐵礦的氧化分解,而Pb、Sr等則來源於酸性水對地層中物質的溶濾作用。煤礦酸性水的酸度大大增加了環境中有害化學物質的出溶率和遷移性。

參 考 文 獻

[1] Nicholson R V,Gillham R W,Reardon E J. Pyrite oxidation in carbionate buffered solution: 1. Experimental Kineti- ca. Geochim Cosmochim Acta,1988,52: 1007 - 1085

[2] Holmstrom H,Salmon U J,Carlsson E et al. Geochemical investigations of sulfide-bearing tailings at Kristineberg,north- ern Sweden,a few years after remediation. The Science of the Total Environment,2001,( 273) : 111 - 133

[3] 文冬光,沈照理,鍾佐 . 水-岩互相作用的地球化學模擬理論及應用 . 中國地質大學出版社,1998

[4] 趙廣濤,李玉瑛,曹欽臣等 . 青島西北地區礦泉水的水化學特徵與形成機理 . 青島海洋大學學報,1998,28( 1) :135 - 141

The environment geochemistry information of the coal mine acid mining drainage

YUE Mei1,2,ZHAO Feng-hua1,REN De-yi1

( 1. Department of Resource & Earth Sciences,University of China Mining & Technology( Beijing) ;

Key Laboratory of Coal Resource,Ministry of Ecation,Beijing 100083,China;

2. Anhui University of Sciences & Technology,Huainan 232001,China)

Abstract: The chemical characteristic and its formation of the coal acid mining drainage are discussed in this paper based on the spot investigation,samples examination,applied the cor- relation analysis method,and combined w ith the geology and hydrogeology background informa- tion. Coal AMD formed in the specific substance and environment condition. And w hen the con- dition is meet,the AMD can be proced in both high or low sulfur in the coal. Low pH and high Eh,TDS,hardness are the important characteristic of coal AMD. There are good relation betw een SO2 -4and EC,Fe3 +/ Fe2 +radio and Eh. Some trace elements and harmful heavy metal such as Ni、Cu、Co、Zn in the AMD come from pyrit dissolution w hile some others like Pb、Sr are mainly come from the AMD eluviation to the coal and rocks.

Key words: coal AMD; chemical characteristic; trace elements; correlation analysis

( 本文由岳梅、趙峰華、任德貽合著,原載《煤田地質與勘探》,2004 年第 32 卷第 3 期)

3. 地下水污染與環境演化趨勢

一、地下水污染原因分析

我省平原地區淺層地下水的水質趨於惡化,尤其是豫北的南樂—內黃—滑縣、修武—衛輝一帶,中東部的開封—長葛—許昌—漯河—上蔡一線以東地區和南陽盆地西南部地區,環境質量不容樂觀。其中部分組分的分布受環境水文地球化學規律的控制如高鐵、高錳、高銻、高氟、低碘等,屬於原生態的劣質水;而更多的則與人類工程活動緊密相關,如總硬度、礦化度、「三氮」、高錳酸鹽指數(化學耗氧量)、揮發酚、六六六含量的變化等,則是人為因素污染所致。盡管我省各地地下水污染原因和污染途徑不盡相同,但是歸納起來可以認為,造成我省地下水水質污染的主要原因是:未經處理的工業「三廢」和城鎮生活污水的大量排放;農葯化肥的不合理施用;礦產資源的大規模開發,造成礦渣的亂堆亂放和選礦廢水任意排放。

(一)全省工業「三廢」、生活污水排放情況

據統計,全省的工業「三廢」排放總量呈逐年遞增趨勢。其中,工業廢水排放量1965年為4.9×108m3,1985年為12.8×108m3,2004年已增加到13.3×108m3;工業廢氣中的二氧化硫排放量由1990年的49×104t增加到2004年的111×104t;固體廢物產生量由1990年的2039×104t增加到2004年的5140×104t,增加152%,見表3-3。盡管我省環境保護的力度不斷加大,工業廢水排放達標率已由1990年的43.5%提高到2004年的93.7%,但對環境尤其是地表水環境造成的壓力依然很大。

表3-3 河南省工業「三廢」排放及處理情況

隨著城市化進程的加快,城鎮人口急劇膨脹,生活污水排放量也相應增加。2004年,全省廢水排放總量為25.06×108m3,其中生活污水排放量為11.73×108m3,約佔47%。

(二)全省農葯、化肥施用情況

由表3-4可以看出,全省農葯化肥的施用量呈逐漸增加趨勢。其中,化肥施用量(折純量)1978年為52.54×104t,1988年增加到154.57×104t,1998年為320.80×104t,2004年已增加到493.16×104t。2004年的化肥施用量較1978年增加了839%。全省農葯的施用量亦呈逐年遞增趨勢:1990年全省農葯施用量為3.31×104t,2000年為9.55×104t,10年間增加了近2倍。農葯使用量為1.5kg/ha,以有機磷類、聚酯類農葯為主。進入21世紀以後,全省化肥施用量仍在繼續增加,至2004年,全年化肥施用量已達10.12×104t。農用化肥使用量為2501kg/ha,氮、磷、鉀施用比例為:1:0.4:0.19,氮肥充足,部分地區用量偏高,鉀肥不足。農用塑料薄膜的使用量1990年為2.75×104t,2004年增加到10.16×104t,較1990年增加了269%。表3-5反映了2004年度我省各地區農葯化肥施用情況。從此表可以看出,在18個地(市)中,該年度化肥施用量最多的屬南陽市,為67×104t;化肥施用量最少的是濟源市,化肥施用量為2.1×104t。該年度農葯施用量最多的是周口市,為1.77×104t;最少的是濟源市,農葯使用量為0.04×104t。2004年全省化肥施用量4931580t(折純量),其中氮肥2213036t,磷肥1024159t,鉀肥475422t。農業面污染源對環境的影響也不可輕視。農葯、化肥的大量使用,不僅污染了土壤,還影響到地表水和地下水的水質。

表3-4 河南省歷年農葯化肥使用情況統計表

表3-5 2004年全省農葯化肥施用情況統計表

續表

(三)礦業開發過程中廢水、廢渣、廢石的排放概況

我省是礦業大省,礦業的大規模開發勢必會導致一系列環境地質問題的產生,對環境造成一定程度的影響。礦山廢水含礦坑水、選礦廢水、堆浸廢水、洗煤水;廢渣包括尾礦、廢石(土)、煤矸石、粉煤灰。據《河南省礦山地質環境調查與評估報告》,全省礦坑水年產出量4.68×108m3,年排放量3.76×108m3,廢石、廢渣年產出量0.32×108t,年排放量0.20×108t,累計積存量2.75×108t(表3-6、表3-7)。全省各礦山企業佔用、改變破壞土地狀況:采礦場佔地9079.67公頃、固體廢料場1703.93公頃、尾礦庫721.99公頃。

表3-6 全省礦山企業廢水廢液排放量表

表3-7 全省礦山企業廢渣排放量表

工業廢水和生活污水及開礦排出的大量廢水不僅污染了土壤,更嚴重地污染了地表水體,致使境內絕大部分河流水質變差,失去使用功能,有的直接變成了排污河。而這些被污染了的地表水體又通過灌溉或直接滲透等途徑使地下水受到了污染。礦山廢渣、工業固體廢棄物、農業上施用的農葯化肥則是在降水作用下,經過溶解、淋濾、離子交換等一系列物理、化學作用使污染物通過包氣帶進入地下水中的。

二、地下水環境演化趨勢

經過對歷史資料的分析和對比,河南省地下水環境已發生了很大變化。而這種變化,始終與人類生產、生活及各種經濟活動息息相關。下面根據不同時期的區域水文地質調查資料和多年來城市地下水質監測結果,概述我省地下水環境的演化趨勢。

概括起來,不外乎兩方面的變化,即量與質的變化,而量的變化則主要反映在水位的變化上。

(一)開采量不斷加大,地下水位持續下降

前已述及,20世紀50年代,全省地下水年開采量僅(20~25)×108m3,到20世紀末,已增加到130×108m3,增加了6倍。開采量的迅速增加,直接導致地下水位的迅速下降。據有關資料,河南省區域淺層地下水位埋藏深度,在60年代之前普遍較淺,80%以上的區域地下水位埋深小於4m,最大埋深不足6m;從90年代起地下水水位逐年下降,1976年,水位降落漏斗已經形成,漏斗中心水位埋深10~15m,尚未出現埋深大於16m的區域;到90年代初地下水位埋深小於4m的區域縮小近半,最大水位埋深達到16m 左右;90年代末地下水水位埋深小於4m的區域已較小,埋深在4~8m 間的區域面積最大,豫北局部地區地下水水位埋深達20~22m。到2005年,水位仍在持續下降,區域水位降落漏斗總面積已達近萬平方千米,水位埋深超過8m的地區已達21224km2,其中超過16m的地區就達5166km2,漏斗中心水位埋深已達32~33m。

圖3-3和圖3-4反映了降落漏斗區水位變化情況。其中清豐淺井位於南樂—滑縣漏斗區,從1983至2005年的22年間,水位下降9.28m,年均下降0.42m;孟州氣象局淺井位於溫縣—孟州漏斗區,自1989年以來水位下降了13m,年均下降0.81m。

圖3-3 清豐縣氣象局淺井多年水位動態變化曲線

圖3-4 孟州市氣象局淺井水位動態變化曲線

河南省區域淺層地下水歷年水位埋深面積變化情況見表3-8。此表表明:40年來,我省平原地區淺層地下水水位埋深發生了巨大變化,水位埋深普遍加大,其中小於2m的分布面積已由1964年的23549km2減少到2005年的8415km2,而大於4m的區域面積則顯著增加。

表3-8 河南省平原區淺層地下水水位埋深面積變化對比表 單位:km2

(二)水化學類型趨於復雜化

水化學類型反映了水的總體特徵,其變化直接反映了地下水環境的演化趨勢。在自然狀態下,地下水中陰離子以重碳酸根(

)、硫酸根離子(

)、氯離子(Cl)為主。1985年,平原地區淺層地下水水化學類型主要為三種陰離子:重碳酸根(

)、硫酸根離子(

)、氯離子(Cl)相互組合,共出現了27種不同的水化學類型;而本次調查採用相同的分類方法,共出現76種不同的水化學類型。尤其值得注意的是,又出現了新的水化學類型——硝酸根(

)型,陰離子中,硝酸根佔了主導地位,這在以往是沒有過的。雖然此類型水分布面積不大,但這充分說明地下水中氮的污染已相當嚴重。表3-9反映了2005年與1985年相比水化學類型演變情況。由此表可知,從全區來講,與20年前相比,簡單的HCO3型水的分布面積減少了9437km2,其他復雜的水化學類型面積相應擴大,水化學類型也更加復雜。這說明20年來我省平原地區淺層地下水質趨於惡化。

表3-9 不同時期河南省淺層地下水水化學類型分布情況對比表

(三)水的礦化度發生了變化

地下水礦化度的變化不僅取決於地質環境條件,人為因素的影響同樣不可忽視。從全區來講,淺層地下水礦化度的變化與人類工程活動緊密相關,其變化大致可分為兩個階段。

第一階段,從20世紀60年代到80年代為水質淡化期。60年代之前地下水開采量較小,水位普遍較淺,80%以上的區域地下水位埋深小於4m,蒸發作用強,土壤鹽鹼化較為嚴重,地下水的補給、徑流和排泄基本處於自然狀態。60年代初期,河南省大中小型水利工程全面鋪開興建,先後上馬了三門峽、宿鴨湖、昭平台、白龜山、鴨河口、陸渾等大型水庫。平原地區由於在河道中節節打壩攔蓄,開辟共產主義、東風、紅旗、躍進四大引黃口大引大灌,造成地下水位迅速上升,豫北和豫東及沿黃地區出現大面積土壤鹽鹼化。1964年,全省鹽鹼地面積達79×104ha,水的礦化度高,局部地段達17.63g/l。自1965年開始,全省大規模開展群眾性的打井運動,治理鹽鹼化,井灌事業迅速發展,地下水開采量增加,水位迅速降低,豫北地區出現了水位降落漏斗,土壤鹽鹼化程度大大降低,水質逐漸淡化,礦化度降低,鹹水分布面積縮小,淡水區域擴大。到1985年,鹹水(礦化度>1.0mg/l)面積縮小到12784km2,其中礦化度>2.0mg/l的分布面積1198km2

第二階段,為礦化度基本穩定或略有升高期。20世紀80年代以來,開采量仍在逐漸增加,大部分地區淺層地下位埋深在4m以上,一方面蒸發強度減弱,土壤淋濾作用增強,不利於土壤中鹽分積累;但另一方面水位降低,有利於高礦化度廢污水的滲入,造成淺層地下水污染而使礦化度升高。表3-10就反映了這種變化。與1985年相比,濮陽東南部沿黃地帶、封丘東北部、商丘北部地帶水質淡化,礦化度降低,而內黃—南樂、獲嘉—新鄉、許昌—太康—民權、上蔡—新蔡—正陽和南陽盆地西南部地區水的礦化度則有所升高。表3-10表明,2005年與1985年相比,含量<0.5mg/l的地區面積減少了9121km2,而含量0.5~1.0mg/1、1.0~2.0mg/l、>2.0mg/l的面積則分別增加了7730km2、193km2、1198km2。從整個平原地區來講,水的礦化度基本穩定,部分地區有升高趨勢。

表3-10 不同時期河南省淺層地下水礦化度變化情況對比表單位:km2

(四)高氟水區范圍縮小

地方性氟中毒是我省一個突出的環境地質問題。20世紀80年代初,全省高氟水區(含量>1.0mg/l)分布面積達3.17×104km2,佔全省國土總面積的19%,其成因多屬於鹼化型。其中平原及崗區高氟水分布面積為26654km2。全省共有氟中毒患者385.55萬。我省在飲水型氟中毒病區廣泛實施了改水降氟措施,收到良好效果。截至1997年底,已建改水工程6000多處。20年來,我省西部和南部地區水氟含量基本沒有變化,豫北和南陽盆地的大部分地區水氟含量有所降低,中東部的大部分地區水氟含量則有升高趨勢。與1985年相比,在我省平原和崗區,高氟水面積減少了3474km2(表3-11)。安陽—淇縣一帶的太行山前地帶、洛陽以西的平原和崗區包括靈三盆地和伊洛盆地西部、黃淮海平原西南部南陽盆地唐河—泌陽段等地淺層地下水中的氟化物含量自1985年以來未發生變化,仍屬於低氟水區;新鄉—焦作—沁陽—孟州—溫縣—武陟所構成的環形地帶、洛陽—鞏義—鄭州市區一帶、新鄭—尉氏—開封縣、杞縣—民權等地水氟含量也未發生大的變化,仍屬於中氟水區;清豐—濮陽—浚縣、台前—范縣—濮陽縣南部沿黃地帶、修武—獲嘉、虞城等地,水氟含量保持不變,在1~2mg/l之間,仍屬於高氟水。豫北的南樂—內黃—滑縣—長垣一帶和南陽盆地的鄧州市北部及唐河縣西北部地區水氟含量有所降低。長葛—通許—太康—睢縣—寧陵—永城南部以及蘭考、中牟、項城、沈丘等地水氟含量有所增加。

表3-11 不同時期河南省淺層地下水氟含量變化情況對比表

(五)總硬度大面積升高

與1985年相比,豫北的浚縣—濮陽、豫西的洛寧、豫東的周口—鄲城、豫南的羅山—潢川等局部地段硬度略有降低,靈三盆地、沿黃地帶孟津—蘭考段、中部的寶豐—臨潁—太康、豫南的上蔡—信陽一帶和南陽盆地東部硬度基本保持不變,其餘大部分地區硬度普遍升高。由表3-12可以看出,超標區(含量>450mg/l)面積較1985年增加了23380km2。目前,我省平原地區淺層地下水總硬度超標范圍已達45047km2。這是因為城市大量排放工業廢水與生活污水,以及城市郊區引用污水灌溉,污廢水中很多酸、鹼、鹽類等物質被帶進土壤層,經過化合分解、離子交換與離子效應等化學作用,把土壤中的鈣、鎂物質溶解或置換出來。同時,工業廢渣和城市生活垃圾里含有許多有機物與無機物,它們被隨意堆放,或用作農肥,在陽光、氧氣、二氧化碳、水分以及生物的作用下,發生分解、氧化,也把土壤中的鈣、鎂物質置換出來。這些鈣、鎂物質又隨雨水、灌溉水和污廢水滲入地下,從而引起淺層地下水硬度的升高。

表3-12 不同時期河南省淺層地下水總硬度變化情況對比表

4. 環保法對含煤廢水有什麼要求

環保法只要求污染物排放達到國家或地方規定的排放標准,不對是否煙煤進行規定
但在《大氣污染防治法》第三章防治燃煤產生的大氣污染中有一些限制高硫份,高灰份煤開采以及鼓勵保用清潔能源的規定

5. 含煤廢水處理的主要處理流程是什麼

輸煤系統廢水->煤泥廢水池(曝氣/攪拌和加葯)->送水泵è膜式過濾器->清水池->清水水泵->廠區內工業用水。該系統流程中的主要關鍵設備有:膜式過濾器(包括濾元、濾袋)、管夾閥、控制裝置等。

膜式過濾器產品介紹:

膜式過濾器是將聚四氟乙烯薄膜經過膨化處理,使構成的薄膜具有極好的化學穩定性能,能耐各種化學葯品的腐蝕(除熔融鹼金屬、活性氟素氣體外)。而且有較高的耐溫性能,溫度適用范圍廣(-240℃~+260℃)。由於經過高科技特殊加工使製成的薄膜極其強韌、柔軟。它所構成的空孔率很高而且非常均勻,同時具備高釋放性能,因此再小微粒都能捕集得到,又可以將它釋放出來。

聚四氟乙烯薄膜製成後粘貼在基材表面。通常基材可根據需要,選擇各種不同的織布或非織布,然後採用特殊的加工將它們粘在一起,使製成的膜與基材中纖維牢固結合,不會在使用中發生脫離現象。

自動反洗連續過濾、膜式過濾器可在數秒之內自動反洗清理過濾膜,反洗壓力僅需0.035MPa(即3.5mAq),反洗時不需要排空過濾器,反洗一結束,過濾器又進入過濾狀態,出水無初濾水,無需正洗,整個系統做到「零」排放。整個過程由PLC控制,自動循環進行,無需人工操作。壽命長、使用成本低、膜式過濾器中過濾膜的材料具有壽命長特點,因此維修、管理費用相當低。由於是低壓過濾,能耗也低。使用成本也大為降低。體積小、佔地省、膜式過濾器僅需其它相同處理量的傳統過濾裝置十分之一的佔地面積,因此建設費用相應低。尤其適用廠房面積小、老設備改造或配合環保改善設施的場合。設置化學清洗系統、隨時可以啟動設備整體化學清洗。維持膜式過濾器正常出力,延長使用壽命。

6. 如何解決廢水處理中的廢水硬度問題

廢水的抄硬度指標一般為總硬度,是指廢水中以離子形式存在的鈣、鎂離子的總量,通常換算成以碳酸鈣的量計。當含有硬度的廢水進入膜過濾裝置時,由於預處理過程中的攪拌反應、曝氣反應以及硫酸根的加入,不可避免的會形成碳酸鈣、碳酸鎂或者硫酸鈣等沉澱顆粒固體水垢,從而對膜孔造成堵塞,導致膜產水的下降;這種硬度水垢,由於成分復雜,通常的水沖洗不能將其很徹底的清洗干凈,需要採用相應的酸洗,從而導致膜過濾裝置的運行葯劑費用增加;同時頻繁的酸洗也會導致膜材料的損耗,嚴重降低膜的使用壽命;所以一般進膜過濾裝置的廢水需要預先降低硬度或控制水垢的形成。

7. 國內大型環保企業如何處理煤化工廢水

我國近年來興起的煤化工產業大多分布子在西北地區,水資源少,而煤化工又是水資源消耗量和廢水產生量都相當大的產業,因此,廢
以下為大家分享神華包頭煤制烯烴、神華鄂爾多斯煤直接液化、陝煤化集團蒲城
項目名稱:雲天化集團呼倫貝爾金新化工有限公司煤化工水系統整體解決方案
關鍵詞:煤化工領域水系統整體解決方案典範
項目簡介
呼倫貝爾金新化工有限公司是雲天化集團下屬分公司。該項目位於呼倫貝爾大草原深處,當地政府要求此類化工項目的環保設施均需達到「零排放」的水準。同時此項目是亞洲首個採用BGL爐(BritishGas-Lurgi英國燃氣-魯奇爐)煤制氣生產合成氨、尿素的項目,生產過程中產生的廢水成分復雜、污染程度高、處理難度大。此項目也成為國內煤化工領域水系統整體解決方案的典範。
項目規模
煤氣水:80m3/h污水:100m3/h
回用水:500m3/h除鹽水:540m3/h
冷凝液:100m3/h
主要工藝
煤氣水:除油+水解酸化+SBR+混凝沉澱+BAF+機械攪拌澄清池+砂濾
污水:氣浮+A/O
除鹽水:原水換熱+UF+RO+混床
冷凝水:換熱+除鐵過濾器+混床
回用水:澄清器+多介質過濾+超濾+一級反滲透+濃水反滲透
博天環境集團
技術亮點
1、煤氣化廢水含大量油類,含量高達500mg/L,以重油、輕油、乳化油等形式存在,項目中設置隔油和氣浮單元去除油類,其中氣浮採用納米氣泡技術,納米級微小氣泡直徑30-500nm,與傳統溶氣氣浮相比,氣泡數量更多,停留時間更長,氣泡的利用率顯著提升,因此大大提高了除油效果和處理效率。
2、煤氣化廢水特性為高COD、高酚、高鹽類,B/C比值低,含大量難降解物質,採用水解酸化工藝,不產甲烷,利用水解酸化池中水解和產酸微生物,將污水在後續的生化處理單元比較少的能耗,在較短的停留時間內得到處理。
3、煤氣廢水高氨氮,設置SBR可同時實現脫氮除碳的目的。
4、雙膜法在除鹽水和回用水處理工藝上的成熟應用,可有效降低噸水酸鹼消耗量,且操作方便。運行三年以後,目前的系統脫鹽率仍可達到98%。
項目名稱:陝煤化集團蒲城清潔能源化工有限責任公司水處理裝置EPC項目
關鍵詞:新型煤化工領域合同額最大水處理EPC項目
項目簡介
該項目位於陝西省渭南市蒲城縣,採用的是德士古氣化爐和大連化物所的DMTO二代烯烴制甲醇技術。因此廢水主要以氣化廢水及DMTO裝置排水為主,具有高氨氮、高硬度的特點。博天環境承接了該公司年產180萬噸甲醇、70萬噸烯烴項目的污水裝置、回用水裝置和脫鹽水裝置,水處理EPC合同總額達到5億零900萬元。
項目規模
污水:1300m3/h回用水:2400m3/h
濃水處理系統:600m3/h
脫鹽水:一級脫鹽水1600m3/h
工藝凝液:600m3/h透平凝液:1200m3/h
主要工藝
污水:調節+混凝+沉澱+SBR
回用水:BAF+澄清+活性砂濾+雙膜系統+濃水RO
脫鹽水:UF+兩級RO+混床
濃水處理系統:異相催化氧化
工藝凝液:過濾+陽床+混床
透平凝液:過濾+混床
技術亮點
1、污水系統將多級串聯技術與SBR工藝相結合,將SBR反應工序以時間分隔為多次交替出現的缺氧、好氧轉換階段,這種環境下絲狀菌導致的污泥膨脹會被限制,污泥沉降率就會提高;同時,分隔出的各個反應段時長與微生物活性相契合,充分利用快速反硝化階段,創造良好的生物環境,促使硝化與反硝化反應徹底的進行,提高有機物去除效率,實現高氨氮污水污染物的達標處理。
2、濃水採用異相催化氧化處理技術,所用高活性異相催化填料與反應生成的Fe3+生成FeOOH異相結晶體,催化生成更多羥基自由基,具有極強的氧化能力,減少葯劑投加量和污泥生成量。

8. 煤層硬度分類

地下開採煤層硬度分級一般分為:

1、薄煤層,小於或等於1.3米。

2、中厚煤層,1.3~3.5米。

3、厚煤層,大於3.5米。

4、特厚煤層,超過8米。

露天開採煤層硬度分級一般分為:

1、薄煤層,小於或等於3.5米。

2、中厚煤層,3.5~10米。

(8)含煤廢水硬度范圍擴展閱讀:

煤層的穩定性

煤層的穩定性是指在成煤時期,泥炭沼澤基底不平、邊殼不均衡沉降、河流沖蝕作用和地質構造變動等,使煤層出現的尖滅、分叉、增厚、變薄和切斷等現象。

穩定煤層:煤層厚度在井田范圍內均大於最低可采標准,變化不大,有一定規律性,結構簡單或較簡單,全區穩定可采。

較穩定煤層:煤層厚度有一定的變化,在井田范圍內,變化規律性較明顯,結構簡單至復雜,全區基本穩定可采或大部分可采。

不穩定煤層:煤層厚度變化大,無明顯規律,結構復雜至極復雜,常有增厚、變薄、分叉、尖滅等現象,區內不穩定,大部可采或局部可采。

極不穩定煤層:煤層厚度變化特別大,呈透鏡狀、雞窩狀,一般不連續,很難找出規律,在井田范圍內斷續分布,區內大部不可采或只有局部可采。

9. 煤礦為什麼會有地下水處理

一、 概述
煤炭在我國能源結構中佔70%以上,煤炭開采過程中排放大量廢水,若不經處理直接排放,勢必對環境造成嚴重污染,同時造成水資源的大量浪費,無法實現循環經濟的目標。據統計我國40%的礦區嚴重缺水,已制約了煤炭生產的發展。西北礦區多處於山區,水資源更為缺乏,地表水又多為間歇性河流,枯洪水季節流量相當懸殊,常年流量稀釋能力差,排入河流的污水造成嚴重污染。因此,開發、管理、利用好煤礦水資源,對煤炭工業可持續發展具有重要意義。
1、煤廢水污染嚴重

據包括10多位院士在內的專家學者鑒定通過的一項課題研究表明,山西每年挖5億噸煤,使12億立方米的水資源受到破壞。這相當於山西省整個引黃河水入晉工程的總引水量。專家呼籲,應當從技術、人才、資金投入和經營機制等多方面解決這一世紀難題,幫助山西省等煤炭主產區擺脫「產煤致旱、因煤致渴」的困擾。

這項關於山西省煤炭產業可持續發展的研究表明,山西省採煤造成嚴重的水資源破壞,加劇了水資源短缺問題。這項課題研究表明,山西每挖1噸煤損耗2.48噸的水資源。每年挖5億噸煤,使12億立方米的水資源受到破壞。這相當於山西省整個引黃工程的總引水量。因此,這對於山西這個人均水資源量僅佔全國平均水平不到五分之一的地區來說是個非常嚴重的問題。

目前,由於煤炭開采對地下水系破壞非常嚴重。據統計,山西採煤對水資源的破壞面積已達20352平方公里,佔全省總面積的13%。山西省大部分農村人畜吃水靠煤系裂隙水,而煤礦開采恰好破壞了該層段的含水層。據統計,全省由於採煤排水引起礦區水位下降,導致泉水流量下降或斷流,使近600萬人及幾十萬頭大牲畜飲水嚴重困難。

2、煤炭採掘業廢水治理技術問題

99%的採煤項目廢水沒有進行治理,從主觀上應該說是環保監管不力。從客觀上說是我們環保部門對採煤項目廢水治理技術持謹慎態度。採煤廢水治理技術多如牛毛,那種技術最適用、工藝最成熟、操作管理最方便、投資最省、運行費用最低,一直是我們環保部門在尋求的。由於採煤廢水復雜多變,在同一礦井廢水中,同時含有鐵、錳等重金屬,硫、氟、氯等非金屬及有機污染物和懸浮物,有的礦井廢水呈弱酸性(如織金縣珠藏、鳳凰山等),再就是即使是同一礦井,所采層不同,廢水性質也不同,甚至是差別很大。這就給煤礦廢水治理技術的選用帶來很大的困難。通常情況是某一技術只能有效處理某一污染物,不可能把所有超標的污染物都處理好。一個煤礦不可能投入很多資金對污染物進行單項處理,這就是採煤廢水治理在技術上的難點。有的業主自行修了一兩個池子,把礦井廢水往池子一放,就是對廢水進行處理了。事實上不是這樣簡單,可能連懸浮物也處理不了,金屬和非金屬就更不可能處理了。

3、煤礦廢水處理要求

1.1煤礦廢水包括礦井涌水、煤場和矸石場淋溶廢水等。在進行處理前,應先委託地區環境監測站進行監測,以監測資料作為廢水處理工程設計的依據。DFMC煤礦廢水治理技術和成套設備是目前經實踐證明的實用技術,50萬噸以下、小時涌水量50m3以下的煤礦可採用此技術和設備。對於酸性煤礦廢水還需新增設備和葯劑。煤礦廢水經處理達標後盡可能循環使用,循環使用率不低於50%,經處理後排放的廢水列為總量控制指標進行考核。

1.2新建煤礦必須執行「三同時」規定,試產三個月必須申請地區環保局驗收,驗收達標的發給排污許可證,不達標的停產治理。

1.3原有煤礦分期分批進行治理,2005年50%左右的原有煤礦治理完工並通過達標驗收。列入家2005年治理計劃的煤礦不治理的,依法予以處罰;治理不達標的,停產治理。治理計劃由各縣市環保局商煤炭局提出,報地區環保局綜合平衡後以治理計劃下達執行。

表1 某A煤礦廢水處理監測結果 單位:mg/l

指標 排放

標准 處理前

濃度 超標倍數(倍) 處理後

濃度 比排放標准低(%) 懸浮物 70 258 2.7 11.5 83.6 鐵 1 2.58 1.6 0.68 32 硫化物 1 2.8 1.8 0.5 50 COD 100 281.9 1.8 7 93 錳 2 0.13 未超標 0.1 —

表2某B煤礦廢水處理監測結果單位:mg/ l

指標 排放

標准 處理前

濃度 超標 倍數 (倍) 處理後

濃度 比排放標准低(%) 懸浮物 70 318 3.5 4.5 93.6 鐵 1 2.28 1.3 0.74 26 硫化物 1 3.21 2.2 0.5 50 COD 100 228.4 1.3 18.8 81.2 錳 2 0.37 未超標 0.18 — 1.4、煤礦廢水中鐵含量高,如濃度大於100mg/l,其處理設備投資和運行費用將要增加。因為鐵含量過高,要達到1mg/l的排放標准,一級除鐵是不行的,必須三至四級除鐵。

1.5、酸度高的煤礦廢水應使達標(6~9)。

1.6、煤礦要對煤場、矸石場進行硬化處理,建導流溝,把因大氣降水產生的這一部分淋溶水引入廢水處理系統進行處理。

1.7、 預防事故和自然因素引起的非正常排放

為預防因降暴雨致使廢水次理池溢流,工程設計必須考慮廢水處理池有足夠的容積。為防止事故性排放,必須建事故調節池。四、煤礦生活廢水處理要求洗煤廠和煤礦生活廢水處理採用深圳開發研製的微型生活廢水處理裝置進行處理。生活廢水經處理達標後可排放。五、煤礦廢水治理技術選用

實踐證明是可行的 DFMC煤礦廢水治理技術和成套設備可選用。未經試點的技術只能試點,不能推廣。經試點並由A地區環境監測站監測、提出監測報告,從治理效果、投資、運行費用等全面評價後由地區環保局決定是否推廣。

二、廢水主要處理技術

我國煤礦礦井水處理技術起始於上世紀70年代末,大多污水治理工作都只停留在為排放而治理。然而回用才是當今污水治理發展的必然趨勢,將防治污染和回用結合起來,既可緩解水源供需矛盾,又可減輕地表水體受到污染。現國內使用的處理技術主要有:沉澱、混凝沉澱、混凝沉澱過濾等。處理後直接排放的礦井水,通常採用沉澱或混凝沉澱處理技術;處理後作為生產用水或其它用水的,通常採用混凝沉澱過濾處理技術;處理後作為生活用水,過濾後必須再經過除酚等對人體有害物質及消毒處理;有些含懸浮物的礦井水含鹽量較高 ,處理後作為生活飲用水還必須在凈化後再經過淡化處理。三、礦井水處理回用的條件

1、礦井廢水的產生及特點

煤礦礦井廢水包括:煤炭開采過程中地下地質性涌滲水到巷道為安全生產而排出的自然地下水,井下採煤生產過程中灑水、降塵、滅火灌漿、消防及液壓設備產生的含煤塵廢水。因此,它既具有地下水特徵,但又受到人為污染。礦井廢水的特性取決於成煤的地質環境和煤系低層的礦物化學成分,其中井田水文地質條件及充水因素對於礦井開采過程礦井廢水的水質、水量有決定性的影響。因此,對礦井廢水處理要考慮開采過程中水質、水量的變化。某礦區M煤礦礦井廢水水質取礦井正常排水時井口水樣,結果見表1。

M煤礦礦井廢水污染物監測表

表1 單位:mg/L

序號 監測項目 日均值濃度范圍 序號 監測項目 日均值濃度范圍 1 肉眼可見物 微粒懸浮物 9 總氮 5.600~5.854 2 PH值 8.41~8.55 10 砷(ng/L) 3.4~5.2 3 CODcr 66.4~131.7 11 總磷 0.085~0.104 4 硫化物 1.09~1.67 12 糞大腸菌 260~393 5 懸浮物 360~500 13 銅 0.0207~0.0294 6 酚 0.006~0.051 14 鉛 -- 7 BOD5 14.10~24.73 15 鎘 -- 8 LAS 0.198~0.220 16 鋅 0.0381~0.0407

通過網路調查和資料查找,收集了多年來某礦區有關礦井水和地下水的化驗數據資料,以及環境監測站監測數據(表1)綜合分析,該煤礦礦井廢水含煤泥為主要懸浮物,有機物略有超標,糞大腸菌群超標,揮發酚超標。

2、礦井廢水回用途徑

煤礦礦井水處理後可作生產用水或生活用水,礦井生產用水主要是井下採掘設備液壓用水、消防降塵灑水,生活用水主要是沖廁、洗浴水以及深度處理後用於飲用水。水質標准分別為:

a、防塵灑水《煤礦工業礦井設計規范》(GB50215-94)

SS≤150mg/L,粒徑d<0.3mm;PH值為6~9;大腸菌群≤3個/L。

b、空壓機、液壓支柱用水水質SS≤10~200mg/L,粒徑d <0.15mm;硬度(碳酸鹽)2~7mg/L;pH值為6.5~9;濁度<20。

c、礦井洗浴水水質達到《地表水環境質量標准》(GB3838-2002)的Ⅲ類水體標准。

d、中水水質達到《生活雜用水水質標准》(CJ/T 48-1999)。

5、生活飲用水達到《生活飲用水衛生標准》(GB5749-85)。

四、處理工藝

從上表可知,M煤礦礦井廢水處理工程的設計處理能力為800~1000m3/d,處理後作為生產和生活用水,採用混凝反應、過濾、活性炭吸附及消毒工藝,流程見圖1。

圖1礦井廢水處理工藝流程

礦井廢水由井下排水泵提升至灌漿水池,部分用於黃泥灌漿,其餘廢水自流進入曝氣池,氣浮除油後進入斜板沉澱池進行初步沉澱,由提升泵提升進入混凝沉澱設備,同時加入混凝劑,經過斜管沉澱後,將絮狀物沉澱到底部而被去除,清水從上部溢流出水自流進入砂濾罐,出水自流進入清水池,清水池前投加二氧化氯進行殺菌消毒。砂濾罐的反沖冼水自流進入污泥池,上清液自流進入曝氣池,以提高礦井廢水資源的利用率。出水若用作生活用水,則砂濾罐出水進入活性炭吸附裝置處理後流入清水池用作生活用水。

五、主要處理單元

1、預沉池曝氣

礦井廢水中含有少量的有機物,通過曝氣接觸氧化去除廢水中的有機物。另外,井下液壓支柱等設備產生少量油類,通過氣浮除油,使廢水中油類達標。

2、混凝沉澱

煤礦礦井水主要污染物為懸浮物,處理懸浮物主要採用混凝沉澱法,用鋁鹽或鐵鹽做混凝劑,混凝劑混合方式採用管道混合器混合。混凝沉澱裝置採用倒喇叭口作為反應區,水流在反應區中流速逐漸降低,使廢水和混凝劑葯液的反應在反應器中逐漸全部完成。完全反應的廢水流出反應區後開始形成混凝狀物質,經過布水區進入斜管填料,由於斜管填料採用PVC六角峰窩狀填料,利用多層多格淺層沉澱,提高了沉澱效率。將絮狀物沉澱到底部而被去除,清水從上部溢流排出。

3、砂濾凈化

礦井廢水經混凝沉澱後,水中還含有較小顆粒的懸浮物和膠體,利用砂濾設備將懸浮顆粒和膠體截留在濾料的表面和內部空隙中,它是混凝沉澱裝置的後處理過程,同時也是活性炭吸附深度處理過程的預處理。砂濾罐為重力式無閥濾池,採用自動虹吸原理達到反沖洗,不需要人工單獨管理,操作簡便,管理和維護方便。砂濾罐通常採用不同等級的石英砂多層濾料。

4、活性炭吸附

該煤礦礦井廢水主要含有揮發酚,酚類屬於高毒物質,它可以通過皮膚、粘膜、口腔進入人體內,低濃度可使細胞蛋白變性,高濃度可使蛋白質沉澱。長期飲用被酚污染的水源,會引起蛋白質變性和凝固,引起頭暈、出疹、貧血及各種神經症狀,甚至中毒。處理中水用作生活飲用水,必須用活性炭吸附裝置處理。活性炭的比表面積可達800~2000m2/g,具有很強的吸附能力。該裝置採用連續式固定床吸附操作方式,活性炭吸附劑總厚度達3.5m,廢水從上向下過濾,過濾速度在4~15m/h,接觸時間一般不大於30~60min。隨著運行時間的推移,活性炭吸附了大量的吸附質,達到飽和喪失吸附能力,活性炭需更換或再生。

5、消毒

廢水中含有一定的病菌、大腸菌群,處理後回用於洗浴時,若不經過消毒,對人體皮膚傷害嚴重。所以礦井廢水處理後作為生活用水必須經過消毒處理,本工藝採用二氧化氯消毒,現場用鹽酸和氯酸鈉反應產生二氧化氯,二氧化氯無毒、穩定、高效、殺菌能力是氯的5倍以上。

六、處理工藝特點

1、以上可知A煤礦礦井廢水處理工程是根據礦井水水質特點確定工藝技術參數,採用一次提升到混凝沉澱裝置,再自流進入後續各處理構築物,出水水質穩定可靠,動力設備較少,能耗較低。

2、採用混凝沉澱裝置與砂濾罐相結合的工藝技術,主要處理構築物採用組合式鋼結構,具有佔地面積小、使用壽命長、工程投資省、工藝簡單、操作管理方便、運行成本低等特點。砂濾罐設計採用重力式無閥濾池,反沖洗完全自動,操作管理方便。

3、該煤礦礦井廢水處理系統實現了自動加葯、自動反沖洗的全過程監控,包括電控系統、上位監控系統和儀表檢測系統。儀表檢測系統包括加葯流量、處理流量 、水池液位和加葯箱液位、進水和出水濁度等連續自動檢測。

閱讀全文

與含煤廢水硬度范圍相關的資料

熱點內容
新疆除垢器批發 瀏覽:28
農村地下污水一般如何處理 瀏覽:667
純水加什麼祛斑最快 瀏覽:437
已知用j6經緯儀一測回測 瀏覽:602
反滲透膜費水 瀏覽:11
納濾實驗裝置 瀏覽:274
斯帝沃空氣凈化器什麼價格 瀏覽:161
山西金屬濾芯怎麼選 瀏覽:702
超濾膜濾芯使用後 瀏覽:476
重慶水垢過濾器 瀏覽:972
鮮時代凈水器濾芯怎麼換 瀏覽:710
基膜具有半透膜性質嗎 瀏覽:352
酸性電鍍廢水處理 瀏覽:173
凈化器油漬怎麼清洗 瀏覽:946
地下濾芯怎麼清洗 瀏覽:809
軟水機過濾後水是鹹的 瀏覽:726
電離子去汗管瘤疤掉後很紅 瀏覽:498
東風輕卡車空調濾芯怎麼拆 瀏覽:191
污水使魚生病英語怎麼說 瀏覽:45
超純水機水量下降怎麼辦 瀏覽:971