⑴ 含氰廢水如何處理
含氰廢水有抄很多種處理方法,襲需要根據廢水水質情況來選擇。
鹼性氯氣氧化破氰,在鹼性含氰廢水中通入氯氣氧化;
UV光催化破氰,以雙氧水為氧化劑,通過光輻射催化處理含氰廢水;
雙氧水催化氧化,通常以銅離子作為催化劑,在弱鹼性條件下常溫氧化;
臭氧氧化法,採用臭氧發生器制備臭氧氧化氫化物和硫氰酸鹽;
高溫加壓水解法,65℃以上氰根即可與水反應生成氨和碳酸鹽,200℃以上時水解速度非常快;
還有活性炭吸附、膜分離、溶劑萃取、金屬離子絡合法等等。
⑵ 光化學氧化法:光催化氧化在處理廢水時有哪些優缺點
光催化氧化的優點:
(1)反應條件溫和、氧化能力強。
(2)在染料廢水、表而活性劑、農葯廢水、含油廢水、氰化物廢水、制葯廢水、有機磷化合物、多環芳烴等廢水處理中,都能有效地進行光催化反應,使其轉化為無機小分子,達到完全無害化的目的。
(3)光催化氧化反應對許多無機物,如CN-、Au(CN)2-、I-、SCN-、Cr2O72-、Hg(CH3)2、 Hg2+等的去除也有廣闊的應用前景。
(4)可以破壞氰化物,以及電鍍常用的各種有機螯合劑和添加劑,而達無害化。
(5)可以除去各種水中的微生物、細菌和黴菌。
(6)不僅可以破壞稀溶液(廢水)中的有機物,而且可以破壞濃溶液(槽液)中的有機物。
(7)是一種非常清潔的干處理法,不會引入任何其他物質到體系中。
(8)能徹底破壞有機物而使其轉化為CO2排出,處理的深度比其他方法高。
光催化氧化的缺點:
(1)紫外光的吸收范圍較窄,光能利用率較低,其效率還會受催化劑性質、紫外線波長和反應器的限制,短波紫外線(波長小於1700 A)比長波的效果好,但短波紫外光較難獲得。
(2)光催化氧化需要解決透光度的問題,因為某些廢水(如印染廢水)中的一些懸浮物和較深的色度都不利於光線的透過,會影響光催化效果。
(3)目前使用的催化劑多為納米顆粒(太大時催化效果不好),回收困難,而且光照產生的電子一空穴對易復合而失活。
⑶ 生物實驗室廢水執行什麼標准
出水滿足《城鎮污水處理廠污染物排放標准(GB8918-2002)》
1.生物實驗室廢水收集後進入貯水池,然後進入pH調節池,在pH調節池中投加稀H2SO4(30%)作為pH調節劑,使與廢水pH降至2左右,攪拌10-30min,進行初步殺菌;
初步殺菌後廢水進入反應池,加入NaOH調節為中性,並加入CaO與廢水中LAS進行化學反應形成小的沉澱懸浮物,CaO摩爾投加量相當於LAS摩爾濃度的0.75-1.0倍,化學反應時間10-20min,其混合液流入後續混合池,混合池中加入PAFCS進行快速攪拌(300r/min),混合時間為1-2min,投加量為40-60mg/L;
混合液進入絮凝池,絮凝池中投加PAM0.5-1.0mg/L,絮凝時間為15-30分鍾,此過程在慢速攪拌(60r/min)中進行,保證大顆粒絮體的形成;
絮凝後的混合液進入第一沉澱池,第一沉澱池水力停留時間為90-120分鍾,大量的絮體沉入沉澱池底部得到去除,沉澱後廢水中CODcr去除率達60%以上,LAS去除率達到50%以上,部分細菌同時得到去除;
沉澱後的廢水上清液進入Fenton氧化池進行Fenton氧化,運行條件為H2O2投加量0.044-0.18mol/L,硫酸亞鐵投加量按照mol(H2O2)/mol(Fe2+)比為20∶0.5-20∶2進行投加,用酸調節法院溶液pH在2-4,反應3.5-5.5h,在此過程進行中速攪拌(100r/min),處理出水CODcr小於100mg/L;
Fenton氧化後廢水進入中和池,投加NaOH或者CaO調節出水pH為中性;
最後,經二次沉澱池沉澱90-120分鍾後,排放。
經測定其出水COD小於100mg/L,氨氮、總磷分別小於25mg/L、3mg/L,出水滿足《城鎮污水處理廠污染物排放標准(GB8918-2002)》二級排放標準的相關要求。細菌總數去除率達到100%,細菌生物活性(ATP)低於檢測限,保障出水的生物衛生安全性。發光細菌的急性毒性試驗結果表明,其相對抑光率降至30%以下,屬低水平毒性,保障了出水的生態健康安全性。
⑷ 光催化的原理什麼
光催化原理是基於光催化劑在光照的條件下具有的氧化還原能力,從而可以達到內凈化容污染物、物質合成和轉化等目的。
通常情況下,光催化氧化反應以半導體為催化劑,以光為能量,將有機物降解為二氧化碳和水。因此光催化技術作為一種高效、安全的環境友好型環境凈化技術,對室內空氣質量的改善已得到國際學術界的認可。
(4)光催化處理有機廢水實驗報告擴展閱讀
光催化有機合成反應的特點如下:
①光是一種非常特殊的生態學上清潔的「試劑」;
②光化學反應條件一般比熱化學要溫和;
③光化學反應能提供安全的工業生產環境,因為反應基本上在室溫或低於室溫下進行;
④有機化合物在進行光化學反應時,不需要進行基團保護;
⑤在常規合成中,可通過插入一步光化學反應大大縮短合成路線。 因此,光化學在合成化學中,特別是在天然產物、醫葯、香料等精細有機合成中具有特別重要的意義。
⑸ MBR工藝處理造紙廢水怎麼處理
隨著水資源的13益緊缺和人們環保意識的增強,廢水的處理要求日益提高,傳統的水處理方法存在著處理裝置容積負荷低、佔地面積大、出水水質不穩定、管理操作復雜等問題。針對上述問題,各種新型的廢水處理技術應運而生,其中最引人注目的是將膜技術應用於廢水處理中所形成的膜生物反應器(Membrane Bioreactor簡稱MBR)技術。針對MBR技術的特點,近年來不斷有學者將MBR技術引入造紙廢水的處理,並取得了一定的成就。
1MBR形式及特點
1.1膜生物反應器的形式
根據MBR中膜組件與生物反應器的組合方式不同,可將MBR分為內置式和外置式兩種類型,見圖1、2。
內置式MBR是將膜組件置入反應器內,在泵的負壓抽吸作用下濾出液透過膜組件,為減少膜面污染,延長運行周期,一般採用間歇出水方式運行。外置式MBR是指膜組件與生物反應器分開設置,反應器內混合液通過泵進入膜組件,在壓力作用下混合液濾出液透過膜組件,濃縮液則返回反應器。
膜組件的形式可分為中空纖維式、平板式、管式、螺旋式等。在外置式MBR中,平板式、管式應用較多;在內置式MBR中,多採用中空纖維膜和平板膜。目前在全球能源危機的大背景下,內置式MBR的研究和應用遠超過了外置式MBR(內置式MBR佔65%、外置式MBR佔35%)。
1.2MBR的特點
MBR可在緊湊的空間內同時實現微生物對污染物質的降解和膜對污染物質的分離,而降解與分離之間又存在著協同作用,是一種高效、實用的污水處理技術,該工藝具有出水水質好、運行維護簡單、結構緊湊、佔地面積少等優點,在水資源Et趨緊張的現實條件下,在污水處理及回用方面有著非常廣闊的應用前景。
MBR工藝具有以下特點:
(1)MBR與傳統污水處理工藝相比,最大的區別是使用膜組件替代了沉澱池,泥水混合液採用膜過濾出水方式,可以大幅降低出水中的懸浮物。
(2)膜的高效截留作用可防止各種有效微生物菌群的流失,高濃度微生物有利於有機污染物的徹底降解,並且解決了污泥膨脹的問題。
(3)MBR工藝使用了標准化、系列化的膜組件(膜塊)設計。MBR的自動化程度高,易於實現從進水到出水的全程自動控制,保證系統的穩定運行。
(4)產生剩餘污泥量少。因SRT較長,污泥性質較為穩定,MBR工藝產生的剩餘污泥量大大減少,排放量比傳統工藝減少2/3,明顯降低了污泥處理費用和二次污染威脅。
2MBR處理造紙廢水的研究
目前國內大部分造紙廠採用鹼法制漿,而鹼法制漿所產生的「黑液」污染最為嚴重,占整個造紙行業污染的90%,產生「黑液」的主要成分是木質素和碳水化合物的降解產物等,其次「黑液」提取後漿料在洗滌篩選和漂白過程中排出的廢水成分與制漿廢水相近但濃度低,而且富含漂白階段產生的對環境危害大的氯苯酚、氯化脂肪酸等有機氯化物,不同工段產生的主要污染物大相徑庭,所以一般分別採用不同的處理工藝,而MBR技術由於它工藝上的優勢和特點逐漸被引入不同工段的造紙廢水處理中。
2.1國外研究進展
上世紀60年代美國開始了其在廢水領域的應用研究,最初主要用於處理生活污水。70年代後日本等國對膜分離技術進行了大力開發和研究,在90年代,國外在MBR處理效果與運行穩定性方面已具備了一定的理論基礎,從此國外開始逐步將MBR技術應用到廢水處理工程中。
採用了移動床膜生物反應器處理新聞紙廠的生產廢水,當水力停留時間為4~5h時,COD和BOD去除率分別達到65%~75%和85%一95%,在適當延長水力停留時間的條件下,COD和BOD的去除率可分別提高到80%和96%。Du~esn.R等分別採用MBR與傳統的活性污泥法處理制漿廢液,結果表明:MBR法比活性污泥法更能有效地去除漿料中的COD及固體懸浮物,二者去除率分別為99%和88.6%~90.0%。VanDijk、L.等人¨研究一種耐熱膜生物反應器並成功應用於荷蘭、德國的3個不同造紙廠,能有效地去除廢水中的膠狀物和高分子溶解物;對膜生物反應技術處理造紙廢水進行的研究表明:在COD負荷為0.5kgCOD/(kgVSS•d)、溶解氧濃度大於2mg/L、反應器中的pH值為7.9、反應溫度為53℃時,COD含量由700mg/L下降至30.0mg/L。
對膜生物反應技術在處理造紙廢水過程中的膜分離操作條件如操作壓力、膜種類、流量、溫度等進行了初步優化研究。結果表明:在操作壓力為0.15MPa、流量在2~4m/s之間時處理效果都可以,當流量為3.5m/s時,膜通量可達100L/(m•h)。對於特定條件下的膜污染機理、膜污染的預防和清洗等,文中沒有涉及,還有待進一步的研究。
2.2國內研究進展
在上世紀90年代,國內開展了MBR工藝的相關研究,近些年來才逐漸被引入到造紙工業廢水處理中。如今,MBR工藝在中國開始逐漸得到廣泛的應用,實踐證明,MBR不僅能有效處理生活污水和工業廢水,而且對於一些高濃度有機廢水和難降解工業廢水,如造紙廢水、印染廢水、化工廢水及制葯廢水、垃圾滲濾液等的處理,更是具有其獨特的優勢。
對MBR法與傳統活性污泥工藝進行了比較研究。結果表明,MBR法較活性污泥法具有更強的有機物去除能力(COD去除率達85%以上)和更為穩定良好的出水水質,透明,無色,排放達到國家指標。韓懷芬等使用MBR處理造紙綜合廢水(黑液中段廢水和白水的混合液)並與傳統的活性污泥法與生物接觸氧化法進行比較。實驗結果表明,用MBR處理造紙廢水,通過增加污泥濃度,在HRT為18h的條件下,出水COD可以降低到100mg/L以下,整個反應器的總去除率最高可達90%以上。而與之相對應的活性污泥法和接觸氧化法控制HRT近40h後,出水COD還是達不到MBR的出水效果,分別為149.3mg/L和197.3mg/L。這充分說明了MBR對難降解廢水的處理效果比活性污泥法和生物接觸氧化法要好得多。
採用中空纖維膜生物反應器處理造紙廢水的試驗結果表明:MBR在處理造紙廢水這種難降解有機廢水方面有其明顯的優勢,廢水的COD去除率較高,可達到85%以上,處理後的水可回用,出水穩定性較好。2009年,採用移動床生物膜反應器(MBBR)深度處理造紙中段廢水,結果表明:MBBR工藝可進一步削減經過生化處理的中段廢水中的有機污染物,運行穩定且處理效果良好。胡維超針對造紙行業的中段廢水和白水的特點,分別採用浸沒式與外置式膜生物反應器來處理造紙廢水,結果表明:在相同原水和條件下,浸沒式MBR系統運行更加穩定可靠,出水水質也明顯優於外置式MBR。浸沒式膜生物反應器系統COD去除率可穩定在90%~95%,而外置式在運行期間則存在較多問題,並且能耗較高。
採用中試規模的MBR系統對某造紙廠的造紙廢水進行了處理,研究了MBR處理造紙廢水的效果,並與造紙廠原有污水處理系統進行了對比。實驗結果表明,在同樣的進水條件下,MBR出水水質明顯好於原有系統二沉池出水水質。在污泥濃度9000mg/L、水力停留時間22h的條件下,MBR出水COD平均66.4mg/L,COD去除率達94.6%。
3MBR組合工藝處理造紙廢水的研究進展
從實際研究結果可以看出,膜生物反應器在COD和色度去除方面有較大的優勢,同時還具有較強的抗沖擊負荷的能力,因此能夠有效處理造紙廢水。但也有一些問題在一定程度上制約了MBR的應用與發展,如能耗高、投資大、易引起膜污染等。另外,造紙廢水中含有難生物降解的有機物,在運行過程中容易引起膜污染,造成膜通量下降,影響反應器的處理效果。在這種情況下,研究者開始將MBR與其他處理工藝有效結合起來處理造紙廢水,這樣既可以減小能耗、減緩膜污染,還可以提高系統的處理效果,以滿足日益提高的環保要求,並且實現廢水的高效處理及回收利用的目標。
採用混凝協同好氧生物膜技術深度處理造紙廢水,結果表明:以氯化鐵為絮凝劑協同好氧生物膜技術效果最為顯著,色度去除率高達69.3%,且各項指標均超過一級排放標准,出水可回用。採用浸沒式MBR作為反滲透進水前的預處理系統,初步進行了浸沒式MBR處理後出水滿足RO系統進水條件的可行性研究。
在浸沒式MBR與反滲透組合處理造紙中段廢水和白水的實驗中,結果表明:浸沒式MBR出水SDI值穩定在3以內,可以滿足後續反滲透組件穩定運行的要求,並且在原水COD值為1500mg/L的情況下,最後RO系統出水COD可降至10mg/L。採用電解一MBR組合工藝處理造紙廢水,利用電解產生的自由基、過氧化氫和氫氧化物的絮凝等物質將廢水中難降解的有機物吸附去除,從而有效降低COD並提高廢水可生化性,實驗結果表明:處理後出水COD降至80mg/L左右,色度降至4O倍,去除率分別達到95%和75%。而單獨採用MBR工藝處理後出水COD和色度分別為200mg/L和140倍。
利用光催化氧化一MBR的組合工藝處理難降解有機廢水,結果表明:經組合工藝處理,廢水COD、濁度、色度降解率分別達到93.5%、99.9%和98.9%。還有研究表明,採用水解酸化一MBR工藝可有效去除有機物及色度,這是由於水解酸化將有機大分子化合物降解成小分子有機物,提高了廢水的可生化性,為後續MBR生化處理創造了條件,處理後廢水平均脫色率可達到81.58%,COD和氨氮去除率則分別為83.53%和80.39%。
很多研究表明,將不同的膜分離技術(如:微濾、超濾、納濾等)相組合,或者將MBR與其他技術(如催化氧化技術、電化學等)組合已成為造紙廢水深度處理的一個重要研究及應用方向。具體參見http://www.dowater.com更多相關技術文檔。
4前景展望
膜生物反應器具有無相變、佔地面積小、操作靈活等優點,已被廣泛地應用於污水處理、中水回用等領域,並已取得良好的效果。造紙廢水污染嚴重,對其有效處理已經成為中國廢水處理的一個重要方面。傳統的造紙廢水處理方法不僅投資高、能耗大,而且很難持續滿足國家環保排放的要求。此時,高效的膜生物反應器以其獨特的優勢應用於造紙廢水的處理已引起國內外同行的廣泛關注。
膜生物反應器在推廣應用過程中還存在著一些不足,如膜初期投資費用較高、操作不當容易引起膜污染等問題。但在水資源日益缺乏的今天,隨著膜加工生產技術、工藝優化、過程式控制制等研究的深入展開,我們堅信MBR必將在中國造紙廢水處理領域發揮越來越大的作用,同時帶來良好的環境效益、經濟效益和社會效益。
⑹ 目前用於環境水處理領域的光催化劑主要種類有哪些
目前用於環境水處理領域的光催化劑主要種類有哪些
深度處理常見的方法有以下幾種。
1.1 活性炭吸附法與離子交換
活性炭是一種多孔性物質,而且易於自動控制,對水量、水質、水溫變化適應性強,因此活性炭吸附法是一種具有廣闊應用前景的污水深度處理技術。活性炭對分子量在500~3 000的有機物有十分明顯的去除效果,去除率一般為70%~86.7%[1],可經濟有效地去除嗅、色度、重金屬、消毒副產物、氯化有機物、農葯、放射性有機物等。
常用的活性炭主要有粉末活性炭(PAC)、顆粒活性炭(GAC)和生物活性碳(BAC)三大類。近年來,國外對PAC的研究較多,已經深入到對各種具體污染物的吸附能力的研究。淄博市引黃供水有限公司根據水污染的程度,在水處理系統中,投加粉末活性炭去除水中的COD,過濾後水的色度能降底1~2度;臭味降低到0度[2]。GAC在國外水處理中應用較多,處理效果也較穩定,美國環保署(USEPA)飲用水標準的64項有機物指標中,有51項將GAC列為最有效技術[3]。
GAC處理工藝的缺點是基建和運行費用較高,且容易產生亞硝酸鹽等致癌物,突發性污染適應性差。如何進一步降低基建投資和運行費用,降低活性炭再生成本將成為今後的研究重點。BAC可以發揮生化和物化處理的協同作用,從而延長活性炭的工作周期,大大提高處理效率,改善出水水質。不足之處在於活性炭微孔極易被阻塞、進水水質的pH 適用范圍窄、抗沖擊負荷差等。目前,歐洲應用BAC技術的水廠已發展到70個以上,應用最廣泛的是對水進行深度處理[4]。撫順石化分公司石油三廠採用BAC技術,既節省了新鮮水的補充量,減少污水排放量,減輕水體污染,降低生產成本,還體現了經濟效益和社會效益的統一[5]。今後的研究重點是降低投資成本和增加各種預處理措施與BAC聯用,提高處理效果。
1.2 膜分離法
膜分離技術是以高分子分離膜為代表的一種新型的流體分離單元操作技術[6,7]。它的最大特點是分離過程中不伴隨有相的變化,僅靠一定的壓力作為驅動力就能獲得很高的分離效果,是一種非常節省能源的分離技術。
微濾可以除去細菌、病毒和寄生生物等,還可以降低水中的磷酸鹽含量。天津開發區污水處理廠採用微濾膜對SBR二級出水進行深度處理, 滿足了景觀、沖洗路面和沖廁等市政雜用和生活雜用的需求[8]。
超濾用於去除大分子,對二級出水的COD和BOD去除率大於50%。北京市高碑店污水處理廠採用超濾法對二級出水進行深度處理,產水水質達到生活雜用水標准,回用污水用於洗車,每年可節約用水4 700 m3[9]。
反滲透用於降低礦化度和去除總溶解固體,對二級出水的脫鹽率達到90%以上,COD和BOD的去除率在85%左右,細菌去除率90%以上[10]。緬甸某電廠採用反滲透膜和電除鹽聯用技術,用於鍋爐補給水。經反滲透處理的水,能去除絕大部分的無機鹽、有機物和微生物[11]。
納濾介於反滲透和超濾之間,其操作壓力通常為0.5~1.0 MPa,納濾膜的一個顯著特點是具有離子選擇性,它對二價離子的去除率高達95%以上,一價離子的去除率較低,為40%~80%[12]。潘巧明等人採用膜生物反應器-納濾膜集成技術處理糖蜜制酒精廢水取得了較好結果,出水COD小於100 mg/L,廢水回用率大於80%[13]。
我國的膜技術在深度處理領域的應用與世界先進水平尚有較大差距。今後的研究重點是開發、製造高強度、長壽命、抗污染、高通量的膜材料,著重解決膜污染、濃差極化及清洗等關鍵問題。
1.3 高級氧化法
工業生產中排放的高濃度有機污染物和有毒有害污染物,種類多、危害大,有些污染物難以生物降解且對生化反應有抑制和毒害作用。而高級氧化法在反應中產生活性極強的自由基(如•OH等),使難降解有機污染物轉變成易降解小分子物質,甚至直接生成CO2和H2O,達到無害化目的。
1.3.1 濕式氧化法
濕式氧化法(WAO)是在高溫(150~350 ℃)、高壓(0.5~20 MPa)下利用O2或空氣作為氧化劑,氧化水中的有機物或無機物,達到去除污染物的目的,其最終產物是CO2和H2O[14]。福建煉油化工有限公司於2002年引進了WAO工藝,徹底解決了鹼渣的後續治理和惡臭污染問題,而且運行成本低,氧化效率高[15]。
1.3.2 濕式催化氧化法
濕式催化氧化法(CWAO)是在傳統的濕式氧化處理工藝中加入適宜的催化劑使氧化反應能在更溫和的條件下和更短的時間內完成,也因此可減輕設備腐蝕、降低運行費用[16,17]。目前,建於昆明市的一套連續流動型CWAO工業實驗裝置,已經體現出了較好的經濟性[18]。
濕式催化氧化法的催化劑一般分為金屬鹽、氧化物和復合氧化物3類。目前,考慮經濟性,應用最多的催化劑是過渡金屬氧化物如Cu、Fe、Ni、Co、Mn等及其鹽類。採用固體催化劑還可避免催化劑的流失、二次污染的產生及資金的浪費。
1.3.3 超臨界水氧化法
超臨界水氧化法把溫度和壓力升高到水的臨界點以上,該狀態的水就稱為超臨界水。在此狀態下水的密度、介電常數、粘度、擴散系數、電導率和溶劑化學性能都不同於普通水。較高的反應溫度(400~600 ℃)和壓力也使反應速率加快,可以在幾秒鍾內對有機物達到很高的破壞效率。
美國德克薩斯州哈靈頓首次大規模應用超臨界水氧化法處理污泥,日處理量達9.8 t。系統運行證明其COD的去除率達到99.9%以上,污泥中的有機成分全部轉化為CO2、H2O以及其他無害物質,且運行成本較低[19]。
1.3.4 光化學催化氧化法
目前研究較多的光化學催化氧化法主要分為Fenton試劑法、類Fenton試劑法和以TiO2為主體的氧化法。
Fenton試劑法由Fenton在20世紀發現,如今作為廢水處理領域中有意義的研究方法重新被重視起來。Fenton試劑依靠H2O2和Fe2+鹽生成•OH,對於廢水處理來說,這種反應物是一個非常有吸引力的氧化體系,因為鐵是很豐富且無毒的元素,而且H2O2也很容易操作,對環境也是安全的[20]。Fenton試劑能夠破壞廢水中諸如苯酚和除草劑等有毒化合物。目前國內對於Fenton試劑用於印染廢水處理方面的研究很多,結果證明Fenton 試劑對於印染廢水的脫色效果非常好。另外,國內外的研究還證明,用Fenton試劑可有效地處理含油、醇、苯系物、硝基苯及酚等物質的廢水。
類Fenton試劑法具有設備簡單、反應條件溫和、操作方便等優點,在處理有毒有害難生物降解有機廢水中極具應用潛力。該法實際應用的主要問題是處理費用高,只適用於低濃度、少量廢水的處理。將其作為難降解有機廢水的預處理或深度處理方法,再與其他處理方法(如生物法、混凝法等)聯用,則可以更好地降低廢水處理成本、提高處理效率,並拓寬該技術的應用范圍。
光催化法是利用光照某些具有能帶結構的半導體光催化劑如TiO2、ZnO、CdS、WO3等誘發強氧化自由基•OH,使許多難以實現的化學反應能在常規條件下進行。銳鈦礦中形成的TiO2具有穩定性高、性能優良和成本低等特徵。在全世界范圍內開展的最新研究是獲得改良的(摻入其他成分)TiO2,改良後的TiO2具有更寬的吸收譜線和更高的量子產生率。
1.3.5 電化學氧化法
電化學氧化又稱電化學燃燒,是環境電化學的一個分支。其基本原理是在電極表面的電催化作用下或在由電場作用而產生的自由基作用下使有機物氧化。除可將有機物徹底氧化為CO2和H2O外,電化學氧化還可作為生物處理的預處理工藝,將非生物相容性的物質經電化學轉化後變為生物相容性物質。這種方法具有能量利用率高,低溫下也可進行;設備相對較為簡單,操作費用低,易於自動控制;無二次污染等特點。
1.3.6 超聲輻射降解法
超聲輻射降解法主要源於液體在超聲波輻射下產生空化氣泡,它能吸收聲能並在極短時間內崩潰釋放能量,在其周圍極小的空間范圍內產生1 900~5 200 K的高溫和超過50 MPa的高壓。進入空化氣泡的水分子可發生分解反應產生高氧化活性的•OH,誘發有機物降解;此外,在空化氣泡表層的水分子則可以形成超臨界水,有利於化學反應速度的提高。
超聲波對含鹵化物的脫鹵、氧化效果顯著,氯代苯酚、氯苯、CH2Cl2、CHCl3、CCl4等含氯有機物最終的降解產物為HCl、H2O、CO、CO2等。超聲降解對硝基化合物的脫硝基也很有效。添加O3、H2O2、Fenton試劑等氧化劑將進一步增強超聲降解效果。超聲與其他氧化法的組合是目前的研究熱點,如US/O3、US/H2O2、US/Fenton、US/光化學法。目前,超聲輻射降解水體污染物的研究仍處於試驗探索階段。
1.3.7 輻射法
輻射法是利用高能射線(γ、χ射線)和電子束等對化合物的破壞作用所開發的污水輻射凈化法。一般認為輻射技術處理有機廢水的反應機理是由於水在高能輻射的作用下產生•OH、H2O2、•HO2等高活性粒子,再由這些高活性粒子誘發反應,使有害物質降解。
輻射法對有機物的處理效率高、操作簡便。該技術存在的主要難題是用於產生高能粒子的裝置昂貴、技術要求高,而且該法的能耗大、能量利用率較低;此外為避免輻射對人體的危害,還需要特殊的保護措施。更多資料可登錄易凈水網查看。因此該法要投入運行,還需進行大量的研究探索工作。
1.4 臭氧法
臭氧具有極強的氧化性,對許多有機物或官能團發生反應,有效地改善水質。臭氧能氧化分解水中各種雜質所造成的色、嗅,其脫色效果比活性炭好;還能降低出水濁度,起到良好的絮凝作用,提高過濾濾速或者延長過濾周期。目前,由於國內的臭氧發生技術和工藝比較落後,所以運行費用過高,推廣有難度。
⑺ 污水處理廠的實驗室都有什麼儀器,哪些是必須的具體的流程是什麼
污水處理廠一般抄採用二級處理,其襲流程包括:
粗格柵—提升—細格柵—(粉碎)—沉砂—初次沉澱—生物處理(活性污泥法、生物濾池、氧化溝等)—二次沉澱—(後曝氣)—消毒—出水
當然現在有些處理廠還包括後續的深度處理和回用部分。
污水處理廠的實驗室主要做國家排放標准里說的各項指標的實驗,《污水綜合排放標准》(GB8978-1996):pH、懸浮物SS、BOD5、COD
氨氮、總氮TN、總磷TP等。
對於污水處理廠,常規測樣只監測進出水就可以了,只有在調試或者工藝有問題時才會監測各單元。
關於儀器,每種指標污染物都有自己的相關儀器(pH計、COD快速消解儀 、BOD5測試儀等),也可以採用簡單的分析化學實驗的方法測出,具體見國家環保總局編的《水和廢水監測分析方法》,對於污水處理廠用的一般比較簡單的國產設備,高校會有更好的研究設備。
你說的水質分析應該就是標准中提到的各項污染物質的監測分析方法,原子吸收只是其中某一個方法而已,一般用於測定離子含量(金屬等),污水處理廠不大可能有,很貴的。
關於具體的設備,你可以看看各個設備商的網站,都有具體介紹和使用手冊的。
⑻ 簡述二氧化鈦作為光催化劑降解有機污染物的原理
重金屬對固定化微生物處理電鍍廢水有機物能力的影響
近年來,國內外對電鍍廢水處理方法研究甚多,工藝各異,主要有化學法、電解法、離子交換法、電滲析法、生物法等。與傳統方法相比,生物法處理電鍍廢水不同程度的存在投資小、運行費用低、無二次污染等優點,得到較快的發展和廣泛的應用。微生物固定化技術可以大大提高微生物對有毒物質的承受能力,可用於高濃度污染物廢水的生化處理。聚氨酯泡沫體由於具有較好的親水性、孔結構、微生物親和性以及耐生物降解性而被廣泛作為固定化微生物載體(填料)用於廢水的生物處理。電鍍廢水成分復雜,其主要污染物是鉻、鎳、鋅等重金屬離子、氰化物和 COD。微量重金屬是微生物生命活動所需營養物質,但微生物對各種微量重金屬的需要量極少,過量反而會引起毒作用,容易造成出水水質的波動。2008 年國家環保部頒布了《電鍍污染物排放標准》(GB 21900-2008),其中對新建電鍍企業排放的 COD作出了嚴格規定,目前,針對電鍍廢水重金屬的處理及回收國內外已有大量研究,但對其有機污染物和氨氮的去除研究較少,尤其是廢水重金屬濃度對微生物處理電鍍廢水有機物的影響鮮有報道。本研究在電鍍廢水污泥中分離篩選的復合功能菌群GW,
對金屬耐受性強的特點。通過與改性聚氨酯泡沫體固定化後,研究了重金屬Cr,Zn濃度對其處理電鍍廢水有機物的影響,並通過逐步提高廢水金屬濃度,探討固定化微生物處理電鍍廢水對重金屬的耐受性,為提高廢水生物處理系統運行的穩定性提供理論基礎。
1 試驗材料與方法
1. 1 試驗材料
1.1.1 GW高效復合菌劑。從富含重金屬的污泥及廢水中分離的高效菌種8株,含多種酶制劑,微生物含量約1.0×10CFU/g,由廣州發酵工程技術研究中心生產提供。
1.1.2 聚氨酯泡沫體。市購聚氨酯泡沫體,干態密度為30kg/m,通過重鉻酸鉀及雙氧水浸泡改性,提高固定化微生物負載量。
1.1.3 試驗廢水。取自廣州某電鍍企業水解反應池出水,加入少量葡萄糖、尿素、蛋白腖、硫酸亞鐵、磷酸二氫鉀、硫酸銅等作為微生物生長基質,作為人工廢水用於菌種的固定及馴化。水質指標如表1示。 表1 電鍍廢水水質指標
1.2 試驗方法
1.2.1微生物的固定化和馴化
在總體積為10L反應器中,加入約30%反應器體積的改性聚氨酯載體、一定量的交聯劑和高效微生物菌群GW,通入30%反應器體積的人工廢水和70%體積的自來水,在曝氣條件下進行固定化反應。每天更換10%~15%反應器中的人工廢水,並補加適量高效微生物菌群及少量無機鹽類。同時,每7天測定微生物負載量。當微生物負載量達到35 mg/g干態載體,固定化馴化階段結束。
1.2.2 重金屬濃度對COD及氨氮去除的影響
重金屬鹽溶液的配製:分別以重鉻酸鉀、硫酸鋅配製含一定體積質量的Cr,Zn溶液。反應器內設有曝氣頭,均布於生化池底部,用AR-6500型充氧泵(低流量)曝氣,改性聚氨酯填料的載體比例為30%,氣水體積比控制在(6~15):1 ,測定其進、出水COD、NH-N濃度,試驗重復3次,以平均去除率反應處理效果。
1.2.3 重金屬耐受性試驗
採用循序漸增的方式逐漸提高原水中Cr,Zn金屬離子濃度,分別在第 1,7,14,20,29,42 天開始將原水中 Cu濃度提升至 0. 5,1,2,5,10,15 mg / L,研究固定化微生物重金屬耐受性對廢水有機物處理效果的影響。
關鍵詞: 電鍍廢水; 固定化微生物; 重金屬; 有機物去除; 耐受性
⑼ 污水處理技術篇:看高級氧化法是如何處理農葯廢水的
農葯廢水達標處理難度較大,原因在於該類廢水水量小、毒性大,含有高濃度有毒有機污染物、成分復雜、難降解物質較多,且無機鹽濃度較高。農葯廢水所含有機物大多為致畸、致癌、致突變物質,危害性極大,如隨意排放會導致水質污染加劇,並威脅人類健康。農葯廢水具有較高的毒性和鹽度,微生物無法生存,故不適合採用生物法對其進行直接處理,即使採用生物法處理也很難達到排放標准。目前,運用合適的預處理技術使農葯廢水的可生化性提高、毒性降低是農葯廢水處理的關鍵。由於高級氧化方法反應快速徹底、沒有選擇性,因而作為預處理手段具有較大的優勢。
高級氧化方法作為廢水預處理方法的研究已經成為一大熱點,尤其是對高濃度有機廢水的預處理。高級氧化方法的共同特點是能生成具有強氧化性的羥基自由基(•OH),•OH氧化降解有機物,最終降解產物為H2O和CO2。這種方法有諸多優點:
(1)反應中可產生大量活潑•OH以及其他自由基,氧化能力很強,且可作為中間產物誘發後面的鏈式反應;
(2)•OH與廢水中的污染物直接反應,無二次污染;
(3)該方法便於操作,可氧化處理某些微量有機物,以達到不同的處理目標;
(4)能獨自降解廢水,也能聯合其他高級氧化方法或生物工藝使用,降低處理成本。但由於農葯廢水自身的特殊性質,高級氧化法在應用上仍有許多缺陷,如費用高、規模小等。
目前主要的高級氧化方法有:空氣氧化法、光催化氧化法、超臨界水氧化法、電催化氧化法和臭氧氧化法等。近年來,微波和超聲在環境領域中的應用受到研究者的關注,並且已成功應用於廢水、廢氣、固廢的處理方面。關於微波或超聲方法與高級氧化方法聯用處理農葯廢水的研究也越來越多。
⑽ 請問你知不知道過氧化氫的化學式
H2O2