A. 影響水煤漿氣化爐長周期、穩定運行的因素有哪些
主要應該有幾項:比如:制漿系統,主要是火咀;
氣化爐部分,主要是耐火材料和激冷環;
黑水系統,換熱器和管道的堵塞問題
除渣系統,鎖閘閥的問題
配套空分的穩定性等
B. 煤氣化爐的分類
按煤在氣化爐內的運動方式分為固定床(移動床)、沸騰床和氣流床等形式;按氣化操作壓力分常壓氣化和加壓氣化;按進料方式分固體進料和漿液進料;按排渣方式分固體排渣和熔融排渣等各種設計。
典型的工業化煤氣化爐型有:UGI爐、魯奇爐、溫克勒爐(Winkler)、德士克爐(Texaco)和道化學煤氣化爐(Dow Chemical)。正在研究開發的爐型有十幾種。 以美國聯合氣體改進公司命名的煤氣化爐,是一種常壓固定床煤氣化設備。原料通常採用無煙煤或焦炭,其特點是可以採用不同的操作方式(連續或間歇)和氣化劑,製取空氣煤氣、半水煤氣或水煤氣。
爐子為直立圓筒形結構(圖1)。爐體用鋼板製成,下部設有水夾套以回收熱量、副產蒸汽,上部內襯耐火材料,爐底設轉動爐篦排灰。氣化劑可以從底部或頂部進入爐內,生成氣相應地從頂部或底部引出。因採用固定床反應,要求氣化原料具有一定塊度,以免堵塞煤層或氣流分布不勻而影響操作。
煤氣化爐
UGI 爐用空氣生產空氣煤氣或以富氧空氣生產半水煤氣時,可採用連續式操作方法,即氣化劑從底部連續進入氣化爐,生成氣從頂部引出。以空氣、蒸汽為氣化劑製取半水煤氣或水煤氣時,都採用間歇式操作方法。在中國,除少數用連續式操作生產發生爐煤氣(即空氣煤氣)外,絕大部分用間歇式操作生產半水煤氣或水煤氣。
UGI爐的優點是設備結構簡單,易於操作,一般不需用氧氣作氣化劑,熱效率較高。缺點是生產強度低,每平方米爐膛面積的半水煤氣發生量約1000m3/h,對煤種要求比較嚴格,採用間歇操作時工藝管道比較復雜。 德國魯奇煤和石油技術公司在1926年開發的一種加壓移動床煤氣化設備。特點是煤和氣化劑(蒸汽和氧氣)在爐中逆流接觸,煤在爐中停留時間1~3h,壓力2.0~3.0MPa。適宜於氣化活性較高,塊度3~30mm的褐煤、弱粘結性煤等。
魯奇煤氣化爐為立式圓筒形結構(圖2),爐體由耐熱鋼板製成,有水夾套副產蒸汽。煤自上而下移動先後經歷乾燥、干餾、氣化、部分氧化和燃燒等幾個區域,最後變成灰渣由轉動爐柵排入灰斗,再減至常壓排出。氣化劑則由下而上通過煤床,在部分氧化和燃燒區與該區的煤層反應放熱,達到最高溫度點並將熱量提供氣化、干餾和乾燥用。粗煤氣最後從爐頂引出爐外。煤層最高溫度點必須控制在煤的灰熔點以下。煤的灰熔點的高低決定了氣化劑H2O/O2比例的大小。高溫區的氣體含有二氧化碳、一氧化碳和蒸汽,進入氣化區進行吸熱氣化反應,再進入干餾區,最後通過乾燥區出爐。粗煤氣出爐溫度一般在250~500℃之間。
魯奇爐由於出爐氣帶有大量水分和煤焦油、苯和酚等,冷凝和洗滌下來的污水處理系統比較復雜。生成氣的組成(體積%)約為:氫37~39、一氧化碳17~18、二氧化碳32、甲烷8~10,經加工處理可用作城市煤氣及合成氣(見彩圖)。魯奇爐是採用加壓氣化技術的一種爐型,氣化強度高。目前共有近200多台工業裝置,用於生產合成氣的只有中國的9台。魯奇爐現已發展到Mark IV型,爐徑為4.1m,每台產氣量可達60000m3/h,已應用於美國、中國和南非。
煤氣化爐
正在開發的魯奇新爐型有:MK+,操作壓力6MPa,5m直徑,17m高;魯奇-魯爾-100型煤氣化爐,操作壓力為9MPa,兩段出氣;英國煤氣公司和魯奇公司共同開發的BGL爐,採用熔融排渣技術,降低蒸汽用量,提高氣化強度並可將生成氣中的焦油、苯、酚和煤粉等噴入爐中回爐氣化。 以德國人F.溫克勒命名的一種煤氣化爐型。1926年在德國工業化。特點是用氣化劑(氧和蒸汽)與煤以沸騰床方式進行氣化。原料煤要求粒徑小於1mm的在15%以下,大於10mm的在5%以下,並具有較高的活性,不粘結,灰熔點高於1100℃。常壓操作,溫度900~1000℃,煤在爐中停留時間0.5~1.0h。生成氣中不含焦油,但帶出的飛灰量很大。
溫克勒爐是立式圓筒形結構(圖3)。爐體用鋼板製成。煤用螺旋加料器從氣化爐沸騰層中部送入,氣化劑從下部通過固定爐柵吹入,在沸騰床上部二次吹入氣化劑,干灰從爐底排出。整個床層溫度均勻,但灰中未轉化的碳含量較高。改進的溫克勒爐將爐底改為無爐柵錐形結構,氣化劑由多個噴嘴射流噴入沸騰床內,改善了流態化的排灰工作狀況。
煤氣化爐
溫克勒爐以高活性煤如褐煤或某些煙煤為原料,生成氣的組成(體積%)為:氫35~46、一氧化碳30~40,二氧化碳13~25、甲烷1~2。多用於制氫、氨原料氣和燃料煤氣。
正在開發中的改進爐型是高溫溫克勒爐,它是在常規溫克勒爐的基礎上發展起來的加壓爐型。另一種加壓加氫氣化爐也是從溫克勒爐發展起來的,反應壓力12MPa,氣化溫度900℃,以2mm的煤粒在床層中進行沸騰加氫氣化,目的是生成甲烷以製造人造天然氣。 聯邦德國克虜伯-柯柏斯公司和工程師F.托策克1952年開發,是一種高溫氣流床熔融排渣煤氣化設備。採用氣-固相並流接觸,煤和氣化劑在爐內停留時間僅幾秒鍾,壓力為常壓,溫度大於1300℃。K-T煤氣化爐結構為卧式橄欖形(圖4),其上部有廢熱鍋爐(輻射傳熱的和對流傳熱的),利用余熱副產蒸汽。殼體由鋼板製成,內襯耐火材料。煤粉通過螺旋加料或氣動加料與氣化劑混合,從爐子兩側或四側水平方向以射流形式噴入爐內,立即著火進行火焰反應。中心溫度可高達2000℃,爐內最低溫度控制在煤的灰熔點以上,以保證順利排渣。進料射流速度必須大於火焰傳播速度,以防回火。灰渣中的一半以熔渣形式從爐底渣口排入水封槽,另一半隨生成氣帶出爐外。生成氣出爐口時,先用水或蒸汽急冷到熔渣固化點(1000℃)以下,防止粘結在緊接爐出口的輻射鍋爐爐壁,然後進入對流鍋爐進一步回收廢熱,最後去除塵和氣體凈化系統。K-T煤氣化爐最關鍵的問題是爐襯耐火材料與煤的灰熔點和灰組成必須相適應,盡量減少熔渣對耐火材料的侵蝕作用。
K-T煤氣化爐用一般煤為原料時,生成氣的組成(體積%)大致為:氫31、一氧化碳58、二氧化碳10、甲烷0.1,不含焦油等干餾產物,適宜作合成氨和甲醇等的原料氣和其他還原過程用的氣體。 美國德士古公司開發的一種加壓氣流床煤氣化設備(見彩圖)。1979年在聯邦德國完成工業操作試驗。其特點是把煤製成水煤漿送入氣化爐內同氣化劑進行高溫氣化反應。氣化溫度1200~1600℃,操作壓力4MPa,水煤漿中煤粉濃度約71%(質量),煤粉中14~60%的粒度小於90μm,碳轉化率99%。
煤氣化爐
德士古煤氣化爐為直立圓筒形結構(圖5),主體分兩部分,上部為氣化室,下部為輻射廢熱鍋爐(或激冷部分),下接灰渣鎖斗。氧氣和水煤漿分別通過壓縮機和泵升壓後,由氣化爐頂的給料噴嘴進入爐內,在高溫下進行氣化反應。生成氣在廢熱鍋爐中激冷,初步降溫後從中部引出。氣化操作溫度控制在煤的灰熔點以上。灰渣通過灰渣鎖斗排出。由於採用高溫加壓操作,因此①氣化強度高;②生成氣壓力較高,節省後續工序的動力;③原料適應性廣,既可採用不同的煤種,也可使用煤加氫液化後的殘渣;④把固體煤製成水煤漿流體輸送,簡化了加壓進料裝置;⑤廢水中不含焦油和酚,環境污染不嚴重。
德士古K-T煤氣化爐的氣化溫度很高,又是並流操作,爐內熱效率較低,同時它以水煤漿進料,生成氣中二氧化碳含量高。因此,提高水煤漿中煤的濃度是這種氣化方法的重要環節。水煤漿中煤的濃度同煤的性質、粒度和粒度分布有直接的關系。加入適宜的添加劑可降低水煤漿的粘度,從而得到較高濃度的水煤漿。
德士古煤氣化爐生成氣的組成(體積%)為:一氧化碳44~51、氫35~36、二氧化碳13~18、甲烷 0.1適宜用作合成氨和碳一化學產品的原料氣。
C. 煤炭氣化技術的煤氣化工藝
煤炭氣化技術雖有很多種不同的分類方法,但一般常用按生產裝置化學工程特徵分類方法進行分類,或稱為按照反應器形式分類。氣化工藝在很大程度上影響煤化工產品的成本和效率,採用高效、低耗、無污染的煤氣化工藝(技術)是發展煤化工的重要前提,其中反應器便是工藝的核心,可以說氣化工藝的發展是隨著反應器的發展而發展的,為了提高煤氣化的氣化率和氣化爐氣化強度,改善環境,新一代煤氣化技術的開發總的方向,氣化壓力由常壓向中高壓(8.5 MPa)發展;氣化溫度向高溫(1500~1600℃)發展;氣化原料向多樣化發展;固態排渣向液態排渣發展。 固定床氣化也稱移動床氣化。固定床一般以塊煤或焦煤為原料。煤由氣化爐頂加入,氣化劑由爐底加入。流動氣體的上升力不致使固體顆粒的相對位置發生變化,即固體顆粒處於相對固定狀態,床層高度亦基本保持不變,因而稱為固定床氣化。另外,從宏觀角度看,由於煤從爐頂加入,含有殘炭的爐渣自爐底排出,氣化過程中,煤粒在氣化爐內逐漸並緩慢往下移動,因而又稱為移動床氣化。
固定床氣化的特性是簡單、可靠。同時由於氣化劑於煤逆流接觸,氣化過程進行得比較完全,且使熱量得到合理利用,因而具有較高的熱效率。
固定床氣化爐常見有間歇式氣化(UGI)和連續式氣化(魯奇Lurgi)2種。前者用於生產合成氣時一定要採用白煤(無煙煤)或焦碳為原料,以降低合成氣中CH4含量,國內有數千台這類氣化爐,弊端頗多;後者國內有20多台爐子,多用於生產城市煤氣;該技術所含煤氣初步凈化系統極為復雜,不是公認的首選技術。
(1)、固定床間歇式氣化爐(UGI)
以塊狀無煙煤或焦炭為原料,以空氣和水蒸氣為氣化劑,在常壓下生產合成原料氣或燃料氣。該技術是30年代開發成功的,投資少,容易操作,目前已屬落後的技術,其氣化率低、原料單一、能耗高,間歇制氣過程中,大量吹風氣排空,每噸合成氨吹風氣放空多達5 000 m3,放空氣體中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤氣冷卻洗滌塔排出的污水含有焦油、酚類及氰化物,造成環境污染。我國中小化肥廠有900餘家,多數廠仍採用該技術生產合成原料氣。隨著能源政策和環境的要來越來越高,不久的將來,會逐步為新的煤氣化技術所取代。
(2)、魯奇氣化爐
30年代德國魯奇(Lurgi)公司開發成功固定床連續塊煤氣化技術,由於其原料適應性較好,單爐生產能力較大,在國內外得到廣泛應用。氣化爐壓力(2.5~4.0)MPa,氣化反應溫度(800~900)℃,固態排渣,氣化爐已定型(MK~1~MK-5),其中MK-5型爐,內徑4.8m,投煤量(75~84)噸/h,粉煤氣產量(10~14)萬m3/h。煤氣中除含CO和H2外,含CH4高達10%~12%,可作為城市煤氣、人工天然氣、合成氣使用。缺點是氣化爐結構復雜、爐內設有破粘和煤分布器、爐篦等轉動設備,製造和維修費用大;入爐煤必須是塊煤;原料來源受一定限制;出爐煤氣中含焦油、酚等,污水處理和煤氣凈化工藝復雜、流程長、設備多、爐渣含碳5%左右。針對上述問題,1984年魯奇公司和英國煤氣公司聯合開發了液體排渣氣化爐(BGL),特點是氣化溫度高,灰渣成熔融態排出,炭轉化率高,合成氣質量較好,煤氣化產生廢水量小並且處理難度小,單爐生產能力同比提高3~5倍,是一種有發展前途的氣化爐。 流化床氣化又稱為沸騰床氣化。其以小顆粒煤為氣化原料,這些細顆粒在自下而上的氣化劑的作用下,保持著連續不斷和無秩序的沸騰和懸浮狀態運動,迅速地進行著混合和熱交換,其結果導致整個床層溫度和組成的均一。流化床氣化能得以迅速發展的主要原因在於:(1)生產強度較固定床大。(2)直接使用小顆粒碎煤為原料,適應採煤技術發展,避開了塊煤供求矛盾。(3)對煤種煤質的適應性強,可利用如褐煤等高灰劣質煤作原料。
流化床氣化爐常見有溫克勒(Winkler)、灰熔聚(U-Gas)、循環流化床(CFB)、加壓流化床(PFB是PFBC的氣化部分)等。
(1)、循環流化床氣化爐CFB
魯奇公司開發的循環流化床氣化爐(CFB)可氣化各種煤,也可以用碎木、樹皮、城市可燃垃圾作為氣化原料,水蒸氣和氧氣作氣化劑,氣化比較完全,氣化強度大,是移動床的2倍,碳轉化率高(97%),爐底排灰中含碳2%~3%,氣化原料循環過程中返回氣化爐內的循環物料是新加入原料的40倍,爐內氣流速度在(5~7)m/s之間,有很高的傳熱傳質速度。氣化壓力0.15MPa。氣化溫度視原料情況進行控制,一般控制循環旋風除塵器的溫度在(800~1050)℃之間。魯奇公司的CFB氣化技術,在全世界已有60多個工廠採用,正在設計和建設的還有30多個工廠,在世界市場處於領先地位。
CFB氣化爐基本是常壓操作,若以煤為原料生產合成氣,每公斤煤消耗氣化劑水蒸氣1.2kg,氧氣0.4kg,可生產煤氣 (l.9~2.0)m3。煤氣成份CO+H2>75%,CH4含量2.5%左右, CO215%,低於德士古爐和魯奇MK型爐煤氣中CO2含量,有利於合成氨的生產。
(2)、灰熔聚流化床粉煤氣化技術
灰熔聚煤氣化技術以小於6mm粒徑的乾粉煤為原料,用空氣或富氧、水蒸氣作氣化劑,粉煤和氣化劑從氣化爐底部連續加入,在爐內(1050~1100)℃的高溫下進行快速氣化反應,被粗煤氣夾帶的未完全反應的殘碳和飛灰,經兩極旋風分離器回收,再返回爐內進行氣化,從而提高了碳轉化率,使灰中含磷量降低到10%以下,排灰系統簡單。粗煤氣中幾乎不含焦油、酚等有害物質,煤氣容易凈化,這種先進的煤氣化技術中國已自行開發成功。該技術可用於生產燃料氣、合成氣和聯合循環發電,特別用於中小氮肥廠替代間歇式固定床氣化爐,以煙煤替代無煙煤生產合成氨原料氣,可以使合成氨成本降低15%~20%,具有廣闊的發展前景。
U-Gas在上海焦化廠(120噸煤/天)1994年11月開車,長期運轉不正常,於2002年初停運;中科院山西煤化所開發的ICC灰熔聚氣化爐,於2001年在陝西城化股份公司進行了100噸/天制合成氣工業示範裝置試驗。CFB、PFB可以生產燃料氣,但國際上尚無生產合成氣先例;Winkler已有用於合成氣生產案例,但對粒度、煤種要求較為嚴格,甲烷含量較高(0.7%~2.5%),而且設備生產強度較低,已不代表發展方向。 氣流床氣化是一種並流式氣化。從原料形態分有水煤漿、干煤粉2類;從專利上分,Texaco、Shell最具代表性。前者是先將煤粉製成煤漿,用泵送入氣化爐,氣化溫度1350~1500℃;後者是氣化劑將煤粉夾帶入氣化爐,在1500~1900℃高溫下氣化,殘渣以熔渣形式排出。在氣化爐內,煤炭細粉粒經特殊噴嘴進入反應室,會在瞬間著火,直接發生火焰反應,同時處於不充分的氧化條件下,因此,其熱解、燃燒以吸熱的氣化反應,幾乎是同時發生的。隨氣流的運動,未反應的氣化劑、熱解揮發物及燃燒產物裹夾著煤焦粒子高速運動,運動過程中進行著煤焦顆粒的氣化反應。這種運動狀態,相當於流化技術領域里對固體顆粒的「氣流輸送」,習慣上稱為氣流床氣化。
氣流床氣化具有以下特點:(1)短的停留時間(通常1s);(2)高的反應溫度(通常1300-1500℃);(3)小的燃料粒徑(固體和液體,通常小於0.1mm);(4)液態排渣。而且,氣流床氣化通常在加壓(通常20-50bar)和純氧下運行。
氣流床氣化主要有以下幾種分類方式:
(1)根據入爐原料的輸送性能可分為干法進料和濕法進料;
(2)根據氣化壓力可分為常壓氣化和加壓氣化;
(3)根據氣化劑可分為空氣氣化和氧氣氣化;
(4)根據熔渣特性可分為熔渣氣流床和非熔渣氣流床。
在熔渣氣流床氣化爐中,燃料灰分在氣化爐中熔化。熔融的灰分在相對較冷的壁面上凝聚並最終形成一層保護層,然後液態熔渣會沿著該保護層從氣化爐下部流出。熔渣的數量應保證連續的熔渣流動。通常,熔渣質量流應至少佔總燃料流的6%。為了在給定的溫度下形成具有合適粘度的液態熔渣,通常在燃料中添加一種被稱為助熔劑的物質。這種助熔劑通常是石灰石和其它一些富含鈣基的物質。在非熔渣氣流床氣化爐中,熔渣並不形成,這就意味著燃料必須含有很少量的礦物質和灰分,通常最大的灰分含量是1%。非熔渣氣流床氣化爐由於受原料的限制,因此工業上應用的較少。
氣流床對煤種(煙煤、褐煤)、粒度、含硫、含灰都具有較大的兼容性,國際上已有多家單系列、大容量、加壓廠在運作,其清潔、高效代表著當今技術發展潮流。
乾粉進料的主要有K-T(Koppres-Totzek)爐、Shell- Koppres爐、Prenflo爐、Shell爐、GSP爐、ABB-CE爐,濕法煤漿進料的主要有德士古(Texaco)氣化爐、Destec爐。
(1)、德士古(Texaco)氣化爐
美國Texaco(2002年初成為Chevron公司一部分,2004年5月被GE公司收購)開發的水煤漿氣化工藝是將煤加水磨成濃度為60~65%的水煤漿,用純氧作氣化劑,在高溫高壓下進行氣化反應,氣化壓力在3.0~8.5MPa之間,氣化溫度1400℃,液態排渣,煤氣成份CO+H2為80%左右,不含焦油、酚等有機物質,對環境無污染,碳轉化率96~99%,氣化強度大,爐子結構簡單,能耗低,運轉率高,而且煤適應范圍較寬。目前Texaco最大商業裝置是Tampa電站,屬於DOE的CCT-3,1989年立項,1996年7月投運,12月宣布進入驗證運行。該裝置為單爐,日處理煤2000~2400噸,氣化壓力為2.8MPa,氧純度為95%,煤漿濃度68%,冷煤氣效率~76%,凈功率250MW。
Texaco氣化爐由噴嘴、氣化室、激冷室(或廢熱鍋爐)組成。其中噴嘴為三通道,工藝氧走一、三通道,水煤漿走二通道,介於兩股氧射流之間。水煤漿氣化噴嘴經常面臨噴口磨損問題,主要是由於水煤漿在較高線速下(約30m/s)對金屬材質的沖刷腐蝕。噴嘴、氣化爐、激冷環等為Texaco水煤漿氣化的技術關鍵。
80年代末至今,中國共引進多套Texaco水煤漿氣化裝置,用於生產合成氣,我國在水煤漿氣化領域中積累了豐富的設計、安裝、開車以及新技術研究開發經驗與知識。
從已投產的水煤漿加壓氣化裝置的運行情況看,主要優點:水煤漿制備輸送、計量控制簡單、安全、可靠;設備國產化率高,投資省。由於工程設計和操作經驗的不完善,還沒有達到長周期、高負荷、穩定運行的最佳狀態,存在的問題還較多,主要缺點:噴嘴壽命短、激冷環壽命僅一年、褐煤的制漿濃度約59%~61%;煙煤的制漿濃度為65%;因汽化煤漿中的水要耗去煤的8%,比干煤粉為原料氧耗高12%~20%,所以效率比較低。
(2)、Destec(Global E-Gas)氣化爐
Destec氣化爐已建設2套商業裝置,都在美國:LGT1(氣化爐容量2200噸/天,2.8MPa,1987年投運)與Wabsh Rive(二台爐,一開一備,單爐容量2500噸/天,2.8MPa,1995年投運)爐型類似於K-T,分第一段(水平段)與第二段(垂直段),在第一段中,2個噴嘴成180度對置,藉助撞擊流以強化混合,克服了Texaco爐型的速度成鍾型(正態)分布的缺陷,最高反應溫度約1400℃。為提高冷煤氣效率,在第二階段中,採用總煤漿量的10%~20%進行冷激(該點與Shell、Prenflo的循環沒氣冷激不同),此處的反應溫度約1040℃,出口煤氣進火管鍋爐回收熱量。熔渣自氣化爐第一段中部流下,經水冷激固化,形成渣水漿排出。E-Gas氣化爐採用壓力螺旋式連續排渣系統。
Global E-Gas氣化技術缺點為:二次水煤漿停留時間短,碳轉化率較低;設有一個龐大的分離器,以分離一次煤氣中攜帶灰渣與二次煤漿的灰渣與殘炭。這種爐型適合於生產燃料氣而不適合於生產合成氣。
(3)、Shell氣化爐
最早實現工業化的乾粉加料氣化爐是K-T爐,其它都是在其基礎之上發展起來的,50年代初Shell開發渣油氣化成功,在此基礎上,經歷了3個階段:1976年試驗煤炭30餘種;1978年與德國Krupp-Koppers(krupp-Uhde公司的前身)合作,在Harburg建設日處理150t煤裝置;兩家分手後,1978年在美國Houston的Deer Park建設日處理250t高硫煙煤或日處理400t高灰分、高水分褐煤。共費時16年,至1988年Shell煤技術運用於荷蘭Buggenum IGCC電站。該裝置的設計工作為1.6年,1990年10月開工建造,1993年開車,1994年1月進入為時3年的驗證期,目前已處於商業運行階段。單爐日處理煤2000t。
Shell氣化爐殼體直徑約4.5m,4個噴嘴位於爐子下部同一水平面上,沿圓周均勻布置,藉助撞擊流以強化熱質傳遞過程,使爐內橫截面氣速相對趨於均勻。爐襯為水冷壁(Membrame Wall),總重500t。爐殼於水冷管排之間有約0.5m間隙,做安裝、檢修用。
煤氣攜帶煤灰總量的20%~30%沿氣化爐軸線向上運動,在接近爐頂處通入循環煤氣激冷,激冷煤氣量約占生成煤氣量的60%~70%,降溫至900℃,熔渣凝固,出氣化爐,沿斜管道向上進入管式余熱鍋爐。煤灰總量的70%~80%以熔態流入氣化爐底部,激冷凝固,自爐底排出。
粉煤由N2攜帶,密相輸送進入噴嘴。工藝氧(純度為95%)與蒸汽也由噴嘴進入,其壓力為3.3~3.5MPa。氣化溫度為1500~1700℃,氣化壓力為3.0MPa。冷煤氣效率為79%~81%;原料煤熱值的13%通過鍋爐轉化為蒸汽;6%由設備和出冷卻器的煤氣顯熱損失於大氣和冷卻水。
Shell煤氣化技術有如下優點:採用干煤粉進料,氧耗比水煤漿低15%;碳轉化率高,可達99%,煤耗比水煤漿低8%;調解負荷方便,關閉一對噴嘴,負荷則降低50%;爐襯為水冷壁,據稱其壽命為20年,噴嘴壽命為1年。主要缺點:設備投資大於水煤漿氣化技術;氣化爐及廢鍋爐結構過於復雜,加工難度加大。
我公司直接液化項目採用此技術生產氫氣。
(4)、GSP氣化爐
GSP(GAS Schwarze Pumpe)稱為「黑水泵氣化技術」,由前東德的德意志燃料研究所(簡稱DBI)於1956年開發成功。目前該技術屬於成立於2002年未來能源公司(FUTURE ENERGY GmbH)(Sustec Holding AG子公司)。GSP氣化爐是一種下噴式加壓氣流床液態排渣氣化爐,其煤炭加入方式類似於shell,爐子結構類似於德士古氣化爐。1983年12月在黑水泵聯合企業建成第一套工業裝置,單台氣化爐投煤量為720噸/天,1985年投入運行。GSP氣化爐目前應用很少,僅有5個廠應用,我國還未有一台正式使用,寧煤集團(我公司控股)將要引進此技術用於煤化工項目。
總之,從加壓、大容量、煤種兼容性大等方面看,氣流床煤氣化技術代表著氣化技術的發展方向,水煤漿和干煤粉進料狀態各有利弊,界限並不十分明確,國內技術界也眾說紛紜。
D. 煤炭氣化的優點體現在哪些方面
一、煤氣化原理
氣化過程是煤炭的一個熱化學加工過程。它是以煤或煤焦為原料,以氧氣(空氣、富氧或工業純氧)、水蒸氣作為氣化劑,在高溫高壓下通過化學反應將煤或煤焦中的可燃部分轉化為可燃性氣體的工藝過程。氣化時所得的可燃氣體成為煤氣,對於做化工原料用的煤氣一般稱為合成氣(合成氣除了以煤炭為原料外,還可以採用天然氣、重質石油組分等為原料),進行氣化的設備稱為煤氣發生爐或氣化爐。 煤炭氣化包含一系列物理、化學變化。一般包括熱解和氣化和燃燒四個階段。乾燥屬於物理變化,隨著溫度的升高,煤中的水分受熱蒸發。其他屬於化學變化,燃燒也可以認為是氣化的一部分。煤在氣化爐中乾燥以後,隨著溫度的進一步升高,煤分子發生熱分解反應,生成大量揮發性物質(包括干餾煤氣、焦油和熱解水等),同時煤粘結成半焦。煤熱解後形成的半焦在更高的溫度下與通入氣化爐的氣化劑發生化學反應,生成以一氧化碳、氫氣、甲烷及二氧化碳、氮氣、硫化氫、水等為主要成分的氣態產物,即粗煤氣。氣化反應包括很多的化學反應,主要是碳、水、氧、氫、一氧化碳、二氧化碳相互間的反應,其中碳與氧的反應又稱燃燒反應,提供氣化過程的熱量。 主要反應有: 1、水蒸氣轉化反應 C+H2O=CO+H2-131KJ/mol 2、水煤氣變換反應 CO+ H2O =CO2+H2+42KJ/mol 3、部分氧化反應 C+0.5 O2=CO+111KJ/mol 4、完全氧化(燃燒)反應 C+O2=CO2+394KJ/mol 5、甲烷化反應 CO+2H2=CH4+74KJ/mol 6、Boudouard反應 C+CO2=2CO-172KJ/mol
二、煤氣化工藝
煤炭氣化技術雖有很多種不同的分類方法,但一般常用按生產裝置化學工程特徵分類方法進行分類,或稱為按照反應器形式分類。氣化工藝在很大程度上影響煤化工產品的成本和效率,採用高效、低耗、無污染的煤氣化工藝(技術)是發展煤化工的重要前提,其中反應器便是工藝的核心,可以說氣化工藝的發展是隨著反應器的發展而發展的,為了提高煤氣化的氣化率和氣化爐氣化強度,改善環境,新一代煤氣化技術的開發總的方向,氣化壓力由常壓向中高壓(8.5 MPa)發展;氣化溫度向高溫(1500~1600℃)發展;氣化原料向多樣化發展;固態排渣向液態排渣發展。 1、固定床氣化 固定床氣化也稱移動床氣化。固定床一般以塊煤或焦煤為原料。煤由氣化爐頂加入,氣化劑由爐底加入。流動氣體的上升力不致使固體顆粒的相對位置發生變化,即固體顆粒處於相對固定狀態,床層高度亦基本保持不變,因而稱為固定床氣化。另外,從宏觀角度看,由於煤從爐頂加入,含有殘炭的爐渣自爐底排出,氣化過程中,煤粒在氣化爐內逐漸並緩慢往下移動,因而又稱為移動床氣化。 固定床氣化的特性是簡單、可靠。同時由於氣化劑於煤逆流接觸,氣化過程進行得比較完全,且使熱量得到合理利用,因而具有較高的熱效率。 固定床氣化爐常見有間歇式氣化(UGI)和連續式氣化(魯奇Lurgi)2種。前者用於生產合成氣時一定要採用白煤(無煙煤)或焦碳為原料,以降低合成氣中CH4含量,國內有數千台這類氣化爐,弊端頗多;後者國內有20多台爐子,多用於生產城市煤氣;該技術所含煤氣初步凈化系統極為復雜,不是公認的首選技術。 (1)、固定床間歇式氣化爐(UGI) 以塊狀無煙煤或焦炭為原料,以空氣和水蒸氣為氣化劑,在常壓下生產合成原料氣或燃料氣。該技術是30年代開發成功的,投資少,容易操作,目前已屬落後的技術,其氣化率低、原料單一、能耗高,間歇制氣過程中,大量吹風氣排空,每噸合成氨吹風氣放空多達5 000 m3,放空氣體中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤氣冷卻洗滌塔排出的污水含有焦油、酚類及氰化物,造成環境污染。我國中小化肥廠有900餘家,多數廠仍採用該技術生產合成原料氣。隨著能源政策和環境的要來越來越高,不久的將來,會逐步為新的煤氣化技術所取代。 (2)、魯奇氣化爐 30年代德國魯奇(Lurgi)公司開發成功固定床連續塊煤氣化技術,由於其原料適應性較好,單爐生產能力較大,在國內外得到廣泛應用。氣化爐壓力(2.5~4.0)MPa,氣化反應溫度(800~900)℃,固態排渣,氣化爐已定型(MK~1~MK-5),其中MK-5型爐,內徑4.8m,投煤量(75~84)噸/h,粉煤氣產量(10~14)萬m3/h。煤氣中除含CO和H2外,含CH4高達10%~12%,可作為城市煤氣、人工天然氣、合成氣使用。缺點是氣化爐結構復雜、爐內設有破粘和煤分布器、爐篦等轉動設備,製造和維修費用大;入爐煤必須是塊煤;原料來源受一定限制;出爐煤氣中含焦油、酚等,污水處理和煤氣凈化工藝復雜、流程長、設備多、爐渣含碳5%左右。針對上述問題,1984年魯奇公司和英國煤氣公司聯合開發了液體排渣氣化爐(BGL),特點是氣化溫度高,灰渣成熔融態排出,炭轉化率高,合成氣質量較好,煤氣化產生廢水量小並且處理難度小,單爐生產能力同比提高3~5倍,是一種有發展前途的氣化爐。 2、流化床氣化 流化床氣化又稱為沸騰床氣化。其以小顆粒煤為氣化原料,這些細顆粒在自下而上的氣化劑的作用下,保持著連續不斷和無秩序的沸騰和懸浮狀態運動,迅速地進行著混合和熱交換,其結果導致整個床層溫度和組成的均一。流化床氣化能得以迅速發展的主要原因在於:(1)生產強度較固定床大。(2)直接使用小顆粒碎煤為原料,適應採煤技術發展,避開了塊煤供求矛盾。(3)對煤種煤質的適應性強,可利用如褐煤等高灰劣質煤作原料。 流化床氣化爐常見有溫克勒(Winkler)、灰熔聚(U-Gas)、循環流化床(CFB)、加壓流化床(PFB是PFBC的氣化部分)等。 (1)、循環流化床氣化爐CFB 魯奇公司開發的循環流化床氣化爐(CFB)可氣化各種煤,也可以用碎木、樹皮、城市可燃垃圾作為氣化原料,水蒸氣和氧氣作氣化劑,氣化比較完全,氣化強度大,是移動床的2倍,碳轉化率高(97%),爐底排灰中含碳2%~3%,氣化原料循環過程中返回氣化爐內的循環物料是新加入原料的40倍,爐內氣流速度在(5~7)m/s之間,有很高的傳熱傳質速度。氣化壓力0.15MPa。氣化溫度視原料情況進行控制,一般控制循環旋風除塵器的溫度在(800~1050)℃之間。魯奇公司的CFB氣化技術,在全世界已有60多個工廠採用,正在設計和建設的還有30多個工廠,在世界市場處於領先地位。 CFB氣化爐基本是常壓操作,若以煤為原料生產合成氣,每公斤煤消耗氣化劑水蒸氣1.2kg,氧氣0.4kg,可生產煤氣 (l.9~2.0)m3。煤氣成份CO+H2>75%,CH4含量2.5%左右, CO215%,低於德士古爐和魯奇MK型爐煤氣中CO2含量,有利於合成氨的生產。 (2)、灰熔聚流化床粉煤氣化技術 灰熔聚煤氣化技術以小於6mm粒徑的乾粉煤為原料,用空氣或富氧、水蒸氣作氣化劑,粉煤和氣化劑從氣化爐底部連續加入,在爐內(1050~1100)℃的高溫下進行快速氣化反應,被粗煤氣夾帶的未完全反應的殘碳和飛灰,經兩極旋風分離器回收,再返回爐內進行氣化,從而提高了碳轉化率,使灰中含磷量降低到10%以下,排灰系統簡單。粗煤氣中幾乎不含焦油、酚等有害物質,煤氣容易凈化,這種先進的煤氣化技術中國已自行開發成功。該技術可用於生產燃料氣、合成氣和聯合循環發電,特別用於中小氮肥廠替代間歇式固定床氣化爐,以煙煤替代無煙煤生產合成氨原料氣,可以使合成氨成本降低15%~20%,具有廣闊的發展前景。 U-Gas在上海焦化廠(120噸煤/天)1994年11月開車,長期運轉不正常,於2002年初停運;中科院山西煤化所開發的ICC灰熔聚氣化爐,於2001年在陝西城化股份公司進行了100噸/天制合成氣工業示範裝置試驗。CFB、PFB可以生產燃料氣,但國際上尚無生產合成氣先例;Winkler已有用於合成氣生產案例,但對粒度、煤種要求較為嚴格,甲烷含量較高(0.7%~2.5%),而且設備生產強度較低,已不代表發展方向。 3、氣流床氣化 氣流床氣化是一種並流式氣化。從原料形態分有水煤漿、干煤粉2類;從專利上分,Texaco、Shell最具代表性。前者是先將煤粉製成煤漿,用泵送入氣化爐,氣化溫度1350~1500℃;後者是氣化劑將煤粉夾帶入氣化爐,在1500~1900℃高溫下氣化,殘渣以熔渣形式排出。在氣化爐內,煤炭細粉粒經特殊噴嘴進入反應室,會在瞬間著火,直接發生火焰反應,同時處於不充分的氧化條件下,因此,其熱解、燃燒以吸熱的氣化反應,幾乎是同時發生的。隨氣流的運動,未反應的氣化劑、熱解揮發物及燃燒產物裹夾著煤焦粒子高速運動,運動過程中進行著煤焦顆粒的氣化反應。這種運動狀態,相當於流化技術領域里對固體顆粒的「氣流輸送」,習慣上稱為氣流床氣化。 氣流床對煤種(煙煤、褐煤)、粒度、含硫、含灰都具有較大的兼容性,國際上已有多家單系列、大容量、加壓廠在運作,其清潔、高效代表著當今技術發展潮流。 乾粉進料的主要有K-T(Koppres-Totzek)爐、Shell- Koppres爐、Prenflo爐、Shell爐、GSP爐、ABB-CE爐,濕法煤漿進料的主要有德士古(Texaco)氣化爐、Destec爐。 (1)、德士古(Texaco)氣化爐 美國Texaco(2002年初成為Chevron公司一部分,2004年5月被GE公司收購)開發的水煤漿氣化工藝是將煤加水磨成濃度為60~65%的水煤漿,用純氧作氣化劑,在高溫高壓下進行氣化反應,氣化壓力在3.0~8.5MPa之間,氣化溫度1400℃,液態排渣,煤氣成份CO+H2為80%左右,不含焦油、酚等有機物質,對環境無污染,碳轉化率96~99%,氣化強度大,爐子結構簡單,能耗低,運轉率高,而且煤適應范圍較寬。目前Texaco最大商業裝置是Tampa電站,屬於DOE的CCT-3,1989年立項,1996年7月投運,12月宣布進入驗證運行。該裝置為單爐,日處理煤2000~2400噸,氣化壓力為2.8MPa,氧純度為95%,煤漿濃度68%,冷煤氣效率~76%,凈功率250MW。 Texaco氣化爐由噴嘴、氣化室、激冷室(或廢熱鍋爐)組成。其中噴嘴為三通道,工藝氧走一、三通道,水煤漿走二通道,介於兩股氧射流之間。水煤漿氣化噴嘴經常面臨噴口磨損問題,主要是由於水煤漿在較高線速下(約30m/s)對金屬材質的沖刷腐蝕。噴嘴、氣化爐、激冷環等為Texaco水煤漿氣化的技術關鍵。 80年代末至今,中國共引進多套Texaco水煤漿氣化裝置,用於生產合成氣,我國在水煤漿氣化領域中積累了豐富的設計、安裝、開車以及新技術研究開發經驗與知識。 從已投產的水煤漿加壓氣化裝置的運行情況看,主要優點:水煤漿制備輸送、計量控制簡單、安全、可靠;設備國產化率高,投資省。由於工程設計和操作經驗的不完善,還沒有達到長周期、高負荷、穩定運行的最佳狀態,存在的問題還較多,主要缺點:噴嘴壽命短、激冷環壽命僅一年、褐煤的制漿濃度約59%~61%;煙煤的制漿濃度為65%;因汽化煤漿中的水要耗去煤的8%,比干煤粉為原料氧耗高12%~20%,所以效率比較低。 (2)、Destec(Global E-Gas)氣化爐 Destec氣化爐已建設2套商業裝置,都在美國:LGT1(氣化爐容量2200噸/天,2.8MPa,1987年投運)與Wabsh Rive(二台爐,一開一備,單爐容量2500噸/天,2.8MPa,1995年投運)爐型類似於K-T,分第一段(水平段)與第二段(垂直段),在第一段中,2個噴嘴成180度對置,藉助撞擊流以強化混合,克服了Texaco爐型的速度成鍾型(正態)分布的缺陷,最高反應溫度約1400℃。為提高冷煤氣效率,在第二階段中,採用總煤漿量的10%~20%進行冷激(該點與Shell、Prenflo的循環沒氣冷激不同),此處的反應溫度約1040℃,出口煤氣進火管鍋爐回收熱量。熔渣自氣化爐第一段中部流下,經水冷激固化,形成渣水漿排出。E-Gas氣化爐採用壓力螺旋式連續排渣系統。 Global E-Gas氣化技術缺點為:二次水煤漿停留時間短,碳轉化率較低;設有一個龐大的分離器,以分離一次煤氣中攜帶灰渣與二次煤漿的灰渣與殘炭。這種爐型適合於生產燃料氣而不適合於生產合成氣。 (3)、Shell氣化爐 最早實現工業化的乾粉加料氣化爐是K-T爐,其它都是在其基礎之上發展起來的,50年代初Shell開發渣油氣化成功,在此基礎上,經歷了3個階段:1976年試驗煤炭30餘種;1978年與德國Krupp-Koppers(krupp-Uhde公司的前身)合作,在Harburg建設日處理150t煤裝置;兩家分手後,1978年在美國Houston的Deer Park建設日處理250t高硫煙煤或日處理400t高灰分、高水分褐煤。共費時16年,至1988年Shell煤技術運用於荷蘭Buggenum IGCC電站。該裝置的設計工作為1.6年,1990年10月開工建造,1993年開車,1994年1月進入為時3年的驗證期,目前已處於商業運行階段。單爐日處理煤2000t。 Shell氣化爐殼體直徑約4.5m,4個噴嘴位於爐子下部同一水平面上,沿圓周均勻布置,藉助撞擊流以強化熱質傳遞過程,使爐內橫截面氣速相對趨於均勻。爐襯為水冷壁(Membrame Wall),總重500t。爐殼於水冷管排之間有約0.5m間隙,做安裝、檢修用。 煤氣攜帶煤灰總量的20%~30%沿氣化爐軸線向上運動,在接近爐頂處通入循環煤氣激冷,激冷煤氣量約占生成煤氣量的60%~70%,降溫至900℃,熔渣凝固,出氣化爐,沿斜管道向上進入管式余熱鍋爐。煤灰總量的70%~80%以熔態流入氣化爐底部,激冷凝固,自爐底排出。 粉煤由N2攜帶,密相輸送進入噴嘴。工藝氧(純度為95%)與蒸汽也由噴嘴進入,其壓力為3.3~3.5MPa。氣化溫度為1500~1700℃,氣化壓力為3.0MPa。冷煤氣效率為79%~81%;原料煤熱值的13%通過鍋爐轉化為蒸汽;6%由設備和出冷卻器的煤氣顯熱損失於大氣和冷卻水。 Shell煤氣化技術有如下優點:採用干煤粉進料,氧耗比水煤漿低15%;碳轉化率高,可達99%,煤耗比水煤漿低8%;調解負荷方便,關閉一對噴嘴,負荷則降低50%;爐襯為水冷壁,據稱其壽命為20年,噴嘴壽命為1年。主要缺點:設備投資大於水煤漿氣化技術;氣化爐及廢鍋爐結構過於復雜,加工難度加大。 我公司直接液化項目採用此技術生產氫氣。 (4)、GSP氣化爐 GSP(GAS Schwarze Pumpe)稱為「黑水泵氣化技術」,由前東德的德意志燃料研究所(簡稱DBI)於1956年開發成功。目前該技術屬於成立於2002年未來能源公司(FUTURE ENERGY GmbH)(Sustec Holding AG子公司)。GSP氣化爐是一種下噴式加壓氣流床液態排渣氣化爐,其煤炭加入方式類似於shell,爐子結構類似於德士古氣化爐。1983年12月在黑水泵聯合企業建成第一套工業裝置,單台氣化爐投煤量為720噸/天,1985年投入運行。GSP氣化爐目前應用很少,僅有5個廠應用,我國還未有一台正式使用,寧煤集團(我公司控股)將要引進此技術用於煤化工項目。 總之,從加壓、大容量、煤種兼容性大等方面看,氣流床煤氣化技術代表著氣化技術的發展方向,水煤漿和干煤粉進料狀態各有利弊,界限並不十分明確,國內技術界也眾說紛紜。
3、我國煤氣化技術進展
煤氣化技術在中國已有近百年的歷史,但仍然較落後和發展緩慢,就總體而言,中國煤氣化以傳統技術為主,工藝落後,環保設施不健全,煤炭利用效率低,污染嚴重。目前在國內較為成熟的仍然只是常壓固定床氣化技術。它廣泛用於冶金、化工、建材、機械等工業行業和民用燃氣,以UGI、水煤氣兩段爐、發生爐兩段爐等固定床氣化技術為主。常壓固定床氣化技術的優點是操作簡單,投資小;但技術落後,能力和效率低,污染重,急需技術改造。如不改變現狀,將影響經濟、能源和環境的協調發展。 近40年來,在國家的支持下,中國在研究與開發、消化引進技術方面進行了大量工作。我國先後從國外引進的煤氣化技術多種多樣。通過對煤氣化引進技術的消化吸收,尤其是通過國家重點科技攻關,對引進裝置進行技術改造並使之國產化,使我國煤氣化技術的研究開發取得了重要進展。50年代末到80年代進行了仿K-T氣化技術研究與開發;80年代中科院山西煤化所開發了灰熔聚流化床煤氣化工藝並取得了專利;「九五」期間華東理工大學、兗礦魯南化肥廠、中國天辰化學工程公司承擔了國家重點科技攻關項目「新型(多噴嘴對置)水煤漿氣化爐開發」(22噸煤/天裝置),中試裝置的結果表明:有效氣成分~83%,比相同條件下的Texaco生產裝置高1.5~2個百分點;碳轉化率>98%,比Texaco高2~3個百分點;比煤耗、比氧耗均比Texaco降低7%。 「十五」期間多噴嘴對置式水煤漿氣化技術已進入商業示範階段。「新型水煤漿氣化技術」獲「十五」國家高技術研究發展計劃(863計劃)立項,由兗礦集團有限公司、華東理工大學承擔,在兗礦魯南化肥廠建設多噴嘴對置式水煤漿氣化爐及配套工程,利用兩台日處理1150噸煤多噴嘴對置式水煤漿氣化爐(4.0MPa)配套生產24萬噸甲醇、聯產71.8MW發電,總投資為~16億元。該裝置於2005年7月21日一次投料成功,並完成80小時連續、穩定運行。裝置初步運行結果表明:有效氣CO+H2超過82%,碳轉化率高於98%。它標志著我國擁有了具備自主知識產權的、與國家能源結構相適應的煤氣化技術具有重大的突破,其水平填補了國內空白,並達到國際先進水平。
E. 煤化工和水煤漿有什麼區別
「煤化工」是個大的范疇,只要是以煤(無論煙煤、無煙煤)為生產原料,產品可以是氨、甲醇、尿素、烯烴、BDO、油品、天然氣等的技術都可以是煤化工技術。
水煤漿是加壓(3~8MPa)粉煤氣化的原料而已,它的范疇很小,德士古氣化就是水煤漿與純氧在高溫下進行氣化反應。水煤漿是水、添加劑與非常細(1mm以下)的煤粉混合製成的滿足一定濃度、粘度、PH、粒度的料漿混合物。
F. 水煤漿氣化爐三個液位的差值大,說明什麼
氣化爐
液位差值不能大於10%?老外對氣化運行的安全抓的是越來越嚴了,呵呵。氣化爐液位差值增大個人認為主要是儀表本身的原因,GE可能是擔心儀表的假指示,畢竟氣化爐
只有兩個
中控液位
指示儀表
。不過其他的聯鎖儀表也設置兩兩差值要求就有點過了吧,三選二的儀表如果有一個壞了,那系統不是得
跳車
了?只給出個報警就行了
G. 水煤漿氣化高壓氮平時最主要的作用是
高壓氮氣即指:壓力12MPa的氮氣。 正常生產時,一、爐頭取壓管除氮氣用來吹除氣化爐帶出的灰渣,同時起到降溫效果;二、測溫點處用來保護熱偶的;三、便是在開停車用來吹掃氧氣和煤漿管線的,並吹除爐內煤氣,同時對氣化爐進行部分置換;四、在氣化爐停車時,部分用於起到隔離氧氣的,防止因泄露發生危險。 還有,在引氧之前,就是經過部分減壓(6.5MPa)的氮氣起到稀釋氧氣的作用,不過這不是高壓氮氣了。再有,系統停車後的置換用的也不是高壓氮氣,此時氮氣的壓力基本為5.9MPa. 查看原帖>>
H. 氣化爐的反應原理
什麼氣話爐?
固定床,氣流床
還是水煤漿還是煤粉?
I. 什麼是水煤漿氣化技術
我國礦物能源以煤為主,到2010年,一次能源消費結構中煤佔60%左右。大力發展潔凈煤技術,高效清潔地利用我國煤炭資源,對於促進能源與環境協調發展,滿足國民經濟快速穩定發展需要,具有極其重要的戰略意義。
煤氣化作為潔凈煤技術的重要組成部分,具有龍頭地位。它將廉價的煤炭轉化成為清潔煤氣,既可用於生產化工產品,如合成氨、甲醇、二甲醚等,還可用於煤的直接與間接液化、聯合循環發電(IGCC)和以煤氣化為基礎的多聯產等領域。
迄今為止,世界上已經商業化的IGCC大型電站,均採用氣流床技術,最具有代表性的是以干煤粉為原料的Shell氣化技術和以水煤漿為原料的Texaco氣化技術。Shell氣化技術即將被引進中國建於洞庭,顯現其碳轉化率高,冷煤氣效率高的優勢。相比之下,水煤漿
氣化技術在中國引進得早,實踐時間長,研究開發工作也做得更深入。
經過十多年的實踐探索,中國在水煤漿氣化技術方面,積累了豐富的操作、運行、管理與制適經驗,氣化技術日趨成熟與完善。經過長期科技攻關,在水煤漿氣化領域,形成了完整的氣化理論體系,研究開發出擁有自主知識產權,達到國際領先水平的水煤漿氣化技術。
一、Texaco水煤漿氣化技術的引進與完善
為了充分利用我國豐富的煤炭資源發展煤化工,自80年代至今,我國相繼引進了4套Texaco水煤漿氣化裝置,用於生產甲醇與合成氨。該技術具有氣化爐結構簡單、煤種適應較廣、水煤漿進料易控安全、單爐生產能力大等特點。引進裝置情況見表1。
表 1 引進Teaxaco 水煤漿氣化裝置情況 地點 氣化爐(台) 處理煤量
(噸/天) 氣化壓力
(MPa) 產品 投產時間 技術來源 魯南 2 350 -3.0 氨 1987.7
Texaco專利許可證、工藝軟體包;原化工部第一設計院設計
吳涇 4 1500 4.0 甲醇 1995.5
Texaco專利許可證、工藝軟體包;原化工部第一設計院設計
渭河 3 1500 6.5 氨 1996.2 Texaco專利許可證;日本宇部承包 淮南 3 1500 4.0 氨 2000.7 Texaco專利許可證;日本宇部承包
基礎上,先實施電力、甲醇、合成氣聯產,以後隨著經驗的增加和資金改善,逐步擴大聯產內容,這個起步點的選擇可以成為開發大西北的一個重要內容,亦為今後更完善的多聯產系統的推廣起示範作用;二是在加工高硫原油的石化企業附近,建立以石油焦或是高含硫渣油為氣化原料的多聯產系統,以排除高硫原油煉制所帶來的困難。
(5)結合我國在氣化方面己取得的、具有自己知識產權的成果(中國水煤漿氣化與煤化工程研究中心和上海華東理工大學合作),聯合我國在煤氣化和煤化工領域的優勢單位,在多聯產系統方面走出自己的路子。
(6)提高煤的綜合清潔利用,減排溫室氣體是世界關注的大問題,可以設法取得國際組織(如:UNDP,World Bank,GEF……)的資助。
(7)開展國際合作(和國外有經驗的大公司和對多聯產有較深入研究的大學)。
(8)從現在開始,對多聯產系統做詳細、深入的軟科學方面的研究。
針對引進裝置運行中出現的各類問題,國內有關專家和技術人員在實踐中積極探索,完成了多項技術改造。
1.煤種試燒
西北化工研究院、原魯南化肥廠分別建立了日處理24-35噸煤和15噸煤、8.5MPa的Texaco水煤漿氣化中試裝置,並在中試裝置上進行了多樣煤種的試燒研究,為水煤漿氣化技術在國內的成功應用打下了基礎。
J. 關於煤氣化工藝的問題!
煤氣化工藝
1.固定床氣化工藝
先進的固定床氣化工藝以魯奇移動床加壓氣化為代表,其主要優點包括:可以使用劣質煤氣化;加壓氣化生產能力高;氧耗量低,是目前三類氣化方法中氧耗量最低的方法;魯奇爐是逆向氣化,煤在爐內停留時間長達1h,反應爐的操作溫度和爐出口煤氣溫度低,碳效率高、氣化效率高。雖然魯苛氣化工藝優點很多,但由於固定床氣化只能以不粘塊煤為原料,不僅原料昂貴,氣化強度低,而且氣-固逆流換熱,粗煤氣中含酚類、焦油等較多,使凈化流程加長,增加了投資和成本。
2.氣流床氣化工藝
德士古爐、K-T爐、殼脾爐,以粉煤為原料的氣流床在極高溫度下運符(1300-1500℃),氣化強度極高,單爐能力己達2500.煤/日,我國進口的德士古爐也達400~700煤/日,氣體中不含焦油、酚類,非常適合化工生產和先進發電系統的要求。
氣流床氣化工藝的優點包括.煤種適應范圍較寬,水煤漿氣化爐一般情況下不宜氣化褐煤(成漿困難),工藝靈活,合成氣質量高,產品氣可適用於化工合成,制氫和聯合循環發電等.氣化壓力高,生產能力高.不污染環境,三廢處理較方便。該工藝缺點是,高溫氣化為使灰渣易於排出,要求所用煤灰熔點低(小於1300℃),含灰量低(低於10%-15%),否則需加人助熔劑(CaO或Fe2O3)並增加運行成本。這一點特別不利於我國煤種的使用。此外,高溫氣化爐耐火材料和噴嘴均在高溫下工作,壽命短、價格昂貴、投資高,氣化爐在高溫運行,氧耗高,也提高了煤氣生產成本。
3.流化床氣化工藝
鑒於以上原因,使用碎煤為原料的流化床技術一直受到國內外的關注。德國發揮了其既有傳統,開發出高溫溫克勒氣化爐,美國正努力發展以流化床氣化和燃燒相結合的高效工藝(如Hybrid例工藝),預期可獲得最良好的系統效率。流化床氣化以空氣或氧氣或富氧和蒸汽為氣化劑,在適當的煤粒度和氣速下,使床層中粉煤沸騰,氣固兩相充分混合接觸,在部分燃燒產生的高溫下進行煤的氣化。其工藝流程包括各煤、進料、供氣、氣化、除塵、廢熱回收等系統,將原煤破碎至8mm以下,烘乾後進人進煤系統,再經螺旋加料器加人氣化爐內,在爐內與經過預熱的氣化劑(氧氣/蒸汽或空氣/蒸汽)發生氣化反應,攜帶細顆粒的粗煤氣由氣化爐逸出,在旋風分離器中分離出較粗的顆粒並返回氣化爐,除去粉塵的煤氣經廢熱回收系統進人水洗塔使煤氣最終冷卻和除塵。
至於全世界共有多少座煤氣化的設備 我無法給出一個確切的數據 據我所知 僅山東淄博的煤氣化設備就達到將近900台套,山東省境內大概有8000台套