Ⅰ 芬頓水處理配水池中磷的含量多少
目前國家對稀土工業生產的排放廢水中總磷的濃度要求低於1.0mg/L,對稀土企業,特別是老稀土企業,是一個嚴重的挑戰。芬頓氧化法因其獨特的優勢而被很多學者所青睞,如:工藝簡單,試劑成本相對較低,易於實現工業化等。因此,本文採用芬頓氧化法,通過條件實驗確定了芬頓氧化對廢水中總磷去除效率的主要影響因素,得到了最優工藝參數,在條件試驗基礎上進行了驗證,並應用到工業生產。
1、實驗部分
1.1 實驗試劑
30%雙氧水,硫酸亞鐵(90%),氫氧化鈉(30%),氫氧化鈣(92%),不同分子量的聚丙烯醯胺(95%),不同分子量的抗酸聚丙烯醯胺(95%),非離子聚丙烯醯胺(95%,)等。
1.2 實驗儀器
總磷濃度測試儀(DR500),pH計(BPH-305),電動攪拌器(DJ1C),燒杯、移液管等玻璃儀器。
1.3 實驗方法
取稀土萃取分離廢水,測其總磷濃度和pH值,然後在不同的燒杯中分別各取200mL廢水,採用不同工藝條件,考察芬頓氧化後廢水的pH值、絮凝劑的種類和加入量、芬頓比和芬頓次數、硫酸亞鐵加入量、雙氧水加入量、中和劑的種類等不同影響因素對總磷去除效果的影響,最終確定利用芬頓氧化法去除廢水中總磷的最優工藝。
2、結果與討論
2.1 pH值對處理後廢水中總磷的影響
隨著絮凝pH值的增加,廢水中的總磷濃度先減小後增大,這是因為在不同pH反應條件下,芬頓氧化過程中生成的羥基自由基的量不同,並且當pH升高至中性和鹼性時,通過芬頓氧化去除的一部分磷又會溶解。因此按上述實驗工藝流程處理後廢水的pH值為4.5時除磷效果最好。
2.2 PAM加入量對處理後廢水中總磷的影響
當達到4ppm左右時,效果明顯,之後基本不再變化,因此絮凝劑的加入量對總磷濃度有影響,但不是最主要的影響因素。
2.3 硫酸亞鐵和雙氧水的加入比例對處理後廢水中總磷的影響
實驗發現只要pH保持恆定並且產生足夠量的羥基自由基,廢水中的總磷濃度均可小於1.0mg/L。然而過量的雙氧水不僅使廢水處理成本升高,還會導致排放廢水中的COD嚴重超標,因此二者的質量比例最終定為1:1。
2.4 硫酸亞鐵加入量對處理後廢水中總磷的影響
當硫酸亞鐵的加入量小於廢水中總磷濃度的20倍時,廢水中總磷濃度均大於1.0mg/L,達不到廢水排放總磷濃度標准,但是當硫酸亞鐵的加入量大於廢水中總磷濃度的20倍時,廢水中總磷濃度均小於1.0mg/L。通過以上數據分析,最終確定加入硫酸亞鐵的量為廢水中總磷質量的30倍。
2.5 不同種類的絮凝劑對處理後廢水中總磷的影響
幾種不同種類的絮凝劑對廢水中總磷的去除沒有本質的影響,這是因為影響廢水中總磷濃度的主要因素是芬頓氧化過程的pH值,不同的絮凝劑只是為了在同等實驗條件下找到最好的絮凝效果和最適宜的廢水處理成本。
2.6 不同種類的中和劑對處理後廢水中總磷的影響
用氫氧化鈣調節pH值時,的確和我們預想的一樣,通過一次芬頓氧化後,總磷濃度更低,最低時降到了0.2mg/L。
然而在工業化處理廢水過程中,用氫氧化鈣來中和廢水時pH值較難控制,會給此過程帶來很多的不便,而採用氫氧化鈉調節pH值更易於實現工業化。
3、產業化實驗
含總磷濃度(8.0mg/L~8.5mg/L)較高的稀土萃取分離廢水總流量為100m3/h~120m3/h,加入硫酸亞鐵和雙氧水來進行一次芬頓氧化反應30min~40min,其中硫酸亞鐵的加入量為廢水中總磷質量的20倍~30倍,雙氧水的體積比和硫酸亞鐵的質量比為1:1~1:1.5,按其廢水流量計算,硫酸亞鐵的用量為25kg/h~30kg/h,雙氧水的體積為16L/h~30L/h,芬頓氧化的pH值為2.5~3.0,絮凝的pH值為4.5~5.0,加入絮凝劑的量為3ppm~6ppm,按其廢水流量計算,絮凝劑加入量為400L/h(0.1%),每隔兩小時取樣測一次廢水中的總磷濃度。
Ⅱ 稀土廢水處理
不要過環評,就是來石灰就OK。PH值達標自就行。那就COD,氨氮肯定超標。
要過環評,那就麻煩了。除了PH值,最大問題是氨氮。所以沒有經濟方案。只能改工藝,用鈣或鎂皂化,或有人提出不要皂化。再就是沉澱最好不能用碳銨,最好用純鹼。
如查不改工藝,最後來處理廢水,那成本可能會因為買設備等一次性投入大。而且這種處理氨氮的工藝又不穩定。
Ⅲ 怎樣提煉稀土礦廢水中的元素
跟正常的提取方式一樣,入槽分級萃取分離。
關鍵是看廢水的稀土元素配分和含量如何以確定是否有經濟價值。
需要提醒的是,稀土礦大多含有釷,具有放射性。建議提前分析廢水的放射性,以便提前做好防護。
Ⅳ 稀土工業廢水中高COD是什麼原因應該怎麼處理
k稀土工業廢水一般都是高氨氮啊,你的COD高到什麼程度啊?稀土廢水的主要污染物是氯化物專、氨屬氮、硫酸根、氯離子、放射性元素等。酸性廢水一般用鹼中或回收硫胺或氯化物。中和一般用石灰,適合中小型企業,但是石灰渣需處理否則產生二次污染;回收硫酸或氯化物一般產用工藝後尾氣強化冷卻稀酸吸收等措施,該方案無二次污染節約水,減少後續水處理負荷,還能將有用物質回收,創造一定經濟價值。硫胺廢水處理有物理法和物理化學法,一般產用直接蒸發濃縮法、電滲析-蒸發濃縮和鹼性蒸發法,蒸餾出水後的COD一般也不會太高了。
Ⅳ 練過稀土的山裡流出的水能吃嗎 我不小心喝了,感覺味道咸中帶酸,有問題嗎
一、提煉稀土的廢水中含氨、氮、硫酸、氯離子,以及放射性成份!因此你會覺得口感咸中帶酸!相信你喝的應該是沉澱後比較清的水,再經過與山上的水相混合,裡面有害物質相對較少,估計你也就喝了一口吧?這樣的情況下對人體危害就小了許多!
二、建議多食用草莓、西紅柿,可以抗放射性物質傷害,同時多喝乾凈的水,多運動出汗,加快有害物質排出體內,一般就沒事了!
三、若喝了很多,建議去正規大醫院做一次詳細檢查,可以得知具體情況後再對症療養,這不是特別嚴重的危害,別太擔心!
祝身體健康、萬事如意!
Ⅵ 稀土加工〈電解〉有污染嗎
如果你是光指電解過程的話,其主要污染當屬大氣和廢渣污染。稀土電解一般是採用氯化稀土或氧化稀土和氟化稀土
熔融電解,電極材料一般為金屬鎢、鉬和石墨。點解過程可能會有氯氣、一氧化碳和二氧化碳氣體。還有就是一些廢渣了,不過很少,因而熔融電解的一般是不停爐的,不斷的加原料,有渣出來了可以直接再加進去融掉利用(稀土很貴的。。。)
PS:相比於稀土的提煉
萃取過程,電解的污染實在是可以忽略,只不過工作環境很差,冶煉階段的廢水才非常多,污染環境,所以近年強調稀土的加工利用了
Ⅶ 稀土礦山的廢水怎麼再回用
稀土的比較不好處理,一般沉澱法不容易達到要求,用離子交換法處理還好些。需要知道成分、濃度等等詳細的數據。
北京華豫清源國際有限公司
杜笙離子交換樹脂
於先生
Ⅷ 含稀土元素的廢水處理方法有哪些
根據稀土生產中排出廢水組成成分的不同,其處理方法也有差異,一般可採用沉澱法處理廢水中的放射性成分和氟,對酸、鹼的處理則採用中和法。選擇廢水處理方法應遵循以下原則[1]。
①選擇的處理方法,其工藝技術穩定可靠,先進合理,處理效果好,作業方便,技術指標高。
②選用的各種設備簡單合理,製造容易,維修方便。
③最終排放的廢水要確保達到國家排放標準的要求。
④建設投資費用少,處理廢水的成本低。
放射性廢水的處理
由表10-4可見,稀土生產中放射性廢水的主要來源是獨居石礦的鹼法分解,這種廢水盡管組成比較復雜,放射性元素超過了國家標准,但仍屬於低水平放射性廢水。其處理方法可分為化學法和離子交換法兩大類。
(1)化學處理法 由於廢水中放射性元素的氫氧化物、碳酸鹽、磷酸鹽等化合物大多是不溶性的,因此化學方法處理低放射性廢水大多是採用沉澱法。化學處理的目的是使廢水中的放射性元素移到沉澱的富集物中去,從而使大體積的廢液放射性強度達到國家允許排放標准而排放。化學處理法的特點是費用低廉,對大部分放射性元素的去除率顯著,設備簡單,操作方便,因而在我國的核能和稀土工廠去除廢水中放射性元素都採用化學沉澱法。
①中和沉澱除鈾和釷 向廢水中加入燒鹼溶液,調pH值在7~9之間,鈾和釷則以氫氧化物形式沉澱,化學反應式為:
Th4+4NaOH→Th(OH)4↓+4Na+
UO22++2NaOH→UO2(OH)2↓+2Na+
有時,中和沉澱也可以用氫氧化鈣做中和劑,過程中也可加入鋁鹽(硫酸鋁)、鐵鹽等形成膠體(絮凝物)吸附放射性元素的沉澱物。
②硫酸鹽共晶沉澱除鐳 在有硫酸根離子存在的情況下,向除鈾、釷後的廢水中加入濃度10%的氯化鋇溶液[1],使其生成硫酸鋇沉澱,同時鐳亦生成硫酸鐳並與硫酸鋇形成晶沉澱而析出。化學反應式為:
Ba2+Ra2++2SO2-4→BaRa(SO4)2↓
③高分子絮凝劑除懸浮物 在稀土生產廠中所用的絮凝劑大部分是高分子聚丙烯醯胺(PHP)。按分子量的大小可以分為適用於鹼性介質中的PHP絮凝劑和適用於酸性介質中的PHP絮凝劑。PHP是一種表面活性劑,水解後會生成很多活性基團,能降低溶液中離子擴散層和吸附層間的電位,能吸附很多懸浮物和膠狀物,並把它們緊密地聯成一個絮狀團聚物,使懸浮物和膠狀物加速沉降。
Ⅸ 處理稀土廢水用什麼葯劑
一般處理用高分子絮凝劑生產稀土中所排出的廢水,若不及時處理,對環境版造成很大的破壞。是由於稀土權生產中放射性廢水的主要來源是獨居石礦的鹼法分解,這種廢水盡管組成比較復雜,放射性元素超過了國家標准,但仍屬於低水平放射性廢水。
Ⅹ 目前稀土氯銨廢水的處理還有哪些不足
氨氮廢水是稀土分離廠最難解決的特徵污染物,處理氨氮廢水的方法主要有蒸發濃縮法、折點氯化法、膜法、氨吹脫法等。
蒸發濃縮法適用於銨濃度達80克/升以上的高濃度氯化銨廢水,但要消耗大量的能量,生產出來的氯化銨產品也存在市場銷售困難的問題,因此該方法僅適用於煤炭資源豐富且氯化銨銷路較好的地區。
折點氯化法適用於處理低濃度氨氮廢水,雖然其處理效果穩定,不受水溫影響,投資較少,但是加氯量較大、費用高,副產物氯胺和氯代有機物會造成二次污染,要注意密封和再處理。
反滲透膜法是將低濃度含氨廢水(0.3%)濃縮至6%~7%,然後再通過氨鹼法生產氨水,其淡化水NH4+小於10毫克/升,淡水回用率達90%。日本科學家發明了一種隔膜電滲析—電透析法是處理含銨廢水新技術,氯化銨、硝酸銨廢水經預處理以及隔膜電滲析處理後,濃度得到富集,再經電解透析處理,可回收HCl、HNO3、氨水。目前已投入工業運行。
氨吹脫法通過調節pH值,使NH4+轉化為NH3,然後大量曝氣,促使NH3向空氣中轉移, 因此達到去除水體中NH4+含量的目的。氨吹脫法運行過程中最大的費用是調整pH值消耗的鹼,用石灰雖然成本低但沉渣多難清理,採用純鹼或固鹼成本較高,氨氮含量難以達到排放標准,而且NH3排放到大氣中對環境造成二次污染。
盡管氨氮可以採用不同方法進行處理,但靠一種方法很難達到排放標准,而且造成大量能源消耗,處理成本高,最好的辦法還是從源頭消除氨氮的污染問題,業內研究機構開發了系列無氨氮排放的清潔生產技術,部分已推廣應用。稀土非皂化萃取分離技術是採用氧化鎂或氧化鈣對有機相進行預處理,以此替代氨水或氫氧化鈉,可節約生產成本30%~50%,分離過程不產生氨氮廢水,極大地節約了治理成本,具有很好的經濟效益和社會效益;碳酸鈉沉澱稀土工藝是用碳酸鈉代替碳銨沉澱稀土,也從源頭上消除了氨氮廢水的污染。