Ⅰ 煤化工主要有哪些工業廢渣
鍋爐灰渣、催化劑廢渣、生化凈化水池污泥,含有菌群、膠狀污泥
1、物化預處理預處理常用的方法:隔油、氣浮等。因過多的油類會影響後續生化處理的效果專,氣浮法屬煤化工廢水預處理的作用是除去其中的油類並回收再利用,此外還起到預曝氣的作用。
2、生化處理對於預處理後的煤化工廢水,國內外一般採用缺氧、厭氧、好氧的生物法處理,但由於煤化工廢水中的多環和雜環類化合物,單獨採用好氧或厭氧技術處理煤化工廢水並不能夠達到令人滿意的效果,厭氧和好氧的聯合生物處理法逐漸受到研究者的重視。1)改進的缺氧生物法在活性污泥曝氣池中投加活性炭粉末,利用活性炭粉末對有機物和溶解氧的吸附作用,固化富集廢水中難降解的有機物,為微生物的生長提供食物,從而加速對有機物的氧化分解能力。
Ⅲ 煤炭氣化技術的煤氣化工藝
煤炭氣化技術雖有很多種不同的分類方法,但一般常用按生產裝置化學工程特徵分類方法進行分類,或稱為按照反應器形式分類。氣化工藝在很大程度上影響煤化工產品的成本和效率,採用高效、低耗、無污染的煤氣化工藝(技術)是發展煤化工的重要前提,其中反應器便是工藝的核心,可以說氣化工藝的發展是隨著反應器的發展而發展的,為了提高煤氣化的氣化率和氣化爐氣化強度,改善環境,新一代煤氣化技術的開發總的方向,氣化壓力由常壓向中高壓(8.5 MPa)發展;氣化溫度向高溫(1500~1600℃)發展;氣化原料向多樣化發展;固態排渣向液態排渣發展。 固定床氣化也稱移動床氣化。固定床一般以塊煤或焦煤為原料。煤由氣化爐頂加入,氣化劑由爐底加入。流動氣體的上升力不致使固體顆粒的相對位置發生變化,即固體顆粒處於相對固定狀態,床層高度亦基本保持不變,因而稱為固定床氣化。另外,從宏觀角度看,由於煤從爐頂加入,含有殘炭的爐渣自爐底排出,氣化過程中,煤粒在氣化爐內逐漸並緩慢往下移動,因而又稱為移動床氣化。
固定床氣化的特性是簡單、可靠。同時由於氣化劑於煤逆流接觸,氣化過程進行得比較完全,且使熱量得到合理利用,因而具有較高的熱效率。
固定床氣化爐常見有間歇式氣化(UGI)和連續式氣化(魯奇Lurgi)2種。前者用於生產合成氣時一定要採用白煤(無煙煤)或焦碳為原料,以降低合成氣中CH4含量,國內有數千台這類氣化爐,弊端頗多;後者國內有20多台爐子,多用於生產城市煤氣;該技術所含煤氣初步凈化系統極為復雜,不是公認的首選技術。
(1)、固定床間歇式氣化爐(UGI)
以塊狀無煙煤或焦炭為原料,以空氣和水蒸氣為氣化劑,在常壓下生產合成原料氣或燃料氣。該技術是30年代開發成功的,投資少,容易操作,目前已屬落後的技術,其氣化率低、原料單一、能耗高,間歇制氣過程中,大量吹風氣排空,每噸合成氨吹風氣放空多達5 000 m3,放空氣體中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤氣冷卻洗滌塔排出的污水含有焦油、酚類及氰化物,造成環境污染。我國中小化肥廠有900餘家,多數廠仍採用該技術生產合成原料氣。隨著能源政策和環境的要來越來越高,不久的將來,會逐步為新的煤氣化技術所取代。
(2)、魯奇氣化爐
30年代德國魯奇(Lurgi)公司開發成功固定床連續塊煤氣化技術,由於其原料適應性較好,單爐生產能力較大,在國內外得到廣泛應用。氣化爐壓力(2.5~4.0)MPa,氣化反應溫度(800~900)℃,固態排渣,氣化爐已定型(MK~1~MK-5),其中MK-5型爐,內徑4.8m,投煤量(75~84)噸/h,粉煤氣產量(10~14)萬m3/h。煤氣中除含CO和H2外,含CH4高達10%~12%,可作為城市煤氣、人工天然氣、合成氣使用。缺點是氣化爐結構復雜、爐內設有破粘和煤分布器、爐篦等轉動設備,製造和維修費用大;入爐煤必須是塊煤;原料來源受一定限制;出爐煤氣中含焦油、酚等,污水處理和煤氣凈化工藝復雜、流程長、設備多、爐渣含碳5%左右。針對上述問題,1984年魯奇公司和英國煤氣公司聯合開發了液體排渣氣化爐(BGL),特點是氣化溫度高,灰渣成熔融態排出,炭轉化率高,合成氣質量較好,煤氣化產生廢水量小並且處理難度小,單爐生產能力同比提高3~5倍,是一種有發展前途的氣化爐。 流化床氣化又稱為沸騰床氣化。其以小顆粒煤為氣化原料,這些細顆粒在自下而上的氣化劑的作用下,保持著連續不斷和無秩序的沸騰和懸浮狀態運動,迅速地進行著混合和熱交換,其結果導致整個床層溫度和組成的均一。流化床氣化能得以迅速發展的主要原因在於:(1)生產強度較固定床大。(2)直接使用小顆粒碎煤為原料,適應採煤技術發展,避開了塊煤供求矛盾。(3)對煤種煤質的適應性強,可利用如褐煤等高灰劣質煤作原料。
流化床氣化爐常見有溫克勒(Winkler)、灰熔聚(U-Gas)、循環流化床(CFB)、加壓流化床(PFB是PFBC的氣化部分)等。
(1)、循環流化床氣化爐CFB
魯奇公司開發的循環流化床氣化爐(CFB)可氣化各種煤,也可以用碎木、樹皮、城市可燃垃圾作為氣化原料,水蒸氣和氧氣作氣化劑,氣化比較完全,氣化強度大,是移動床的2倍,碳轉化率高(97%),爐底排灰中含碳2%~3%,氣化原料循環過程中返回氣化爐內的循環物料是新加入原料的40倍,爐內氣流速度在(5~7)m/s之間,有很高的傳熱傳質速度。氣化壓力0.15MPa。氣化溫度視原料情況進行控制,一般控制循環旋風除塵器的溫度在(800~1050)℃之間。魯奇公司的CFB氣化技術,在全世界已有60多個工廠採用,正在設計和建設的還有30多個工廠,在世界市場處於領先地位。
CFB氣化爐基本是常壓操作,若以煤為原料生產合成氣,每公斤煤消耗氣化劑水蒸氣1.2kg,氧氣0.4kg,可生產煤氣 (l.9~2.0)m3。煤氣成份CO+H2>75%,CH4含量2.5%左右, CO215%,低於德士古爐和魯奇MK型爐煤氣中CO2含量,有利於合成氨的生產。
(2)、灰熔聚流化床粉煤氣化技術
灰熔聚煤氣化技術以小於6mm粒徑的乾粉煤為原料,用空氣或富氧、水蒸氣作氣化劑,粉煤和氣化劑從氣化爐底部連續加入,在爐內(1050~1100)℃的高溫下進行快速氣化反應,被粗煤氣夾帶的未完全反應的殘碳和飛灰,經兩極旋風分離器回收,再返回爐內進行氣化,從而提高了碳轉化率,使灰中含磷量降低到10%以下,排灰系統簡單。粗煤氣中幾乎不含焦油、酚等有害物質,煤氣容易凈化,這種先進的煤氣化技術中國已自行開發成功。該技術可用於生產燃料氣、合成氣和聯合循環發電,特別用於中小氮肥廠替代間歇式固定床氣化爐,以煙煤替代無煙煤生產合成氨原料氣,可以使合成氨成本降低15%~20%,具有廣闊的發展前景。
U-Gas在上海焦化廠(120噸煤/天)1994年11月開車,長期運轉不正常,於2002年初停運;中科院山西煤化所開發的ICC灰熔聚氣化爐,於2001年在陝西城化股份公司進行了100噸/天制合成氣工業示範裝置試驗。CFB、PFB可以生產燃料氣,但國際上尚無生產合成氣先例;Winkler已有用於合成氣生產案例,但對粒度、煤種要求較為嚴格,甲烷含量較高(0.7%~2.5%),而且設備生產強度較低,已不代表發展方向。 氣流床氣化是一種並流式氣化。從原料形態分有水煤漿、干煤粉2類;從專利上分,Texaco、Shell最具代表性。前者是先將煤粉製成煤漿,用泵送入氣化爐,氣化溫度1350~1500℃;後者是氣化劑將煤粉夾帶入氣化爐,在1500~1900℃高溫下氣化,殘渣以熔渣形式排出。在氣化爐內,煤炭細粉粒經特殊噴嘴進入反應室,會在瞬間著火,直接發生火焰反應,同時處於不充分的氧化條件下,因此,其熱解、燃燒以吸熱的氣化反應,幾乎是同時發生的。隨氣流的運動,未反應的氣化劑、熱解揮發物及燃燒產物裹夾著煤焦粒子高速運動,運動過程中進行著煤焦顆粒的氣化反應。這種運動狀態,相當於流化技術領域里對固體顆粒的「氣流輸送」,習慣上稱為氣流床氣化。
氣流床氣化具有以下特點:(1)短的停留時間(通常1s);(2)高的反應溫度(通常1300-1500℃);(3)小的燃料粒徑(固體和液體,通常小於0.1mm);(4)液態排渣。而且,氣流床氣化通常在加壓(通常20-50bar)和純氧下運行。
氣流床氣化主要有以下幾種分類方式:
(1)根據入爐原料的輸送性能可分為干法進料和濕法進料;
(2)根據氣化壓力可分為常壓氣化和加壓氣化;
(3)根據氣化劑可分為空氣氣化和氧氣氣化;
(4)根據熔渣特性可分為熔渣氣流床和非熔渣氣流床。
在熔渣氣流床氣化爐中,燃料灰分在氣化爐中熔化。熔融的灰分在相對較冷的壁面上凝聚並最終形成一層保護層,然後液態熔渣會沿著該保護層從氣化爐下部流出。熔渣的數量應保證連續的熔渣流動。通常,熔渣質量流應至少佔總燃料流的6%。為了在給定的溫度下形成具有合適粘度的液態熔渣,通常在燃料中添加一種被稱為助熔劑的物質。這種助熔劑通常是石灰石和其它一些富含鈣基的物質。在非熔渣氣流床氣化爐中,熔渣並不形成,這就意味著燃料必須含有很少量的礦物質和灰分,通常最大的灰分含量是1%。非熔渣氣流床氣化爐由於受原料的限制,因此工業上應用的較少。
氣流床對煤種(煙煤、褐煤)、粒度、含硫、含灰都具有較大的兼容性,國際上已有多家單系列、大容量、加壓廠在運作,其清潔、高效代表著當今技術發展潮流。
乾粉進料的主要有K-T(Koppres-Totzek)爐、Shell- Koppres爐、Prenflo爐、Shell爐、GSP爐、ABB-CE爐,濕法煤漿進料的主要有德士古(Texaco)氣化爐、Destec爐。
(1)、德士古(Texaco)氣化爐
美國Texaco(2002年初成為Chevron公司一部分,2004年5月被GE公司收購)開發的水煤漿氣化工藝是將煤加水磨成濃度為60~65%的水煤漿,用純氧作氣化劑,在高溫高壓下進行氣化反應,氣化壓力在3.0~8.5MPa之間,氣化溫度1400℃,液態排渣,煤氣成份CO+H2為80%左右,不含焦油、酚等有機物質,對環境無污染,碳轉化率96~99%,氣化強度大,爐子結構簡單,能耗低,運轉率高,而且煤適應范圍較寬。目前Texaco最大商業裝置是Tampa電站,屬於DOE的CCT-3,1989年立項,1996年7月投運,12月宣布進入驗證運行。該裝置為單爐,日處理煤2000~2400噸,氣化壓力為2.8MPa,氧純度為95%,煤漿濃度68%,冷煤氣效率~76%,凈功率250MW。
Texaco氣化爐由噴嘴、氣化室、激冷室(或廢熱鍋爐)組成。其中噴嘴為三通道,工藝氧走一、三通道,水煤漿走二通道,介於兩股氧射流之間。水煤漿氣化噴嘴經常面臨噴口磨損問題,主要是由於水煤漿在較高線速下(約30m/s)對金屬材質的沖刷腐蝕。噴嘴、氣化爐、激冷環等為Texaco水煤漿氣化的技術關鍵。
80年代末至今,中國共引進多套Texaco水煤漿氣化裝置,用於生產合成氣,我國在水煤漿氣化領域中積累了豐富的設計、安裝、開車以及新技術研究開發經驗與知識。
從已投產的水煤漿加壓氣化裝置的運行情況看,主要優點:水煤漿制備輸送、計量控制簡單、安全、可靠;設備國產化率高,投資省。由於工程設計和操作經驗的不完善,還沒有達到長周期、高負荷、穩定運行的最佳狀態,存在的問題還較多,主要缺點:噴嘴壽命短、激冷環壽命僅一年、褐煤的制漿濃度約59%~61%;煙煤的制漿濃度為65%;因汽化煤漿中的水要耗去煤的8%,比干煤粉為原料氧耗高12%~20%,所以效率比較低。
(2)、Destec(Global E-Gas)氣化爐
Destec氣化爐已建設2套商業裝置,都在美國:LGT1(氣化爐容量2200噸/天,2.8MPa,1987年投運)與Wabsh Rive(二台爐,一開一備,單爐容量2500噸/天,2.8MPa,1995年投運)爐型類似於K-T,分第一段(水平段)與第二段(垂直段),在第一段中,2個噴嘴成180度對置,藉助撞擊流以強化混合,克服了Texaco爐型的速度成鍾型(正態)分布的缺陷,最高反應溫度約1400℃。為提高冷煤氣效率,在第二階段中,採用總煤漿量的10%~20%進行冷激(該點與Shell、Prenflo的循環沒氣冷激不同),此處的反應溫度約1040℃,出口煤氣進火管鍋爐回收熱量。熔渣自氣化爐第一段中部流下,經水冷激固化,形成渣水漿排出。E-Gas氣化爐採用壓力螺旋式連續排渣系統。
Global E-Gas氣化技術缺點為:二次水煤漿停留時間短,碳轉化率較低;設有一個龐大的分離器,以分離一次煤氣中攜帶灰渣與二次煤漿的灰渣與殘炭。這種爐型適合於生產燃料氣而不適合於生產合成氣。
(3)、Shell氣化爐
最早實現工業化的乾粉加料氣化爐是K-T爐,其它都是在其基礎之上發展起來的,50年代初Shell開發渣油氣化成功,在此基礎上,經歷了3個階段:1976年試驗煤炭30餘種;1978年與德國Krupp-Koppers(krupp-Uhde公司的前身)合作,在Harburg建設日處理150t煤裝置;兩家分手後,1978年在美國Houston的Deer Park建設日處理250t高硫煙煤或日處理400t高灰分、高水分褐煤。共費時16年,至1988年Shell煤技術運用於荷蘭Buggenum IGCC電站。該裝置的設計工作為1.6年,1990年10月開工建造,1993年開車,1994年1月進入為時3年的驗證期,目前已處於商業運行階段。單爐日處理煤2000t。
Shell氣化爐殼體直徑約4.5m,4個噴嘴位於爐子下部同一水平面上,沿圓周均勻布置,藉助撞擊流以強化熱質傳遞過程,使爐內橫截面氣速相對趨於均勻。爐襯為水冷壁(Membrame Wall),總重500t。爐殼於水冷管排之間有約0.5m間隙,做安裝、檢修用。
煤氣攜帶煤灰總量的20%~30%沿氣化爐軸線向上運動,在接近爐頂處通入循環煤氣激冷,激冷煤氣量約占生成煤氣量的60%~70%,降溫至900℃,熔渣凝固,出氣化爐,沿斜管道向上進入管式余熱鍋爐。煤灰總量的70%~80%以熔態流入氣化爐底部,激冷凝固,自爐底排出。
粉煤由N2攜帶,密相輸送進入噴嘴。工藝氧(純度為95%)與蒸汽也由噴嘴進入,其壓力為3.3~3.5MPa。氣化溫度為1500~1700℃,氣化壓力為3.0MPa。冷煤氣效率為79%~81%;原料煤熱值的13%通過鍋爐轉化為蒸汽;6%由設備和出冷卻器的煤氣顯熱損失於大氣和冷卻水。
Shell煤氣化技術有如下優點:採用干煤粉進料,氧耗比水煤漿低15%;碳轉化率高,可達99%,煤耗比水煤漿低8%;調解負荷方便,關閉一對噴嘴,負荷則降低50%;爐襯為水冷壁,據稱其壽命為20年,噴嘴壽命為1年。主要缺點:設備投資大於水煤漿氣化技術;氣化爐及廢鍋爐結構過於復雜,加工難度加大。
我公司直接液化項目採用此技術生產氫氣。
(4)、GSP氣化爐
GSP(GAS Schwarze Pumpe)稱為「黑水泵氣化技術」,由前東德的德意志燃料研究所(簡稱DBI)於1956年開發成功。目前該技術屬於成立於2002年未來能源公司(FUTURE ENERGY GmbH)(Sustec Holding AG子公司)。GSP氣化爐是一種下噴式加壓氣流床液態排渣氣化爐,其煤炭加入方式類似於shell,爐子結構類似於德士古氣化爐。1983年12月在黑水泵聯合企業建成第一套工業裝置,單台氣化爐投煤量為720噸/天,1985年投入運行。GSP氣化爐目前應用很少,僅有5個廠應用,我國還未有一台正式使用,寧煤集團(我公司控股)將要引進此技術用於煤化工項目。
總之,從加壓、大容量、煤種兼容性大等方面看,氣流床煤氣化技術代表著氣化技術的發展方向,水煤漿和干煤粉進料狀態各有利弊,界限並不十分明確,國內技術界也眾說紛紜。
Ⅳ 國內大型環保企業如何處理煤化工廢水
我國近年來興起的煤化工產業大多分布子在西北地區,水資源少,而煤化工又是水資源消耗量和廢水產生量都相當大的產業,因此,廢
以下為大家分享神華包頭煤制烯烴、神華鄂爾多斯煤直接液化、陝煤化集團蒲城
項目名稱:雲天化集團呼倫貝爾金新化工有限公司煤化工水系統整體解決方案
關鍵詞:煤化工領域水系統整體解決方案典範
項目簡介
呼倫貝爾金新化工有限公司是雲天化集團下屬分公司。該項目位於呼倫貝爾大草原深處,當地政府要求此類化工項目的環保設施均需達到「零排放」的水準。同時此項目是亞洲首個採用BGL爐(BritishGas-Lurgi英國燃氣-魯奇爐)煤制氣生產合成氨、尿素的項目,生產過程中產生的廢水成分復雜、污染程度高、處理難度大。此項目也成為國內煤化工領域水系統整體解決方案的典範。
項目規模
煤氣水:80m3/h污水:100m3/h
回用水:500m3/h除鹽水:540m3/h
冷凝液:100m3/h
主要工藝
煤氣水:除油+水解酸化+SBR+混凝沉澱+BAF+機械攪拌澄清池+砂濾
污水:氣浮+A/O
除鹽水:原水換熱+UF+RO+混床
冷凝水:換熱+除鐵過濾器+混床
回用水:澄清器+多介質過濾+超濾+一級反滲透+濃水反滲透
博天環境集團
技術亮點
1、煤氣化廢水含大量油類,含量高達500mg/L,以重油、輕油、乳化油等形式存在,項目中設置隔油和氣浮單元去除油類,其中氣浮採用納米氣泡技術,納米級微小氣泡直徑30-500nm,與傳統溶氣氣浮相比,氣泡數量更多,停留時間更長,氣泡的利用率顯著提升,因此大大提高了除油效果和處理效率。
2、煤氣化廢水特性為高COD、高酚、高鹽類,B/C比值低,含大量難降解物質,採用水解酸化工藝,不產甲烷,利用水解酸化池中水解和產酸微生物,將污水在後續的生化處理單元比較少的能耗,在較短的停留時間內得到處理。
3、煤氣廢水高氨氮,設置SBR可同時實現脫氮除碳的目的。
4、雙膜法在除鹽水和回用水處理工藝上的成熟應用,可有效降低噸水酸鹼消耗量,且操作方便。運行三年以後,目前的系統脫鹽率仍可達到98%。
項目名稱:陝煤化集團蒲城清潔能源化工有限責任公司水處理裝置EPC項目
關鍵詞:新型煤化工領域合同額最大水處理EPC項目
項目簡介
該項目位於陝西省渭南市蒲城縣,採用的是德士古氣化爐和大連化物所的DMTO二代烯烴制甲醇技術。因此廢水主要以氣化廢水及DMTO裝置排水為主,具有高氨氮、高硬度的特點。博天環境承接了該公司年產180萬噸甲醇、70萬噸烯烴項目的污水裝置、回用水裝置和脫鹽水裝置,水處理EPC合同總額達到5億零900萬元。
項目規模
污水:1300m3/h回用水:2400m3/h
濃水處理系統:600m3/h
脫鹽水:一級脫鹽水1600m3/h
工藝凝液:600m3/h透平凝液:1200m3/h
主要工藝
污水:調節+混凝+沉澱+SBR
回用水:BAF+澄清+活性砂濾+雙膜系統+濃水RO
脫鹽水:UF+兩級RO+混床
濃水處理系統:異相催化氧化
工藝凝液:過濾+陽床+混床
透平凝液:過濾+混床
技術亮點
1、污水系統將多級串聯技術與SBR工藝相結合,將SBR反應工序以時間分隔為多次交替出現的缺氧、好氧轉換階段,這種環境下絲狀菌導致的污泥膨脹會被限制,污泥沉降率就會提高;同時,分隔出的各個反應段時長與微生物活性相契合,充分利用快速反硝化階段,創造良好的生物環境,促使硝化與反硝化反應徹底的進行,提高有機物去除效率,實現高氨氮污水污染物的達標處理。
2、濃水採用異相催化氧化處理技術,所用高活性異相催化填料與反應生成的Fe3+生成FeOOH異相結晶體,催化生成更多羥基自由基,具有極強的氧化能力,減少葯劑投加量和污泥生成量。
Ⅳ 化工企業廢水必須零排放嗎零排放的噸水投資成本是多少呢有沒有比較靠譜的廢水零排放工藝
工業廢水問題的破解迫在眉睫,工業廢水零排放是指化工廠生產產品過程專中所產生的廢水,如生產乙屬烯、聚乙烯、橡膠、聚酯、甲醇、乙二醇、油品罐區、空壓站等裝置的含油廢水,經過生化處理後,一般可達到國家二級排放標准,現由於水資源的短缺,需達到排放標準的水再經過進一步深度處理後,達到工業補水的要求並回用。
現代化工業廢水按照含鹽量可分為兩類
1、是高濃度有機廢水。主要來源於煤氣化工藝廢水等,其特點是含鹽量低、污染物以COD為主。
2、是含鹽廢水。主要來源於生產過程中煤氣洗滌廢水、循環水系統排水、除鹽水系統排水、回用系統濃水等,其特點是含鹽量高。
工業廢水零處理工藝介紹
1、由多元金屬熔合多種催化劑,通過高溫熔煉形成一體化合金,保證「原電池」效應持續高效。不會像物理混合那樣出現陰陽極分離,影響原電池反應。
2、架構式微孔結構形式,提供了極大的表面積和均勻的水氣流通道,對廢水處理提供了更大的電流密度和更好的催化反應效果。
3、活性強,比重輕,不鈍化、不板結,反應速率快,長期運行穩定有效。
4、針對不同廢水調整不同比例的催化成份,提高了反應效率,擴大了對廢水處理的應用范圍。
Ⅵ 焦化廢水 煤氣化廢水 煤化工廢水 各有什麼不同
焦化廢水是煤炭煉焦過程產生的廢水,主要有氮氧化物、焦油、硫化物、灰渣等成分;
煤氣化廢水是指煤炭經過高溫氣化過程產生的廢水,主要有氨氮、硫化物、煤氣、灰塵等成分;
煤化工廢水是指煤氣化後經過深加工過程產生的廢水,主要有氨氮、有機物,硫化物,以及一些副產品成分等等,是處理難度最大、最復雜的廢水。
Ⅶ 煤化工廢水處理技術研究及應用分析
煤化工廢水近零排放:煤化工是指以煤為原料,經化學加工轉化為氣體、液體和固體燃料及化學品的過程,是針對我國「富煤、貧油、少氣」的能源特點發展起來的基礎產業。
近年來,受市場需求等因素的刺激,煤炭富集區煤化工產業呈現爆發式增長態勢,《「十二五」規劃綱要》明確提出,推動能源生產和利用方式變革,從生態環境保護滯後發展向生態環境保護和能源協調發展轉變。
我國水資源和煤炭資源逆向分布,煤炭資源豐富的地域,往往既缺水又無環境容量。煤化工廢水如果不加以達標處理直接排入受納水體會對周圍水環境造成較大的污染和破壞,造成可利用的水資源量更加緊缺。因此,我國煤化工廢水實施「近零排放」,實現廢水回用及資源化利用勢在必行。
煤化工廢水近零排放是以解決我國煤化工水資源及廢水處理難題為目標,形成的煤化工廢水處理及資源化利用重大技術研究領域。目前,該領域已基本確立「預處理—生化處理—深度處理—高鹽水處理」實現「近零排放」的技術路線。但是,最終產生的結晶鹽仍然含有多種無機鹽和大量有機物。從加強環境保護的角度出發,煤化工高鹽水產生的雜鹽被暫定為危險廢物。
按目前的處理技術,一次脫鹽處理後僅有60%~70%的淡水能回用。如果真正的零排放還需要把剩餘的30%~40%濃鹽水濃縮再處理進行回用。
現代煤化工企業廢水按照含鹽量可分為兩類:
一是高濃度有機廢水。 主要來源於煤氣化工藝廢水等, 其特點是含鹽量低、污染物以COD為主;
二是含鹽廢水。主要來源於生產過程中煤氣洗滌廢水、循環水系統排水、除鹽水系統排水、回用系統濃水等,,其特點是含鹽量高。
煤化工廢水「零排放」處理技術主要包括煤氣化廢水的預處理、生化處理、深度處理及濃鹽水處理幾大部分。
預處理:由於煤氣化廢水中酚、氨和氟含量很高,而回收酚和氨不僅可以避免資源的浪費,而且大幅度降低了預處理後廢水的處理難度。通常情況下,煤氣化廢水的物化預處理過程有:脫酚,除氨,除氟等。
生化處理:預處理後,煤氣化廢水的COD含量仍然較高,氨氮含量為50~200mg/l,BOD5/COD范圍為0.25~0.35,因此多採用具有脫氮功能的生物組合技術。目前廣泛使用的生物脫氮工藝主要有:缺氧-好氧法(A/O工藝)、厭氧-缺氧-好氧法(A-A/O工藝)、SBR法、氧化溝、曝氣生物濾池法(BAF)等。
深度處理:多級生化工藝處理後出水COD仍在100~200mg/l,實現出水達標排放或回用都需進一步的深度處理。目前,國內外深度處理的方法主要有混凝沉澱法、高級氧化法、吸附法或膜處理技術。
濃鹽水處理: 針對含鹽量較高的氣化廢水等,TDS濃度一般在10000mg/L左右,除了先通過預處理和生化處理以外,通常後續採用超濾和反滲透膜來除鹽,膜產水回用,濃水進入蒸發結晶設施,這也是實現污水零排放的重點和難點所在。
海普創新開發了廢水近零排放ZDP工藝
煤化工行業近零排放項目現場
Ⅷ 我想對煤化工廢水的成分有哪些啊如題 謝謝了
煤化工綜合廢水COD可達5000mg/L、氨氮在200~500mg/L,是一種典型含有較難降解有機化合物的工業廢水內。廢水中的易容降解有機物主要是酚類和苯類化合物,如砒咯、萘、呋喃、咪唑類等;難降解的有機物主要有砒啶、烷基吡啶、異喹啉、喹啉、咔唑、聯苯、三聯苯等。煤化工廢水經生化處理後還殘留各種生色基團和助色基團物質,如3-甲基-1, 3, 6庚三烯、5- 降冰片烯-2-羧酸、苯酚、2-氯-2-降冰片烯等,因而色度和濁度較高. http://www.iwatertech.com/coal-chemical-water/index.htm
Ⅸ 煤化工高鹽廢水處理求助
煤化工企業排放廢水以高濃度煤氣洗滌廢水為主,含有大量酚、氰、油、氨氮等有毒、有害物質。綜合廢水中CODcr一般在5000mg/l左右、氨氮在200~500mg/l,廢水所含有機污染物包括酚類、多環芳香族化合物及含氮、氧、硫的雜環化合物等,是一種典型的含有難降解的有機化合物的工業廢水。廢水處理中的易降解有機物主要是酚類化合物和苯類化合物,砒咯、萘、呋喃、眯唑類屬於可降解類有機物,難降解的有機物主要有砒啶、咔唑、聯苯、三聯苯等。下面小編介紹下煤化工廢水處理的難點。
近年來,不斷有新的方法和技術用於處理煤化工廢水,但各有利弊。單純的生物氧化法出水中含有一定量的難降解有機物,COD值偏高,不能完全達到排放標准。吸附法雖能較好地除去CODcr,但存在吸附劑的再生和二次污染的問題。催化氧化法雖能降解難以生物降解的有機物,但實際的工業應用中存在運行費用高等問題。厭氧-好氧聯合處理煤化工廢水可以獲得理想的處理效果,運行管理和成本相對較低,該工藝是煤化工廢水的主要選用工藝。但當在來水濃度較高和含有較多難降解有機物時出水難以穩定達標,需要與催化氧化和混凝沉澱等工藝配合使用。利用多種方法聯合處理煤化工廢水是煤化工廢水處理技術的發展方向。
Ⅹ 焦化廢水的來源
焦化廢水是由原煤的高溫干餾、煤氣凈化和化工產品精製過程中產生的。廢水成分復雜,其水質隨原煤組成和煉焦工藝而變化。核磁共振色譜圖中顯示:焦化廢水中含有數十種無機和有機化合物。其中無機化合物主要是大量氨鹽、硫氰化物、硫化物、氰化物等,有機化合物除酚類外,還有單環及多環的芳香族化合物、含氮、硫、氧的雜環化合物等。總之,焦化廢水污染嚴重,是工業廢水排放中一個突出的環境問題。
《污水綜合排放標准》(GB8978-96)對焦化廢水新改擴建項目要求:NH 3 -N≤15mg/L,COD≤100mg/L。過去,國內外去除焦化廢水中的NH 3 -N和COD主要採用生化法,其中以普通活性污泥法為主,該方法可有效去除焦化廢水中酚、氰類物質,但對於難降解有機物和NH 3 -N去除效果較差,難以達標排放。難降解有機物的處理已引起國內外有關學者的高度重視,許多學者對難降解有機物進行了大量研究,同時改進了焦化廢水中NH 3 -N脫除工藝,提出了許多切實可行的處理設施和技術,使出水COD和NH 3 -N濃度大大降低。本文將介紹幾種先進有效的焦化廢水的處理技術。
1 焦化廢水的預處理技術
去除焦化廢水中的有機物主要採用生物處理法,但其中部分有機物不易生物降解,需要採用適當的預處理技術。常用的預處理方法是厭氧酸化法。
厭氧酸化法是一種介於厭氧和好氧之間的工藝,其作用機理是通過厭氧微生物水解和酸化作用使難降解有機物的化學結構發生變化,生成易降解物質。厭氧微生物對於雜環化合物和多環芳烴中環的裂解,具有不同於好氧微生物的代謝過程,其裂解為還原性裂解和非還原性裂解。厭氧微生物體內具有易於誘導、較為多樣化的健全開環酶體系,使雜環化合物和多環芳烴易於開環裂解。焦化廢水中存在較多的易降解有機物,可以作為厭氧酸化預處理中微生物生長代謝的初級能源和碳源,滿足了厭氧微生物降解難降解有機物的共基質營養條件。焦化廢水經厭氧酸化預處理後,可以提高難降解有機物的好氧生物降解性能,為後續的好氧生物處理創造良好條件 [1] 。趙建夫等 [2] 將水解一酸化作為焦化廢水預處理工藝,廢水經6h水解一酸化,12h好氧生化處理,COD去除率達91%,比傳統的生化處理法提高了近40% [3] 。
2 焦化廢水的二級處理技術
焦化廢水經預處理後,廢水的可生化性得到了提高,但其中難降解有機物不能徹底分解為CO2和H2O,必須進行二級處理。焦化廢水的二級處理方法很多,有生物化學法、物理法、化學法以及物理化學法等。目前,效果較好的二級處理技術主要有以下幾種。
2.1 催化濕式氧化技術
催化濕式氧化技術是80年代國際上發展起來的一種治理高濃度有機廢水的新技術,是在一定溫度、壓力下,在催化劑作用下,經空氣氧化使污水中的有機物、氨分別氧化分解成CO2、H2O及N2等無害物質,達到凈化目的。其特點是凈化效率高,流程簡單,佔地面積少。杜鴻章等研製出適合處理焦化廠蒸氨、脫酚前濃焦化污水的濕式氧化催化劑,該催化劑活性高,耐酸、鹼腐蝕,穩定性高,適用於工業應用,對CODcr及NH 3 -N的去除率分別為99.5%及99.9%;而且,經催化濕式氧化法治理焦化廢水小試結果估算,治理費用與生化法相近,但處理後的水質遠優於生化法。從技術、經濟指標、環境效益分析採用催化濕式氧化法治理焦化廢水經濟可行 [4] 。
2.2 生物強化技術
生物強化技術是指在生物處理體系中投加具有特定功能的微生物來改善原有處理體系的處理效果。投加的微生物可以來源於原有的處理體系,經過馴化、富集、篩選、培養達到一定數量後投加,也可以是原來不存在的外源微生物。實際應用中這兩種方法都有採用,主要取決於原有處理體系中的微生物組成及所處的環境 [5] 。這一技術可以充分發揮微生物的潛力,改善難降解有機物生物處理效果 [6-7] 。Selvaratnam等 [8] 通過在活性污泥中投加苯酚降解菌Psendomonas Pvotida ATCC11172,提高了苯酚的去除率,系統在40d內一直保持在95%-100%的苯酚去除率,而沒有進行生物強化的對照組中苯酚去除率開始很高,但很快降到40%左右。
2.3 紛頓試劑技術
紛頓試劑對有機分子的破壞是非常有效的,其實質是二價鐵離子和過氧化氫之間的鏈反應催化生成·OH自由基,三價鐵離子催化劑(稱紛頓類試劑)也能激發這個反應,這兩個反應生成的·OH自由基能有效地氧化各種有毒的和難處理的有機化合物;或者採用紫外燈作為輻射能源放射紫外線進入廢水,當過氧化氫被紫外光激活後,反應產物是一個高反應性的·OH自由基,這個·OH基團迅速引發氧化鏈反應,最終有機化合物被分解為CO2和H2O。K.Banerjeek等經實驗證明:採用過氧化氫添加鐵鹽和同時採用紫外光、過氧化氫和催化劑的兩個處理過程都能有效地減少焦化廢水中COD濃度 [9] 。
2.4 固定化細胞技術
固定化細胞(簡稱IMC)技術是通過採用化學或物理的手段將游離細胞或酶定位於限定的空間區域內,使其保持活性並可反復利用的方法。制備固定化細胞可採用吸附法、共價結合法、交聯法、包埋法等。固定化細胞技術充分發揮了高效菌種或遺傳工程菌在降解有機物治理中的降解潛力,該技術特點是細胞密度高,反應迅速,微生物流失少,產物分離容易,反應過程式控制制較容易,污泥產生量少,可去除氮和高濃度有機物或某些難降解物質 [10] 。
Amanda等 [11] 以PVA-H3BO3包埋法固定化假單孢菌Psendomonas,在流化反應器中連續運行2周,進水酚濃度從250mg/L逐漸提高到1300mg/L,出水酚濃度均為0。
2.5 三相氣提升循環流化床
蔡建安 [12] 經實驗研究證明:用三相氣提升內循環流化床反應器(AZLR)處理焦化廢水比活性污泥法效果好,其處理負荷高,COD進水負荷為13kg/(d·m 3 ),COD去除的容積負荷可達7kg/(d·m 3 )。它對酚、氰等污染物的耐受力強,去除效果好,並具有較低的曝氣能耗,其COD去除率為54.4%~76%,酚的去除率為95%~99.2%,氰去除率為95%~99.2%。
2.6 缺氧-好氧-接觸氧化法
該工藝在缺氧過程溶解氧控制在0.5mg/L以下,兼性脫氮菌利用進水中的COD作為氫供給體,將好氧池混合液中的硝酸鹽及亞硝酸鹽還原生成氨氣排入大氣,同時利用厭氧生物處理反應過程中的產酸過程,把一些復雜的大分子稠環化合物分解成低分子有機物。在好氧過程溶解氧在3~6mg/L范圍內,先由好氧池中的碳化菌降解易降解的含碳化合物,再由亞硝酸鹽菌和硝酸鹽菌氧化氨氮;在接觸氧化過程溶解氧控制在2~4mg/L,能夠進一步降解難降解有機物,脫除氨氮、磷,對水質起關鍵作用。山西省臨汾市煤氣化公司採用這一工藝,出水水質由處理前COD3000mg/L、氨氮650mg/L、酚250mg/L,經處理後分別變為140mg/L、230mg/L、0.9mg/L,基本接近《污水綜合排放標准》 [13] 。
3 焦化廢水深度處理技術
焦化廢水二級出水中COD和NH 3 -N常常超標,應進行三級處理。許多學者已研究出了一些三級處理方法,如化學氧化法、折點加氯法、絮凝沉澱輔以加氯法、吸附過濾輔以離子交換法等,但由於經濟和技術的原因,這些方法均處於試驗階段,目前較為經濟可行的三級處理方法主要有以下兩種。
3.1 氧化塘深度處理法
氧化塘深度處理焦化廢水簡單易行,處理效果好,能耗低,易管理,費用低。COD進水濃度在250-400mg/L范圍內,該方法對COD處理效果較為理想。氧化塘對低濃度焦化廢水進行處理的適宜pH值為6-8,最佳pH值為7;適宜溫度范圍為25-35℃,最佳溫度為35℃。如果投加生活污水於焦化廢水中,其COD和NH 3 -N去除率都可得到提高。藻類吸收作用是焦化廢水氧化塘脫除NH 3 -N的主要途徑,硝化反應是焦化廢水NH 3 -N轉化的重要反應。吳紅偉等經試驗證明,採用氧化塘深度處理焦化廢水,COD、NH 3 -N均可達標排放 [14] 。
3.2 粉煤灰吸附法
X光衍射儀測定結果表明:粉煤灰主要成分是SiO 2 、Al 2 SO 5 、NaAlSiO 4 等,將粉煤灰作為吸附劑深度處理焦化廢水,脫色效果好,對CODcr、揮發酚、油等去除效果好,費用低廉。張兆春 [15] 等研究表明腐植酸類物質-長焰煤作為吸附劑對焦化廢水中化學耗氧物質具有較快的吸附速率以及可觀的吸附容量,可以對焦化廢水進行深度處理。山西焦化廠採用生化-粉煤灰深度處理焦化廢水的工藝技術,經處理後,除氨氮偏高外,CODcr、揮發酚、硫化物、氰化物、BOD5等污染物濃度均低於國家規定的允許排放標准,處理後的水60%被回用。
4 結束語
深入研究焦化廢水的先進處理技術,既是當前經濟建設面臨的現實問題,也是將來進行技術攻關的重點,我們應該尋求既高效又經濟的處理技術,改善環境質量,實現水資源的循環利用。