『壹』 為什麼氯鹼工業中用陽離子交換膜 不用陰離子 不用交換膜不行
因為氯離子和氫氧根離子都是陰離子要向陽極運動,同種電荷排斥異種電荷吸引。不用交換膜分離物質困難
『貳』 原水水質PH值上升或下降,對陰陽離子交換的水處理系統有何影響
pH的上升或下降,反映的是鹼度的變化,如重碳酸根、碳酸根含量,這些成分靠除碳器去除,但如果過高,則除碳不徹底,會影響陰床的運行周期。
『叄』 工業廢水中金屬離子的去除方法
1化學沉澱
化學沉澱法是使廢水中呈溶解狀態的重金屬轉變為不溶於水的重金屬化合物的方法,包括中和沉法和硫化物沉澱法等。
中和沉澱法
在含重金屬的廢水中加入鹼進行中和反應,使重金屬生成不溶於水的氫氧化物沉澱形式加以分離。中和沉澱法操作簡單,是常用的處理廢水方法。實踐證明在操作中需要注意以下幾點:
(1)中和沉澱後,廢水中若pH值高,需要中和處理後才可排放;
(2)廢水中常常有多種重金屬共存,當廢水中含有Zn、Pb、Sn、Al等兩性金屬時,pH值偏高,可能有再溶解傾向,因此要嚴格控制pH值,實行分段沉澱;
(3)廢水中有些陰離子如:鹵素、氰根、腐植質等有可能與重金屬形成絡合物,因此要在中和之前需經過預處理;
(4)有些顆粒小,不易沉澱,則需加入絮凝劑輔助沉澱生成。
硫化物沉澱法
加入硫化物沉澱劑使廢水中重金屬離子生成硫化物沉澱後從廢水中去除的方法。
與中和沉澱法相比,硫化物沉澱法的優點是:重金屬硫化物溶解度比其氫氧化物的溶解度更低,反應時最佳pH值在7—9之間,處理後的廢水不用中和。硫化物沉澱法的缺點是:硫化物沉澱物顆粒小,易形成膠體;硫化物沉澱劑本身在水中殘留,遇酸生成硫化氫氣體,產生二次污染。為了防止二次污染問題,英國學者研究出了改進的硫化物沉澱法,即在需處理的廢水中有選擇性的加入硫化物離子和另一重金屬離子(該重金屬的硫化物離子平衡濃度比需要除去的重金屬污染物質的硫化物的平衡濃度高)。由於加進去的重金屬的硫化物比廢水中的重金屬的硫化物更易溶解,這樣廢水中原有的重金屬離子就比添加進去的重金屬離子先分離出來,同時能夠有效地避免硫化氫的生成和硫化物離子殘留的問題。
2氧化還原處理
化學還原法
電鍍廢水中的Cr主要以Cr6+離子形態存在,因此向廢水中投加還原劑將Cr6+還原成微毒的Cr3+後,投加石灰或NaOH產生Cr(OH)3沉澱分離去除。化學還原法治理電鍍廢水是最早應用的治理技術之一,在我國有著廣泛的應用,其治理原理簡單、操作易於掌握、能承受大水量和高濃度廢水沖擊。根據投加還原劑的不同,可分為FeSO4法、NaHSO3法、鐵屑法、SO2法等。
應用化學還原法處理含Cr廢水,鹼化時一般用石灰,但廢渣多;用NaOH或Na2CO3,則污泥少,但葯劑費用高,處理成本大,這是化學還原法的缺點。
鐵氧體法
鐵氧體技術是根據生產鐵氧體的原理發展起來的。在含Cr廢水中加入過量的FeSO4,使Cr6+還原成Cr3+,Fe2+氧化成Fe3+,調節pH值至8左右,使Fe離子和Cr離子產生氫氧化物沉澱。通入空氣攪拌並加入氫氧化物不斷反應,形成鉻鐵氧體。其典型工藝有間歇式和連續式。鐵氧體法形成的污泥化學穩定性高,易於固液分離和脫水。鐵氧體法除能處理含Cr廢水外,特別適用於含重金屬離子種類較多的電鍍混合廢水。我國應用鐵氧體法已經有幾十年歷史,處理後的廢水能達到排放標准,在國內電鍍工業中應用較多。
鐵氧體法具有設備簡單、投資少、操作簡便、不產生二次污染等優點。但在形成鐵氧體過程中需要加熱(約70oC),能耗較高,處理後鹽度高,而且有不能處理含Hg和絡合物廢水的缺點。
電解法
電解法處理含Cr廢水在我國已經有二十多年的歷史,具有去除率高、無二次污染、所沉澱的重金屬可回收利用等優點。大約有30多種廢水溶液中的金屬離子可進行電沉積。電解法是一種比較成熟的處理技術,能減少污泥的生成量,且能回收Cu、Ag、Cd等金屬,已應用於廢水的治理。不過電解法成本比較高,一般經濃縮後再電解經濟效益較好。
近年來,電解法迅速發展,並對鐵屑內電解進行了深入研究,利用鐵屑內電解原理研製的動態廢水處理裝置對重金屬離子有很好的去除效果。
另外,高壓脈沖電凝系統()為當今世界新一代電化學水處理設備,對表面處理、塗裝廢水以及電鍍混合廢水中的Cr、Zn、Ni、Cu、Cd、CN-等污染物有顯著的治理效果。高壓脈沖電凝法比傳統電解法電流效率提高20%—30%;電解時間縮短30%—40%;節省電能達到30%—40%;污泥產生量少;對重金屬去除率可達96%一99%。
3溶劑萃取分離
溶劑萃取法是分離和凈化物質常用的方法。由於液一液接觸,可連續操作,分離效果較好。使用這種方法時,要選擇有較高選擇性的萃取劑,廢水中重金屬一般以陽離子或陰離子形式存在,例如在酸性條件下,與萃取劑發生絡合反應,從水相被萃取到有機相,然後在鹼性條件下被反萃取到水相,使溶劑再生以循環利用。這就要求在萃取操作時注意選擇水相酸度。盡管萃取法有較大優越性,然而溶劑在萃取過程中的流失和再生過程中能源消耗大,使這種方法存在一定局限性,應用受到很大的限制。
4吸附法
吸附法是利用吸附劑的獨特結構去除重金屬離子的一種有效方法。利用吸附法處理電鍍重金屬廢水的吸附劑有活性炭、腐植酸、海泡石、聚糖樹脂等。活性炭裝備簡單,在廢水治理中應用廣泛,但活性炭再生效率低,處理水質很難達到回用要求,一般用於電鍍廢水的預處理。腐植酸類物質是比較廉價的吸附劑,把腐植酸做成腐植酸樹脂用以處理含Cr、含Ni廢水已有成功經驗。有相關研究表明,殼聚糖及其衍生物是重金屬離子的良好吸附劑,殼聚糖樹脂交聯後,可重復使用10次,吸附容量沒有明顯降低。利用改性的海泡石治理重金屬廢水對Pb2+、Hg2+、Cd2+有很好的吸附能力,處理後廢水中重金屬含量顯著低於污水綜合排放標准。另有文獻報道蒙脫石也是一種性能良好的粘土礦物吸附劑,鋁鋯柱撐蒙脫石在酸性條件下對Cr6+的去除率達到99%,出水中Cr6+含量低於國家排放標准,具有實際應用前暑。
5膜分離法
膜分離法是利用高分子所具有的選擇性來進行物質分離的技術,包括電滲析、反滲透、膜萃取、超過濾等。用電滲析法處理電鍍工業廢水,處理後廢水組成不變,有利於回槽使用。含Cu2+、Ni2+、Zn2+、Cr6+等金屬離子廢水都適宜用電滲析處理,已有成套設備。反滲透法已大規模用於鍍Zn、Ni、Cr漂洗水和混合重金屬廢水處理。採用反滲透法處理電鍍廢水,已處理水可以回用,實現閉路循環。液膜法治理電鍍廢水的研究報道很多,有些領域液膜法已由基礎理論研究進入到初步工業應用階段,如我國和奧地利均用乳狀液膜技術處理含Zn廢水,此外也應用於鍍Au廢液處理中。膜萃取技術是一種高效、無二次污染的分離技術,該項技術在金屬萃取方面有很大進展。
6離子交換法
離子交換處理法是利用離子交換劑分離廢水中有害物質的方法,應用的離子交換劑有離子交換樹脂、沸石等等,離子交換樹脂有凝膠型和大孔型。前者有選擇性,後者製造復雜、成本高、再生劑耗量大,因而在應用上受到很大限制。離子交換是靠交換劑自身所帶的能自由移動的離子與被處理的溶液中的離子通過離子交換來實現的。推動離子交換的動力是離子間濃度差和交換劑上的功能基對離子的親和能力,多數情況下離子是先被吸附,再被交換,離子交換劑具有吸附、交換雙重作用。這種材料的應用越來越多,如膨潤土,它是以蒙脫石為主要成分的粘土,具有吸水膨脹性好、比表面積大、較強的吸附能力和離子交換能力,若經改良後其吸附及離子交換的能力更強。但是卻較難再生,天然沸石在對重金屬廢水的處理方面比膨潤土具有更大的優點:沸石是含網架結構的鋁硅酸鹽礦物,其內部多孔,比表面積大,具有獨特的吸附和離子交換能力。研究表明,沸石從廢水中去除重金屬離子的機理,多數情況下是吸附和離子交換雙重作用,隨流速增加,離子交換將取代吸附作用佔主要地位。若用NaCl對天然沸石進行預處理可提高吸附和離子交換能力。通過吸附和離子交換再生過程,廢水中重金屬離子濃度可濃縮提高30倍。沸石去除銅,在NaCl再生過程中,去除率達97%以上,可多次吸附交換,再生循環,而且對銅的去除率並不降低。
三、生物處理技術
由於傳統治理方法有成本高、操作復雜、對於大流量低濃度的有害污染難處理等缺點,經過多年的探索和研究,生物治理技術日益受到人們的重視。隨著耐重金屬毒性微生物的研究進展,採用生物技術處理電鍍重金屬廢水呈現蓬勃發展勢頭,根據生物去除重金屬離子的機理不同可分為生物絮凝法、生物吸附法、生物化學法以及植物修復法。
1生物絮凝法
生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外,具有絮凝活性的代謝物。一般由多糖、蛋白質、DNA、纖維素、糖蛋白、聚氨基酸等高分子物質構成,分子中含有多種官能團,能使水中膠體懸浮物相互凝聚沉澱。至目前為止,對重金屬有絮凝作用的約有十幾個品種,生物絮凝劑中的氨基和羥基可與Cu2+、Hg2+、Ag+、Au2+等重金屬離子形成穩定的鰲合物而沉澱下來。應用微生物絮凝法處理廢水安全方便無毒、不產生二次污染、絮凝效果好,且生長快、易於實現工業化等特點。此外,微生物可以通過遺傳工程、馴化或構造出具有特殊功能的菌株。因而微生物絮凝法具有廣闊的應用前景。
2生物吸附法
生物吸附法是利用生物體本身的化學結構及成分特性來吸附溶於水中的金屬離子,再通過固液兩相分離去除水溶液中的金屬離子的方法。利用胞外聚合物分離金屬離子,有些細菌在生長過程中釋放的蛋白質,能使溶液中可溶性的重金屬離子轉化為沉澱物而去除。生物吸附劑具有來源廣、價格低、吸附能力強、易於分離回收重金屬等特點,已經被廣泛應用。
3生物化學法
生物化學法指通過微生物處理含重金屬廢水,將可溶性離子轉化為不溶性化合物而去除。硫酸鹽生物還原法是一種典型生物化學法。該法是在厭氧條件下硫酸鹽還原菌通過異化的硫酸鹽還原作用,將硫酸鹽還原成H2S,廢水中的重金屬離子可以和所產生的H2S反應生成溶解度很低的金屬硫化物沉澱而被去除,同時H2SO4的還原作用可將SO42-轉化為S2-而使廢水的pH值升高。因許多重金屬離子氫氧化物的離子積很小而沉澱。有關研究表明,生物化學法處理含Cr6+濃度為30—40mg/L的廢水去除率可達99.67%—99.97%。有人還利用家畜糞便厭氧消化污泥進行礦山酸性廢水重金屬離子的處理,結果表明該方法能有效去除廢水中的重金屬。趙曉紅等人用脫硫腸桿菌(SRV)去除電鍍廢水中的銅離子,在銅質量濃度為246.8mg/L的溶液,當pH為4.0時,去除率達99.12%。
4植物修復法
植物修復法是指利用高等植物通過吸收、沉澱、富集等作用降低已有污染的土壤或地表水的重金屬含量,以達到治理污染、修復環境的目的。植物修復法是利用生態工程治理環境的一種有效方法,它是生物技術處理企業廢水的一種延伸。利用植物處理重金屬,主要有三部分組成:
(1)利用金屬積累植物或超積累植物從廢水中吸取、沉澱或富集有毒金屬;
(2)利用金屬積累植物或超積累植物降低有毒金屬活性,從而可減少重金屬被淋濾到地下或通過空氣載體擴散:
(3)利用金屬積累植物或超積累植物將土壤中或水中的重金屬萃取出來,富集並輸送到植物根部可收割部分和植物地上枝條部分。通過收獲或移去已積累和富集了重金屬植物的枝條,降低土壤或水體中的重金屬濃度。在植物修復技術中能利用的植物有藻類、草本植物、木本植物等。
藻類凈化重金屬廢水的能力,主要表現在對重金屬具有很強的吸附力,利用藻類去除重金屬離子的研究已有大量報道。褐藻對Au的吸收量達400mg/g,在一定條件下綠藻對Cu、Pb、La、Cd、Hg等重金屬離子的去除率達80%—90%,馬尾藻、鼠尾藻對重金屬的吸附雖然不及綠海藻,但仍具有較好的去除能力。
草本植物凈化重金屬廢水的應用已有很多報道。鳳眼蓮是國際上公認和常用的一種治理污染的水生漂浮植物,它具有生長迅速,既能耐低溫、又能耐高溫的特點,能迅速、大量地富集廢水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多種重金屬。有關研究發現鳳眼蓮對鈷和鋅的吸收率分別高達97%和80%。此外,還有很多草本植物具有凈化作用,如喜蓮子草、水龍、刺苦草、浮萍、印度芥菜等。
木本植物具有處理量大、凈化效果好、受氣候影響小、不易造成二次污染等等優點,受到人們廣泛關注。同時對土壤中Cd、Hg等有較強的吸附積累作用,由胡煥斌等試驗結果表明:蘆葦和池杉對重金屬Pb和Cd都有較強富集能力。
『肆』 工廠廢水污染有哪些危害
1、工業廢水直接流入渠道,江河,湖泊污染地表水,如果毒性較大會導致水生動植物的死亡甚至絕跡
2、工業廢水還可能滲透到地下水,污染地下水,進而污染農作物;
3、如果周邊居民採用被污染的地表水或地下水作為生活用水,會危害身體健康,重者死亡;
4、工業廢水滲入土壤,造成土壤污染。影響植物和土壤中微生物的生長。
5、有些工業廢水還帶有難聞的惡臭,污染空氣。
工業廢水處理回用是重要的節水途徑之一,可涉及冷卻、除灰、循環水、熱力等系統。冷卻水系統主要根據系統對水質要求的不同而採取循環、循序、梯級使用,熱力系統主要是蒸汽回收利用,其他系統的排水經處理後主要用於水力除灰渣、生產生活雜用水進一步處理後作為冷卻系統的補水。
大多數企業都有污水處理廠,但僅限於將生產廢水和生活污水處理達標後直接排放,只有少數企業能做到廢水處理回用,但回用率不高,造成了水資源的嚴重浪費。因此,將工業企業的污、廢水處理回用,特別是回用於生產過程,是大有潛力可挖的。
在企業生產運行中,根據各工序生產對水質的要求不同,可以最大限度地實現水的串聯使用,使各工序各取所需,做到水的梯級使用,從而減少取水量,實現污水排放量的最小化;也可以針對污、廢水的不同性質採取不同的水處理方法,回用於不同的生產步驟,從而減少新鮮水的取水量、降低污水的排放量。
『伍』 工業用軟化水離子交換和反滲透的對比
反滲透工藝和離子交換的工藝比較
序號 比較項目 反滲透(RO) 全離子交換(IEX)
1 社會效益 RO是當今最先進的除鹽技術,利用RO對水進行除鹽,除鹽率在97%以上。該工藝工作量輕,維護量極小,RO實行自動操作,人員配置較少,操作管理方便。 IEX是七十年代以來普遍採用的除鹽工藝,它是靠IEX化學交換來完成對水進行除鹽。 該工藝操作量較多名維護量較大,人員配置較多,從目前鍋爐除鹽水工藝系統應用來看,IEX逐漸被RO工藝所取代。
2 環境效益 RO是電能為動力,無需酸鹼再生,若全為IEX的工作周期為1天,那麼採用RO脫除原水97%的鹽分,在用IEX來擔負3%的鹽分,將使IEX的工作周期延至長30天以上,極大程度減少酸鹼再生廢液的排放量,降低了對環境的影響,大大減輕了酸鹼排放廢水的處理負擔。 全IEX除鹽化學交換,需要酸鹼再生,其再生頻率大,酸鹼用量大,對周圍的水和大氣環境均有較大程度的影響
3 經濟效益 制水成本降低,通常該成本約2.5元/噸(含原水成本暫定1.0元/噸水,以及工資折扣等),該工藝的投資約在兩年內從節約酸鹼的費用中回收,緊急效益非常顯著。 IEX工藝的制水成本在5.0元/噸
4 工藝特點 RO對原水的含鹽量適應性強,由於對原水進行預除鹽97%,終端出水水質穩定,品質較好。
RO膜技術發展應用至今,生產工藝已非常成熟,進口RO膜元件可穩定運行5年以上 IEX運行周期受到原水含鹽量變化影響很大,為延長運行周期,往往需要增加大量的IEX設備。工藝佔地面積大,運行管理不方便。
5 其他內容 RO用水率約97%,即有25%的水量作為工藝耗水,但此水與IEX的酸鹼廢水有本質區別,此水只是含鹽量高,而水體外關與原水相同,可以作為反沖洗和鍋爐沖灰等用水。 IEX用水率約85-90%,工藝耗水基本是酸鹼廢水,無法利用
阻垢劑辨真偽:
1.選進口正牌產品,而且生產商可以通過網路等手段直接查詢.
2.確定銷售代理商的資質,要求提供進口時海關原產地證明.
3.要求提供例如UL等認證的網上查詢方法.
4.向生產商索要包裝標准或電子照片,以供對照.
5.注意外包裝,進口產品包裝較精緻,有產地識別標志(一般為國旗),有運輸使用時警示標志,有產品說明標簽,有體積重量生產批號.有三角形UL認證標記及查詢編號(以上標簽均滿足工業防水防腐蝕覆膜包裝要求),包裝桶材質優良,桶壁較厚,有防盜拉環(一般為雙層),拉環上及桶面上有拉環及桶的配套生產商標記(有時在桶蓋的反面).
6.為節約運輸成本,進口產品一般採用濃縮液進口,較為可信.
不知道是不是你想要的答案,希望可以對你有些幫助
『陸』 污水廠進水COD濃度低造成什麼樣的影響
進水COD低,會造成系統微生物負荷低,污泥會加快老化和死亡,造成處理效率降低,出水COD會升高。
含有大量的有機物的水在通過除鹽系統時會污染離子交換樹脂,特別容易污染陰離子交換樹脂,使樹脂交換能力降低。有機物在經過預處理時(混凝、澄清和過濾),約可減少50%,但在除鹽系統中無法除去,故常通過補給水帶入鍋爐,使爐水pH值降低。有時有機物還可能帶入蒸汽系統和凝結水中,使pH降低,造成系統腐蝕。
在循環水系統中有機物含量高會促進微生物繁殖。因此,不管對除鹽、爐水或循環水系統,COD都是越低越好,但並沒有統一的限制指標。在循環冷卻水系統中COD(K2MnO4法)>5mg/L時,水質已開始變差。
管道沉積對污水處理廠進水COD質量濃度產生一定影響。如果污水管道坡降小,在施時沒有嚴格控制高程,造成返坡現象,污水在管道流速偏低甚至長期積水,加之污水管道很長,污水中小顆粒將會在管道內存在一定程度的沉積,顆粒在沉積過程中會攜帶較多有機污染物質沉澱。
導致通過管網進人污水處理廠的多是污水的上清液,這也是污水處理廠進水COD質量濃度偏低的原因之一。每次大雨初期雖有大量雨水進入污水管道,如果進水水質不降反升,這就表明管道的沉積效果對進水COD質量濃度產生了較大影響。
『柒』 用離子交換法能降低廢水COD嗎
應該能把。工業有機廢水的來源很廣,也極其復雜,不同原料、不同工藝所排放的廢水成分差異很大.高濃度有機廢水一般是指COD在2000mg/L以上的有機廢水.由於其對環境水體的污染程度大,而且處理難度較大,是國內外環保研究領域中的難題之一,因此它的凈化處理越來越受到人們的關注.高濃度有機廢水處理技術與其它廢水處理技術一樣,按作用原理大致分4類:物理法、化學法、物理化學法和生物法.對於高濃度有機廢水的治理,不能只用1種處理方法,往往要採用多種方法進行綜合處理才能達到預期的處理效果.自20世紀70年代以來,隨著離子交換技術的不斷發展,以及大孔吸附樹脂的應運而生,使樹脂在廢水處理領域的應用范圍變廣。
『捌』 工業排放對水資源的影響
鉻(Cr)
鉻是一種具有銀白色光澤的金屬,無毒,化學性質很穩定,不銹鋼中便含有12%以上的鉻。常見的鉻化合物有六價的鉻酐、重鉻酸鉀、重鉻酸鈉、鉻酸鉀、鉻酸鈉等;三價的三氧化二鉻(鉻綠、Cr2O3);二價的氧化亞鉻。鉻的化合物中以六價鉻毒性最強,三價鉻次之。據研究表明,鉻是哺乳動物生命與健康所需的微量元素。缺乏鉻可引起動脈粥樣硬化。成人每天需500-700微克鉻,而在一般伙食中每天僅能提供50-100微克。紅糖全谷類糙米、未精製的油、小米、胡蘿卜、豌豆含鉻較高。鉻對植物生長有刺激作用,微量鉻可提高植物收獲量;但濃度稍高,又可抑制土壤內有機物質的硝化作用。鉻酸、重鉻酸及其鹽類對人的粘模及皮膚有刺激和灼燒作用、並導致傷、接觸性皮炎。這些化合物以蒸氣或粉塵方式進入人體,均會引中鼻中隔穿孔、腸胃疾患、白血球下降、類似哮喘的肺部病變。皮膚接觸鉻化物,可引起癒合極慢的「鉻瘡」,當空氣中鉻酸酐的濃度達0.15~0.31毫克/立方米時就可使鼻中隔穿孔。三價鉻還是一種蛋白凝聚劑。有人認為,六價鉻可誘發肺癌。此外,六價鉻,特別是鉻酸對下水系統金屬管道有強文化館作用,濃度2為0.31mg/l的重鉻酸鈉即可腐蝕管道。含3.4-17.3mg/l的三價鉻廢水灌田,就能使所有植物中毒。
鉻的污染主要由工業引起。鉻的開采、冶煉、鉻鹽的製造、電鍍、金屬加工、製革、油漆、顏料、印染工業,都會有鉻化合物排出。如製革工業通常處理一噸原皮,要排郵含鉻410mg/l的廢水50-60噸;若每天處理原皮十噸,則年排鉻72-86噸。
防治鉻的污染要從改革工藝和綜合利用多考慮,如電鍍的鉻霧回收、低鉻鍍鉻;鉻渣制鑄石、青磚和鉻木質素;鍍鉻廢水回收氫氧化鉻再經錦綠等等。
■ 汞(Hg)
汞即水銀,是一種液體金屬。比重13.6,熔點-39.3℃、沸點357℃。汞在常溫下即可蒸發,其蒸氣無色無味,比空氣重七倍。汞及其化合物毒性都很大,特別是汞的有機化合物毒性更大。魚在含汞量0.01-0.02毫克/升的水中生活就會中毒;人若食用0.1克汞就會中毒致死。汞及其化合物可通過呼吸道、皮膚或消化道等不同途徑侵入人體。當汞進入人體後,即集聚於肝、腎、大腦、心臟和骨髓等部位,造成神經性中毒和深部組織病變,引起疲倦,頭暈、顫抖、牙齦出血、禿發、手腳麻痹、神經衰弱等症狀,甚至會出現精神混亂,進而瘋狂痙攣致死。有機汞還能進入胎盤,使胎兒先天性汞中毒,或畸形,或痴呆。汞的毒性是積累性的,往往要幾年或十幾年才能反應出來。食物鏈對汞有相當大的富集能力。如淡水魚和浮游植物對汞的富集倍數為一千,淡水無脊椎動物為十萬,海洋植物為一百,海洋動物為二十萬。
汞有著廣泛的用途,如氣壓表、壓力計、溫度計、汞真空泵、日光燈、整流器、水銀法制燒鹼、汞觸媒、升汞消毒劑(千分之一的氯化亞汞作外科器械消毒劑)、雷汞(雷酸汞、炸葯起爆劑)、顏料(如硃砂、辰砂即硫化汞紅色顏料、印泥)、農葯(如西力生、賽力散)等等都要用到汞。汞的污染也來自這些方面。在有色金屬冶煉時也會因礦石含汞(如硫化汞)而帶來嚴重的汞污染。問題有機合成工業中的含汞觸媒(如以活性炭為載體的氯化亞汞觸媒)廢棄物也會給環境來污染問題。
人們已研究了各種對付汞污染的辦法。如以隔膜電解槽制燒鹼,有色冶金中採用多硫化鹼回收汞、以無汞差壓計代替水銀差壓計,等等。含汞廢水也可以化學沉澱法、活性炭吸附法、汞齊提取法等等處理。但必須指出,任何方法除汞、都只能改變其存在形態和轉移其存在位置,而其固有毒性並未消除,因此還要與汞的回收利用相結合。在制汞或使用汞的工廠中,常常定期用碘熏蒸,以生成碘化汞,消除汞患。
■ 氯(Cl2)
氯是一種具有強刺激性的黃綠色氣體,比空氣重2.43倍,易溶於水(水氯體積比為1:2.5),易為活性炭所吸收。常溫及六個大氣上液化為液氯,比重為水的1.56倍。氯的用途相當廣泛,多用於自水消毒,紙漿漂白,制溴、漂白粉(次氯酸鈣),六六六,橡膠,油墨顏料,油脂,聚氯乙烯和鹽酸、農葯,等等。冶金工業的氯化處理、氯鹼工業等也有大量氯氣排出。如每生產一噸液氯,隔膜電解法會有9.45公斤、水銀電解法有18-72.5公斤氯排出。
人們胃中含有千分之五的鹽酸,以幫助消化、殺死病菌。氯是很活潑的元素,幾乎能與一切普通金屬以及碳、氮、氧以外的所有非金屬直接化合(在無水情況下不與鐵作用,故用鋼瓶裝液氯)。大氣中低濃度的氯(氯化氫)能刺激眼、鼻、喉;空氣中含有萬分之一的氯就會嚴重影響人的健康。人體吸入氯氣會使呼吸道和皮膚粘膜中毒。輕度中毒時有灼燒、壓迫感,喉炎發癢,呼吸困難,眼刺痛流淚。高濃度的氯氣(氯化氫)會引起人慢性中毒,產生鼻炎、支氣管炎、肺氣腫等,有的還會過敏,出現皮炎、濕疹等。氯揮發性極強,空氣中的水蒸汽即可與之反應生成鹽酸霧及次氯酸,而於所到之處腐蝕物品、危害人體和動植物。所以,生產和使用氯的地方要嚴格管理,改進工藝設備,防止跑冒滴漏並大搞氯的綜合利用。對於含氯廢氣,在濃度超過1%時,可以四氯化碳或一氯化硫等作為吸收劑吸收濃縮後解吸予以回收;稀濃度的氯可用水、鹼液和亞鐵化合物等吸收處理,但要注意二次污染問題。
■ 酚
酚類化合物種類繁多,有苯酚、甲酚、氨基酚、硝基酚、萘酚、氯酚等,而以苯酚、甲酚污染最突出。苯酚簡稱酚,又名石炭酸,微酸性(腐蝕性),常溫下能揮發,放出一種特殊的刺激性臭味,在空氣中變粉紅色。醫院常用的「來蘇水」消毒劑便是苯酚鈉鹽的稀溶液。甲酚又稱煤酚,與苯酚的化學活性及毒性類似,也經常同時存在。酚類按其芳環上所直接連接的羥基數目的不同,可分為一元酚和多元酚;按其揮發性又可分為揮發酚與不揮發酚。一元酚多具有揮發性(沸點在230℃以內)。
酚類化合物是一種原型質毒物,對一切生活個體都有毒殺作用。能使蛋白質凝固,所以有強烈的殺菌作用。其水溶液很易通過皮膚引起全身中毒;其蒸氣由呼吸道吸入,對神經系統損害更大。長期吸入代濃度酚蒸汽或酚污染了的水可引起慢性積累性中毒;吸入高濃度酚蒸或酚液或大量酚液濺到皮膚上可引起急性中毒。如不及時搶救,可在三到八小時內因神經中樞麻痹而。殘廢慢性酚中毒常見有嘔吐,腹瀉、食慾不振、頭暈、貧血和各種神經系病症。酚對水產和不生微生物、農作物都有一定的毒害。水中含酚0.1~0.2毫克/升時,魚肉即有臭味有能食用;6.5~9.3毫克/升時,能破壞魚的鰓和咽,使其腹腔出血、脾腫大甚至死亡。含酚濃度高於100毫克/升的廢水直接灌田,會引起農作物枯死和減產。人對酚的口服致死量為530毫克/公斤體重。
苯酚的製造、煉焦、煉油、冶金、塑料、化纖、絕緣材料、酚醛樹脂、制葯、炸葯、農葯等等工業都會有較高濃度的含酚廢水。例如,每生產一噸焦炭,就可產生0.2~0.3立方米的含酚廢水。
解決含酚廢水的途徑,一是改革工藝,降低廢水含酚濃度,或循環用水以減少廢不量並提高廢水中含酚濃度,便於回收;二是回收利用和處理,主要方法有:萃取、吸附、蒸汽吹脫、離子交換、化學沉澱、化學氧化、反滲透、生化處理等。一般說來,含酚濃度在1000毫克/升以上的廢水應先考慮酚的回收,再加破壞處理以達無害排放。含酚濃度低於此濃度以下,則要進行無害處理。
■ 氰化物
氰化物有氰、氫氰酸、氰化鈉、氰化鉀、氰化銨和腈類,均有劇毒!無機氰化遇酸即入出氫氰酸。氫氰酸比重為0.687,具苦杏仁臭味、無色透明液體,熔點-14℃,沸點25.6℃,極易揮發。氰化物侵入人體或接觸它們(特別是通過皮膚傷口),均能引起中毒。輕者頭痛、眩暈、呼吸困難,重者昏、戲攣、血壓下降,甚至在二、三分鍾內無預兆而突然昏致死亡。氰化物中毒治癒者不可能有神經系統後遺症,如頭痛、麻痹、失語、顛癇等。氫氰酸對人的致死量為0.06克、氰化鈉為0.1克、氰化鉀為0.12克。氰化物對魚的毒害較大,當水中氰根含量為0.04~0.1ppm時,即可使魚致死。
含氰廢水、廢氣主要來自電鍍、焦化、冶金、選礦、化纖、制葯、有機玻璃、塑料、煤氣等工業部門。消除其危害的主要措施有:1、改革工藝。如電鍍的無氰或微氰化;選礦用無氰選礦。2、回收利用。如蒸發濃縮、離子交換、酸性揮發等方法回收氰化物3、廢水處理。主要有是電解、氧化、吹脫與吸收、生化、化學處理等,破壞氰根。如向廢不中投放液氯、次氯酸鈉或漂白粉等,使氰轉化為二氧化碳和氮。一般含氰濃度小於20毫克/升時可用活性污泥曝氣池,20~40毫克/升時用生物濾池,等等。
■ 鎘(Cd)
鎘是一種毒性很大的重金屬,其化合物也大都屬毒性物質。鎘用途很廣,鎘鹽、鎘蒸燈、顏料、煙霧彈、合金、電鍍、焊葯、標准電池、冶金去氧劑、原子反應堆的中子收棒等,都要用到鎘。如顏料鎘紅即為硫化鎘、硒化鎘和硫酸鋇組成;鎘黃為硫化鎘與硫酸鋇組成。鎘在自然界中相當稀少,常伴生於硫化鉛、鋅礦特別是閃鋅礦(ZnS)之中。金屬礦的開采和冶煉、電鍍、顏料等是鎘的主要人為污染源。粗磷肥中含鎘可達100毫克/公斤、普鈣含鎘可達50~170毫克/公斤;汽車廢氣中也有鎘。資料表明,交通頻繁的公路兩旁土壤和草的含鎘量,近處明顯高於遠處。煙草中也含有一定量的鎘。
震驚世界的日本「痛痛痛」就是因鎘污染而致。含鎘的礦山廢水污染了河水及河兩岸的土壤、糧食、牧草、通過食物鏈進入人體而慢慢積累,在腎臟和骨骼中。會取代骨中鈣,使骨骼嚴重軟化,骨頭寸斷;鎘會引起胃臟功能失調,干擾人體和生物體內鋅的酶系統,使鋅鎘比降低,而導致高血壓症上升。鎘毒性是潛在性的。即使飲用水中鎘濃度低至0.1毫克/升,也能在人體(特別是婦女)組織中積聚,潛伏期可長達十至三十年,且早期不易覺察。資料表明,人體內鎘的生物學半衰期為20~40年。鎘對人體組織和器官的毒害是多方面的,且治療極為困難。因此,各國對工業排放「三廢」中的鎘都作了極嚴格的規定。日本還規定,大米含鎘超過1毫克/公斤即為「鎘米」,禁止食用。日本環境廳規定0.3ppm為大米中鎘濃度的最高正常含量。
由於鎘化合物具有程度不同的毒性,用任何方法從廢水中除鎘,只能改變其存在任何方法從廢水中除隔,只能改變其存在方式和轉移其存在的位置,並不能消除其毒性。因此,鎘廢水的處理應盡量與回收利用結合
■ 砷(As)
砷及砷的可溶性化合物者極毒。如砒霜(白砒)就是三氧化二砷。自然界中主要以化合物形態存在,間或成單質存在,有硫砷鐵礦(FeAsS)、雄黃(As2S2)、雌黃(As2S3)。不少有色金屬礦石中含有砷化物,所以在有色金屬冶煉過程中(如礦石培燒),均有砷化物(如白砒)排出。煤中含砷平均可達25毫克/公斤,故煤的燃燒可使周圍空氣的砷濃度達0.02微克/立方米。砷化物多用於製造硬質合金(如鉛彈中加35%的砷)、砷酸鹽葯物、殺蟲劑、殺鼠劑(一般為砷酸、亞砷酸鹽類)、玻璃工業脫色劑、毛皮工業的脫毛劑和防腐劑。所以冶金、硫酸、化肥、皮革、農葯等工業均有砷污染。問題砷可以通過呼吸、皮膚接觸、飲食等途徑進入人體。砷能與蛋白質和酶中的巰基結合,抑制體內很多生化過程,特別是與丙酮酸氧化酶的巰基結合,使其失去活性,引起細胞代謝的嚴重紊亂。砷對人的中毒劑量為0.01~0.052克,致死量為0.06~0.2克。砷的急性中毒症狀是:咽喉、食道及胃腸燒灼感,腹瀉、腹痛、頭痛、惡心、嘔吐、口喝、面部發紺、血壓迅速降低,病情嚴重時可迅速死亡。砷中毒作用也是積累性的,能蓄積於骨質疏鬆部、腎、肝、脾、肌肉和角化組織(如頭發、皮膚及指甲)。近年來還發現,與含砷物質經常接觸的工人中,皮膚癌和肺癌的發病率錠高於其他行業;而皮膚潰瘍、鼻中隔穿孔更為常見。
含砷廢氣應嚴格消煙除塵措施,在煙道中予以回收。含砷廢一般用投加石灰、硫酸亞鐵和液氯(或漂白粉),將砷沉澱,然後對廢渣進行處理。各種方法從飲用水中除砷的效率,石灰軟化法可除去85%,木炭過濾為70%,硫化鐵濾床94%,硫酸鐵凝結80%以上,氯化鐵凝結98%以上,氫氧化鐵沉澱法94~96%。如人畜誤食砷中毒,可以氧化鎂與硫酸亞鐵溶液強烈攪動生成的新鮮氫氧化鐵懸浮液服用來解毒。
■ 煙塵
除工業過程產生的粉塵外,煙塵主要是燃料燃燒的產物。工業用煤排煙量大致是燃燒的重量的3~18%,褐煤為11%,無煙煤為8~9%。同樣一噸煤,居民用比工業用所產生的粉塵要多2~3倍。煙塵一般含硫、氮、碳的氧化物等有毒氣體和粉塵。粉塵顆粒大於十策米的,很快會沉降到地面,稱為落塵;顆粒小於十微米的稱為飄塵,其中相當大一部分比細菌還小,可以幾小時,甚至幾天,幾年地飄浮在大氣中,尤其是直徑在0.5~5微米的飄塵,不能為人的鼻毛所阻滯和呼吸道粘液所排除,可直接到達肺泡,被血液帶到全身。有的飄塵還附有苯並(a)芘或本身就是一些有毒的金屬(如鉻、鈹、鎳)化合物、石棉、砷化物等,可以致癌。細小的飄塵隨呼吸道進入人體後將有一半粘附在肺部細胞上,是構成人類和動植物呼吸道疾病的重要原因。煙塵還能削弱日光和能見度,吸收日光中對人體有紫外部分,而使兒童的佝僂病增多。
防治煙塵污染措施主要有:1、改變燃料構成和燃燒方式。如用無污染或少污染的燃料(天然氣、煤氣、石油煉廠氣或其他日光、沼氣、風、潮汐等能源)代替煤炭;現有爐窯實行技術改革。2、區域集中供熱,大的燃煤電站實行熱電並供,以集中的高效鍋爐代替分散的低效鍋爐;3、採用各種煙塵消煙除塵方式。等等。
■ 粉煤灰
從燃煤鍋爐煙囪收集下來的煙灰稱為粉煤灰。許多火電廠將粉煤灰與鍋爐底部的沉渣(爐渣)一起排出,即粉煤灰渣。我國火電站每年排放的粉煤灰渣有近四千萬噸,是一個重要的污染源。它不僅佔用大量土地堆積,還常排放江河,使河道淤塞,河水變質。煤灰渣主要成份為硅酸鹽、鋁硅酸鹽、氧化硅、硫酸鹽等,含鐵也相當高。它本身沒有水硬膠凝性,但經磨細後,在有水份的條件下,能與石灰等起化學反應生成水硬膠凝性的化合物,因此粉煤灰用途極廣,主要用以製作建材。不少西方國家都反灰渣資源再技術作為國策的一環,美國更把灰渣列為礦產資源中的第七位,在1978年已有24.1%(約1641萬噸)作為商品銷售。我國最近也制定了粉煤灰水泥的國家標准,將其列為正式產品。粉煤灰還可用於水泥的活性混合材,混凝土的摻合料、燒結粉煤灰陶粒(人造骨料)、砌築水泥(砂漿水泥)、填築和築路材料。粉煤灰的綜合利用,需要電力、建材、建工、環保各部門統一認識,建設起我國的粉煤灰渣利用工業,從發展燃煤電站的除塵技術、干排灰技術到廢料資源化、資源產品化、產品系列化等方面著手,解決粉煤灰的污染與利用問題。
■ 硫鐵礦渣
又稱燒渣,是生產硫酸過程中,焙燒硫鐵礦時產生的。一般每生產一萬噸硫酸可產生約七千噸硫鐵礦渣。由於燒渣中還有殘硫,故排放水體,將使其嚴重酸化,腐蝕橋梁、船舶。
燒渣含鐵量一般為百分之四十至四十五,經磁選、重選後,可提高至百分之五十到六十(同時脫硫),是很好的煉鐵原料,每一萬噸硫鐵礦渣可選出四千噸左右的煉鐵原料,選余物還可供水泥廠用,此外,燒渣中還有不少有價金屬,應考慮綜合利用問題。目前我省燒渣除部分供水泥廠外,大部分未處理,值得注意。
■ 鋼渣、高爐渣
每生產一噸生鐵要排出0.75噸高爐渣(國外由於高斷的改進和大型化、礦石品位提高,已降到0.3噸);每生產一噸鋼,要排出0.25噸鋼渣。高爐渣化學成份接近水泥的化學成份,活性比較穩定,抗磨、水化、吸水性能好,水淬工藝成熟,易於加工,回收利用合算。目前我國對高爐渣的利用率達百分之六十。而鋼渣質硬、塊大、不易破碎,水淬技術不很成熟,利用較難。高爐渣一般用於制礦渣水泥、礦渣磷肥、鑄石、礦渣纖維、微晶玻璃等。鹼性煉鐵爐(如托馬斯爐)的鋼渣經水淬後渣中鋼形成小粒,可經磁選回收。選余渣再制磷肥和水泥(其成本僅為普通水泥一半)。鋼渣磷肥含磷及多種微量元素,適用於酸性土壤,能改良土壤,又可作飲料添加劑,其有效五氧化二磷為14~18%。國外對鋼渣利用著重研究爐前水淬,使其先行粒化;或採用大面積分層鋪渣破法(熱潑法)。一般將鋼渣返回燒結礦或直接回高爐代石灰石作助溶劑。
■ 放射性物質
某些元素的不穩定原子核進行蛻變,放出甲(a)、乙(β)、丙()等射線,(能量的形式),而自己變成一種新原子,這種不穩定我的元素稱為放射性元素,有天然的(如錒、釷、鈾等)和人工的(鈈、鋦、鍆等)之分。含放射性元素的物質即放射性物質它,在工、農、醫、國防各方面均有著極重要價值。但它通過空氣、飲食等途徑進入人體,以體內或體外照射方式危害人體健康。人體受放射性危害,輕者頭暈、疲乏、脫發、紅斑、白血球減少或增多、血小板減少;而大劑量照射,還會引起白血病及骨、肺、甲狀腺癌變甚至死亡,放射性還能引起基因突變和染色體畸變。不同射線對人的危害也有差別,如σ一粒子的放射性物質將引起所接觸到的組織的高深度放射性危害;而-射線主要是外部輻射引起危害;β-射線穿透能力介於二者之間,既能引起外部輻射性燒作和皮膚惡化,又能透過外層組織引起體內放射性損傷。
『玖』 試述工業廢水水質對離子交換的影響
工業廢水不能直接進離子交換設備,一般也不進行離子交換。
實在需要,應先生化處理 預處理等等,