❶ 用膜分離技術如何處理重金屬廢水
膜抄分離技術迅速崛起的一門分離新技術。兼有分離、濃縮、純化和精製的功能,又有高效、節能、環保、分子級過濾及過濾過程簡單、易於控制等特徵,因此,已廣泛應用於食品、醫葯、生物、環保、化工、冶金、能源、石油、水處理、電子、仿生等領域。膜分離技術能夠開發出可實現有效脫除天然提取物中的重金屬和農葯殘留並且技術應用方便、設備易操作和推廣,可大幅度降低生產成本和能耗的新型技術,為促進天然植物提取物行業及大健康產業發展做出重大貢獻。
❷ 膜分離法的主要特點
膜分離法的主要特點是無相變,能耗低,裝置規模根據處理量的要求可大可小回,而且設備答簡單,操作方便安全,啟動快,運行可靠性高,不污染環境,投資少,用途廣等優點。
*在常溫和低壓下進行分離與濃縮,因而能耗低,從而使設備的運行費用低。
*設備體積小、結構簡單,故投資費用低。
*膜分離過程只是簡單的加壓輸送液體,工藝流程簡單,易於操作管理。
*膜作為過濾介質是由高分子材料製成的均勻連續體,純物理方法過濾,物質在分離過程中不發生質的變化(即不影響物料的分子結構)。
高分子分離膜是用高分子材料製成的具有選擇性透過功能的半透性薄層物材料。主要有聚酸胺類,聚酸亞胺類,聚碸類,聚乙烯酸類,丙烯類衍生物聚合物及纖維素類等。但大多數高分子材料均存在PO2和αO2/N2相互制約的關系且不耐高溫、易腐蝕等缺點。聚碸是一種機械性能優良、耐熱性好、耐微生物降解、價廉易得的膜材料。由於以聚碸製成的膜具有膜薄、內層孔隙率高且微孔規則等特點, 因而常作為氣體分離膜的基本材料。
❸ 膜分離法的膜分離:
⑴膜:能夠把流體相分隔為互不相通的兩部分,這兩部分之間能存在「傳質」的薄的物質。⑵膜的特徵:一是無論厚度多少都必須有兩個界面,兩個界面分別與兩側流體相接觸,二是要具有選擇透過性,可允許一側流體中一種或幾種物質通過,而不允許其他物質通過。⑶膜分離:利用膜的選擇透過性能將離子或分子或某些微粒從水中分離出來的過程。用膜分離溶液時,使溶質通過膜的方法稱為滲析,使溶劑通過膜的方法稱為滲透。⑷膜分離的特點:⑸根據溶質或溶劑透過膜的推動力和膜種類不同,水處理中膜分離法通常可以分為:電滲析、反滲透、超濾、微濾。膜分離法是利用特殊結構的薄膜對廢水中的某些成分進行選擇性透過的一類方法的總稱。水過膜的過程稱為滲透,水中溶質透過膜的過程成為滲析。常用於廢水處理的膜分離方法有電滲析(ED)、反滲透(R0)、微濾(MF)、超濾(UF)、納濾(NF)等,這些分離方法的基本特陛對比見表5—8。與常規分離技術相比,膜分離過程具有無相變、能耗低、工藝簡單、不污染環境、易於實現自動化等優點,可以在常溫下進行。在廢水處理領域,常被用做污水回用前的一種水質深度處理工藝,其中電滲析和反滲透有時也被用做高含鹽廢水或含金屬離子廢水進生物法處理系統前的預處理。氣體膜分離技術是20世紀70年代開發成功的新一代氣體分離技術,其原理是在壓力驅動下,藉助氣體中各組分在高分子膜表面上的吸附能力以及在膜內溶解-擴散上的差異,即滲透速率差來進行分離的。現已成為比較成熟的工藝技術,並廣泛用於許多氣體的分離,提濃工藝。工業發達國家稱之為「資源的創造性技術」,目前主要有兩種工藝流程,即正壓法和負壓法,前者適用於氧氮同時應用或對氧濃度要求較高的場合。早在80年代初,許多發達國家都投入了大量人力物力來研究膜法富氧技術,特別是日本,其通產省就資助了旭硝子等7家公司和研究所參加「膜法富氧燃燒技術研究組」。由於能源緊張,日本先後有近20家推出膜法富氧裝置。膜法的主要特點是無相變,能耗低,裝置規模根據處理量的要求可大可小,而且設備簡單,操作方便安全,啟動快,運行可靠性高,不污染環境,投資少,用途廣等優點。各種氣體分離方法的規模,經濟性,技術成熟程度,能耗和用途如下:高分子分離膜是用高分子材料製成的具有選擇性透過功能的半透性薄層物材料。主要有聚酸胺類,聚酸亞胺類,聚碸類,聚乙烯酸類,丙烯類衍生物聚合物及纖維素類等。但大多數高分子材料均存在PO2和αO2/N2相互制約的關系且不耐高溫、易腐蝕等缺點。聚碸是一種機械性能優良、耐熱性好、耐微生物降解、價廉易得的膜材料。由於以聚碸製成的膜具有膜薄、內層孔隙率高且微孔規則等特點,
因而常作為氣體分離膜的基本材料。
❹ 處理含鹽濃度較高的廢水時,採用膜分離法好還是離子交換法好
處理含鹽濃度較高的廢水時,採用膜分離法好還是離子交換法好
粘度低的採用膜分離法好極性強的是離子交換法好
❺ 廢水處理的膜分離法屬於物理法嗎
膜分離方法
通過近些年來的污水處理技術調查,污水處理中的物理處理技術回應用也比較廣泛,膜技術發展也答極為迅速,並且產生了很大的社會經濟效應和價值。膜分離法主要有以下特點:膜分離法是一種純物理的分離方法,不需要添加任何葯物;比較容易適應原水油分的濃度,不產生污泥等雜志,進水要求嚴格,處理過程需要壓力,用於分離污水的膜需要定時的殺菌處理。膜分離方法雖然有一定的缺陷,但這種方法能很好的去掉污水中的臭味和色度,並且能去除有機物、微生物和多種離子,使水質穩定可靠。
❻ 含重金屬廢水處理的主要技術有膜分離法嗎
有的。其中還主要包含溶劑萃取分離、離子交換法及吸附法。
溶劑萃取分離
溶劑萃取法是分離和凈化物質常用的方法。由於液液接觸,可連續 操作,分離效果較好。使用這種方法時,要選擇有較高選擇性的萃取
劑,廢水中重金屬一般以陽離子或陰離子形式存在,例如在酸性條件 下,與萃取劑發生絡合反應,從水相被萃取到有機相,然後在鹼性條
件下被反萃取到水相,使溶劑再生以循環利用。這就要求在萃取操作 時注意選擇水相酸度。盡管萃取法有較大優越性,然而溶劑在萃取過
程中的流失和再生過程中能源消耗大,使這種方法存在一定局限性, 應用受到很大的限制。
離子交換法
離子交換法是重金屬離子與離子交換劑進行交換,達到去除廢水中 重金屬離子的方法。常用的離子交換劑有陽離子交換樹脂、陰離子交
換樹脂、螯合樹脂等。幾年來,國內外學者就離子交換劑的研製開發 展開了大量的研究工作。隨著離子交換劑的不斷涌現,在電鍍廢水深
度處理、高價金屬鹽類的回收等方面,離子交換法越來越展現出其優 勢。離子交換法是一種重要的電鍍廢水治理方法,處理容量大,出水
水質好,可回收重金屬資源,對環境無二次污染,但離子交換劑易氧 化失效,再生頻繁,操作費用高。
膜分離技術
膜分離技術是利用一種特殊的半透膜,在外界壓力的作用下,不改 變溶液中化學形態的基礎上,將溶劑和溶質進行分離或濃縮的方法,
包括電滲析和隔膜電解。電滲析是在直流電場作用下,利用陰陽離子 交換膜對溶液陰陽離子選擇透過性使水溶液中重金屬離子與水分離 的一種物理化學過程。
隔膜電解是以膜隔開電解裝置的陽極和陰極而 進行電解的方法,實際上是把電滲析與電解組合起來的一種方法。上
述方法在運行中都遇到了電極極化、結垢和腐蝕等問題。
吸附法
吸附法是利用多孔性固態物質吸附去除水中重金屬離子的一種有效 方法。吸附法的關鍵技術是吸附劑的選擇,傳統吸附劑是活性炭。活
性炭有很強吸附能力,去除率高,但活性炭再生效率低,處理水質很 難達到回用要求,價格貴,應用受到限制。近年來,逐漸開發出有吸
附能力的多種吸附材料。有相關研究表明,殼聚糖及其衍生物是重金 屬離子的良好吸附劑,殼聚糖樹脂交聯後,可重復使用 10 次,吸附
容量沒有明顯降低。利用改性的海泡石治理重金屬廢水對 Pb2+、 Hg2+、Cd2+ 有很好的吸附能力,處理後廢水中重金屬含量顯著低於 污水綜合排放標准。
另有文獻報道蒙脫石也是一種性能良好的粘土礦 物吸附劑, 鋁鋯柱撐蒙脫石在酸性條件下對 Cr 6+的去除率達到 99%, 出水中 Cr
6+含量低於國家排放標准,具有實際應用前景。
❼ 廢水處理的基本方法有哪些
廢水中污染物多種多樣,從污染物形態分,有溶解性的、膠體狀的和懸浮狀的污染物。從化學性質分,有有機污染物和無機污染物。有機污染物從生物降解的難易程度又可分為可生物降解的有機物和不可生物降解的有機物。廢水處理即是利用各種技術措施將各種形態的污染物從廢水中分離出來,或將其分解、轉化為無害和穩定的物質,從而使廢水得以凈化的過程。根據所採用的技術措施的作用原理和去除對象,廢水處理方法可分為物理處理法、化學處理法和生物處理法三大類。
1.廢水的物理處理法廢水的物理處理法是利用物理作用來進行廢水處理的方法,主要用於分離去除廢水中不溶性的懸浮污染物。在處理過程中廢水的化學性質不發生改變。主要工藝有篩濾截留、重力分離(自然沉澱和上浮)、離心分離等,使用的處理設備和構築物有格柵和篩網、沉砂池和沉澱池、氣浮裝置、離心機、旋流分離器等。
(1)格柵與篩網格柵是由一組平行的金屬柵條製成的具有一定間隔的框架。將其斜置在廢水流經的渠道上,用於去除廢水中粗大的懸浮物和漂浮物,以防止後續處理構築物的管道閥門或水泵受到堵塞。篩網是由穿孔濾板或金屬網構成的過濾設備,用於去除較細小的懸浮物。
(2)沉澱法沉澱法的基本原理是利用重力作用使廢水中重於水的固體物質下沉,從而達到與廢水分離的目的。這種工藝處理效果好,並且簡單易行。因此,在廢水處理中應用廣泛,是一種重要的處理構築物。在廢水處理中,沉澱法主要應用於:①在沉砂池去除無機砂粒;②在初次沉澱池中去除重於水的懸浮狀有機物;③在二次沉澱池去除生物處理出的生物污泥;④在混凝工藝之後去除混凝形成的絮凝體;⑤在污泥濃縮池中分離污泥中的水分,濃縮污泥。
(3)氣浮法用於分離比重與水接近或比水小,靠自重難以沉澱的細微顆粒污染物。其基本原理是在廢水中通入空氣,產生大量的細小氣泡,並使其附著於細微顆粒污染物上,形成比重小於水的浮體,上浮至水面,從而達到使細微顆粒與廢水分離的目的。
(4)離心分離使含有懸浮物的廢水在設備中高速旋轉,由於懸浮物和廢水質量不同,所受的離心不同,從而可使懸浮物和廢水分離的方法。根據離心力的產生方式,離心分離設備可分為旋流分離器和離心機兩種類型。
2.廢水的化學處理法化學處理法是利用化學反應來分離、回收廢水中的污染物,或將其轉化為無害物質,主要工藝有中和、混凝、化學沉澱、氧化還原、吸附、離子交換等。
(1)中和法中和法是利用化學方法使酸性廢水或鹼性廢水中和達到中性的方法。在中和處理中,應盡量遵循「以廢治廢」的原則,優先考慮廢酸或廢鹼的使用,或酸性廢水與鹼性廢水直接中和的可能性。其次才考慮採用葯劑(中和劑)進行中和處理。
(2)混凝法混凝法是通過向廢水中投入一定量的混凝劑,使廢水中難以自然沉澱的膠體狀污染物和一部分細小懸浮物經脫穩、凝聚、架橋等反應過程,形成具有一定大小的絮凝體,在後續沉澱池中沉澱分離,從而使膠體狀污染物得以與廢水分離的方法。通過混凝,能夠降低廢水的濁度、色度,去除高分子物質,呈懸浮狀或膠體狀的有機污染物和某些重金屬物質。
(3)化學沉澱法化學沉澱法是通過向廢水中投入某種化學葯劑,使之與廢水中的某些溶解性污染物質發生反應,形成難溶鹽沉澱下來,從而降低水中溶解性污染物濃度的方法。化學沉澱法一般用於含重金屬工業廢水的處理。根據使用的沉澱劑的不同和生成的難溶鹽的種類,化學沉澱法可分為氫氧化物沉澱法、硫化物沉澱法和鋇鹽沉澱法。
(4)氧化還原法氧化還原法是利用溶解在廢水中的有毒有害物質在氧化還原反應中能被氧化或還原的性質,把它們轉變為無毒無害物質的方法。廢水處理使用的氧化劑有臭氧、氯氣、次氯酸鈉等,還原劑有鐵、鋅、亞硫酸氫鈉等。
(5)吸附法吸附法是採用多孔性的固體吸附劑,利用同一液相界面上的物質傳遞,使廢水中的污染物轉移到固體吸附劑上,從而使之從廢水中分離去除的方法。具有吸附能力的多孔固體物質稱為吸附劑。根據吸附劑表面吸附力的不同,可分為物理吸附、化學吸附和離子交換性吸附。在廢水處理中所發生的吸附過程往往是幾種吸附作用的綜合表現。廢水中常用的吸附劑有活性炭、磺化煤、沸石等。
(6)離子交換法離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換水處理法是利用離子交換劑對物質的選擇性交換能力去除水和廢水中的雜質和有害物質的方法。
(7)膜分離可使溶液中一種或幾種成分不能透過,而其他成分能透過的膜,稱為半透膜。膜分離是利用特殊的半透膜的選擇性透過作用,將廢水中的顆粒、分子或離子與水分離的方法,包括電滲析、擴散滲析、微過濾、超過濾和反滲透。
3.廢水的生物處理法在自然界中,棲息著巨量的微生物。這些微生物具有氧化分解有機物並將其轉化成穩定無機物的能力。廢水的生物處理法就是利用微生物的這一功能,並採用一定的人工措施,營造有利於微生物生長、繁殖的環境,使微生物大量繁殖,以提高微生物氧化、分解有機物的能力,從而使廢水中的有機污染物得以凈化的方法。根據採用的微生物的呼吸特性,生物處理可分為好氧生物處理和厭氧生物處理兩大類。根據微生物的生長狀態,廢水生物處理法又可分為懸浮生長型(如活性污泥法)和附著生長型(生物膜法)。
(1)好氧生物處理法好氧生物處理是利用好氧微生物,在有氧環境下,將廢水中的有機物分解成二氧化碳和水。好氧生物處理效率高,使用廣泛,是廢水生物處理中的主要方法。好氧生物處理的工藝很多,包括活性污泥法、生物濾池、生物轉盤、生物接觸氧化等工藝。
(2)厭氧生物處理法厭氧生物處理是利用兼性厭氧菌和專性厭氧菌在無氧條件下降解有機污染物的處理技術,最終產物為甲烷、二氧化碳等。多用於有機污泥、高濃度有機工業廢水,如啤酒廢水、屠宰廠廢水等的處理,也可用於低濃度城市污水的處理。污泥厭氧處理構築物多採用消化池,最近20多年來,開發出了一系列新型高效的厭氧處理構築物,如升流式厭氧污泥床、厭氧流化床、厭氧濾池等。
(3)自然生物處理法自然生物處理法即利用在自然條件下生長、繁殖的微生物處理廢水的技術。主要特徵是工藝簡單,建設與運行費用都較低,但凈化功能易受到自然條件的制約。主要的處理技術有穩定塘和土地處理法。
4.廢水處理工藝流程由於廢水中污染物成分復雜,單一處理單元不可能去除廢水中全部污染物,常需要多個處理單元有機組合成適宜的處理工藝流程。確定廢水處理工藝的主要依據是所要達到的處理程度。而處理程度又主要取決於原廢水的性質、處理後廢水的出路以及接納處理後廢水水體的環境標准和自凈能力。
(1)城市廢水的一般處理工藝流程其主要任務是去除城市廢水中含有的懸浮物和溶解性有機物。一般處理工藝流程,根據不同的處理程度,可分為預處理、一級處理、二級處理和三級處理。
①預處理:主要工藝包括格柵、沉砂池,用於去除城市污水中的粗大懸浮物和比重大的無機砂粒,以保護後續處理設施正常運行並減輕負荷。
②一級處理:一級處理一般為物理處理,主要去除污水中的懸浮狀固體物質。懸浮物去除率為50%~70%,有機物去除率為25%左右,一般達不到排放標准。因此一級處理屬於二級處理的前處理。主要工藝為沉澱池。
③二級處理:二級處理為生物處理,用於大幅度去除污水中呈膠體或溶解性的有機物,有機物去除率可達90%以上,處理後出水BOD可降至20~30毫克/升,達到國家規定的污水排放標准。主要工藝有活性污泥法、生物膜法等。
④三級處理:在二級處理之後,用於進一步去除殘存在廢水中的有機物和氮磷,以滿足更嚴格的廢水排放要求或回用要求。採用的工藝有生物除氮脫磷法,或混凝沉澱、過濾、吸附等一些物化方法。
(2)工業廢水的處理工藝流程由於工業廢水水質成分復雜,且隨行業、生產工藝流程、原料的變化而變化,故沒有通用的工藝流程。
❽ 常用幾種膜分離法污水處理方式
常用來的幾種膜分源離法污水處理方式:
一、超濾膜分離方法。根據分子的形狀和不同性質利用大氣壓力的作用,將其進行有效的篩選和分離。這項技術通過我國的多年研究和使用,除污效果顯著,能有效的對污水中的bing原體進行處理。因此超濾膜分離技術在我國各項污水處理中得到廣泛的使用。
二、納濾膜分離方法。在20世紀70年代的中後期形成的納濾膜分離技術就是在保證無機鹽分離時不受電勢和化學梯度的影響,通過(實際壓力小於或等於1。5MPa)的作用將直徑大約為1納米的分子進行有效的篩選和分離,從而達到污水處理的效果。
三、液膜分離方法。在20世紀60年代被提出一直到80年代中後期才被廣泛應用的液膜分離技術,分為乳狀液膜和支撐液膜,其中乳液液膜在污水處理技術中被廣泛應用。第四、膜生物反應器。就是原水在進入生物反應器與生物發生充分反應之後,利用循環泵,使水流經膜組件,水得到排放的同時生物相又重新流入生物反應器,該技術是通過把膜件與生物反應器進行結合而形成的一種新型去污技術。
❾ 廢水處理的基本方法是什麼
廢水中污染物多種多樣,從污染物形態分,有溶解性的、膠體狀的和懸浮狀的污染物。從化學性質分,有有機污染物和無機污染物。有機污染物從生物降解的難易程度又可分為可生物降解的有機物和不可生物降解的有機物。廢水處理即是利用各種技術措施將各種形態的污染物從廢水中分離出來,或將其分解、轉化為無害和穩定的物質,從而使廢水得以凈化的過程。根據所採用的技術措施的作用原理和去除對象,廢水處理方法可分為物理處理法、化學處理法和生物處理法三大類。
(一)廢水的物理處理法
廢水的物理處理法是利用物理作用來進行廢水處理的方法,主要用於分離去除廢水中不溶性的懸浮污染物。在處理過程中廢水的化學性質不發生改變。主要工藝有篩濾截留、重力分離(自然沉澱和上浮)、離心分離等,使用的處理設備和構築物有格柵和篩網、沉砂池和沉澱池、氣浮裝置、離心機、旋流分離器等。
1.格柵與篩網
格柵是由一組平行的金屬柵條製成的具有一定間隔的框架。將其斜置在廢水流經的渠道上,用於去除廢水中粗大的懸浮物和漂浮物,以防止後續處理構築物的管道閥門或水泵受到堵塞。篩網是由穿孔濾板或金屬網構成的過濾設備,用於去除較細小的懸浮物。
2.沉澱法
沉澱法的基本原理是利用重力作用使廢水中重於水的固體物質下沉,從而達到與廢水分離的目的。這種工藝處理效果好,並且簡單易行。因此,在廢水處理中應用廣泛,是一種重要的處理構築物。在廢水處理中,沉澱法主要應用於:①在沉砂池去除無機砂粒;②在初次沉澱池中去除重於水的懸浮狀有機物;③在二次沉澱池去除生物處理出水中的生物污泥;④在混凝工藝之後去除混凝形成的絮凝體;⑤在污泥濃縮池中分離污泥中的水分,濃縮污泥。
3.氣浮法
用於分離比重與水接近或比水小,靠自重難以沉澱的細微顆粒污染物。其基本原理是在廢水中通入空氣,產生大量的細小氣泡,並使其附著於細微顆粒污染物上,形成比重小於水的浮體,上浮至水面,從而達到使細微顆粒與廢水分離的目的。
4.離心分離
使含有懸浮物的廢水在設備中高速旋轉,由於懸浮物和廢水質量不同,所受的離心不同,從而可使懸浮物和廢水分離的方法。根據離心力的產生方式,離心分離設備可分為旋流分離器和離心機兩種類型。
(二)廢水的化學處理法
化學處理法是利用化學反應來分離、回收廢水中的污染物,或將其轉化為無害物質,主要工藝有中和、混凝、化學沉澱、氧化還原、吸附、離子交換等。
1.中和法
中和法是利用化學方法使酸性廢水或鹼性廢水中和達到中性的方法。在中和處理中,應盡量遵循「以廢治廢」的原則,優先考慮廢酸或廢鹼的使用,或酸性廢水與鹼性廢水直接中和的可能性。其次才考慮採用葯劑(中和劑)進行中和處理。
2.混凝法
混凝法是通過向廢水中投入一定量的混凝劑,使廢水中難以自然沉澱的膠體狀污染物和一部分細小懸浮物經脫穩、凝聚、架橋等反應過程,形成具有一定大小的絮凝體,在後續沉澱池中沉澱分離,從而使膠體狀污染物得以與廢水分離的方法。通過混凝,能夠降低廢水的濁度、色度,去除高分子物質,呈懸浮狀或膠體狀的有機污染物和某些重金屬物質。
3.化學沉澱法
化學沉澱法是通過向廢水中投入某種化學葯劑,使之與廢水中的某些溶解性污染物質發生反應,形成難溶鹽沉澱下來,從而降低水中溶解性污染物濃度的方法。化學沉澱法一般用於含重金屬工業廢水的處理。根據使用的沉澱劑的不同和生成的難溶鹽的種類,化學沉澱法可分為氫氧化物沉澱法、硫化物沉澱法和鋇鹽沉澱法。
4.氧化還原法
氧化還原法是利用溶解在廢水中的有毒有害物質,在氧化還原反應中能被氧化或還原的性質,把它們轉變為無毒無害物質的方法。廢水處理使用的氧化劑有臭氧、氯氣、次氯酸鈉等,還原劑有鐵、鋅、亞硫酸氫鈉等。
5.吸附法
吸附法是採用多孔性的固體吸附劑,利用同一液相界面上的物質傳遞,使廢水中的污染物轉移到固體吸附劑上,從而使之從廢水中分離去除的方法。具有吸附能力的多孔固體物質稱為吸附劑。根據吸附劑表面吸附力的不同,可分為物理吸附、化學吸附和離子交換性吸附。在廢水處理中所發生的吸附過程往往是幾種吸附作用的綜合表現。廢水中常用的吸附劑有活性炭、磺化煤、沸石等。
6.離子交換法
離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換水處理法是利用離子交換劑對物質的選擇性交換能力去除水和廢水中的雜質和有害物質的方法。
7.膜分離
可使溶液中一種或幾種成分不能透過,而其他成分能透過的膜,稱為半透膜。膜分離是利用特殊的半透膜的選擇性透過作用,將廢水中的顆粒、分子或離子與水分離的方法,包括電滲析、擴散滲析、微過濾、超過濾和反滲透。
(三)廢水的生物處理法
在自然界中,棲息著巨量的微生物。這些微生物具有氧化分解有機物並將其轉化成穩定無機物的能力。廢水的生物處理法就是利用微生物的這一功能,並採用一定的人工措施,營造有利於微生物生長、繁殖的環境,使微生物大量繁殖,以提高微生物氧化、分解有機物的能力,從而使廢水中的有機污染物得以凈化的方法。根據採用的微生物的呼吸特性,生物處理可分為好氧生物處理和厭氧生物處理兩大類。根據微生物的生長狀態,廢水生物處理法又可分為懸浮生長型(如活性污泥法)和附著生長型(生物膜法)。
1.好氧生物處理法
好氧生物處理是利用好氧微生物,在有氧環境下,將廢水中的有機物分解成二氧化碳和水。好氧生物處理效率高,使用廣泛,是廢水生物處理中的主要方法。好氧生物處理的工藝很多,包括活性污泥法、生物濾池、生物轉盤、生物接觸氧化等工藝。
2.厭氧生物處理法
厭氧生物處理是利用兼性厭氧菌和專性厭氧菌在無氧條件下降解有機污染物的處理技術,最終產物為甲烷、二氧化碳等。多用於有機污泥、高濃度有機工業廢水,如啤酒廢水、屠宰廠廢水等的處理,也可用於低濃度城市污水的處理。污泥厭氧處理構築物多採用消化池,最近20多年來,開發出了一系列新型高效的厭氧處理構築物,如升流式厭氧污泥床、厭氧流化床、厭氧濾池等。
3.自然生物處理法
自然生物處理法即利用在自然條件下生長、繁殖的微生物處理廢水的技術。主要特徵是工藝簡單,建設與運行費用都較低,但凈化功能易受到自然條件的制約。主要的處理技術有穩定塘和土地處理法。
(四)廢水處理工藝流程
由於廢水中污染物成分復雜,單一處理單元不可能去除廢水中全部污染物,常需要多個處理單元有機組合成適宜的處理工藝流程。確定廢水處理工藝的主要依據是所要達到的處理程度。而處理程度又主要取決於原廢水的性質、處理後廢水的出路以及接納處理後廢水水體的環境標准和自凈能力。
1.城市廢水的一般處理工藝流程
其主要任務是去除城市廢水中含有的懸浮物和溶解性有機物。一般處理工藝流程,根據不同的處理程度,可分為預處理、一級處理、二級處理和三級處理。
(1)預處理:主要工藝包括格柵、沉砂池,用於去除城市污水中的粗大懸浮物和比重大的無機砂粒,以保護後續處理設施正常運行並減輕負荷。
(2)一級處理:一級處理一般為物理處理,主要去除污水中的懸浮狀固體物質。懸浮物去除率為50%~70%,有機物去除率為25%左右,一般達不到排放標准。因此一級處理屬於二級處理的前處理。主要工藝為沉澱池。
(3)二級處理:二級處理為生物處理,用於大幅度去除污水中呈膠體或溶解性的有機物,有機物去除率可達90%以上,處理後出水BOD可降至20~30毫克/升,達到國家規定的污水排放標准。主要工藝有活性污泥法、生物膜法等。
(4)三級處理:在二級處理之後,用於進一步去除殘存在廢水中的有機物和氮磷,以滿足更嚴格的廢水排放要求或回用要求。採用的工藝有生物除氮脫磷法,或混凝沉澱、過濾、吸附等一些物化方法。
2.工業廢水的處理工藝流程
由於工業廢水水質成分復雜,且隨行業、生產工藝流程、原料的變化而變化,故沒有通用的工藝流程。
❿ 膜分離法的介紹
膜分離法 ( Separation Membrane)氣體膜分離技術是20世紀70年代開發成功的新一代氣體分離技術,其原理是在壓力驅動下,藉助氣體中各組分在高分子膜表面上的吸附能力以及在膜內溶解-擴散上的差異,即滲透速率差來進行分離的。