① 生活污水處理排放達不到標准,總氮總磷都不達標,如何處理
用ABM工藝吧,是比較新的工藝,舊的MBR也行,不過效果沒這么好
② 城市生活垃圾污水處理廠 總氮值在300-500左右。
先提供教科書對此的說明。
污水中的氮,有四種形態,氨氮,有機氮,亞硝酸鹽氮,硝版酸鹽氮,四者合稱總權氮TN。
其中,氨氮與有機氮合稱為凱氏氮TKN,這是衡量污水進行生化處理時氮營養是否充足的依據。
在常規生活污水中,基本不含亞硝酸鹽氮和硝酸鹽氮,因此一般情況下,對於常規生活污水的TN=TKN=40mg/L,其中氨氮約25mg/L,有機氮約15mg/L,亞硝酸鹽氮,硝酸鹽氮可視為0。
在我們實際的污水處理廠設計的實踐中,發現各地污水總氮及氨氮差異較大,不過常規生活污水的總氮及氨氮大概是:
總氮:40-60ppm
氨氮:15-50ppm
一般的,如果氨氮數值與總氮很接近,說明該地污水在管網逗留時間較長,導致有機氮已經分解。
在沒有實測數據的情況下,教科書的數據可以作為參考。
③ 污水處理總氮超標怎麼辦
水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污染和自凈狀況。地表水中氮、磷物質超標時,微生物大量繁殖,浮游生物生長旺盛,出現富營養化狀態。
第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:
2NH3+3O2→HNO2+H2O+能量(亞硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。
第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:
2NH3+3O2→HNO2+H2O+能量(亞硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。
水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污
④ 生活污水和工業廢水中主要污染物(總氮、總磷、氨氮、COD 等)的濃度
評價標准執行《地表水環境標准》(GB3838-2002)III類標准,具體見表:地表水質量評價標准
(3) 評價方法內
採用單因子指數法進容行現狀評價。
①對於隨濃度減小而污染程度降低的評價因子,計算公式
式中:Si——污染物單因子指數;
Ci——i污染物的濃度值,mg/L;
Csi——i污染物的評價標准值,mg/L。
②pH值單因子指數的計算公式
>7.0
式中:SpHj——pH單因子指數;
pHj——j斷面pH值;
pHsd——地面水水質標准中規定的pH值下限;
pHsu——地面水水質標准中規定的pH值上限。
當被評價水質參數的標准指數>1時,表明該水質參數超過了規定的水質標准,已經不能滿足該項水質使用功能的要求。
只知道這么多了,
⑤ 生活污水處理氨氮總氮超標怎麼辦
其實說白了,總氮是包含氨氮的,看你的排放標准了,有總氮的話就算總氮,有氨氮就算氨氮,如果既有總氮也有氨氮要求,那就兩個都算,分開列就是了。
⑥ 生活污水中總氮的含量
先提供教科書對來此的說源明。
污水中的氮,有四種形態,氨氮,有機氮,亞硝酸鹽氮,硝酸鹽氮,四者合稱總氮TN。
其中,氨氮與有機氮合稱為凱氏氮TKN,這是衡量污水進行生化處理時氮營養是否充足的依據。
在常規生活污水中,基本不含亞硝酸鹽氮和硝酸鹽氮,因此一般情況下,對於常規生活污水的TN=TKN=40mg/L,其中氨氮約25mg/L,有機氮約15mg/L,亞硝酸鹽氮,硝酸鹽氮可視為0。
在我們實際的污水處理廠設計的實踐中,發現各地污水總氮及氨氮差異較大,不過常規生活污水的總氮及氨氮大概是:
總氮:40-60ppm
氨氮:15-50ppm
一般的,如果氨氮數值與總氮很接近,說明該地污水在管網逗留時間較長,導致有機氮已經分解。
在沒有實測數據的情況下,教科書的數據可以作為參考。
⑦ 生活污水總氮無法處理
你沒有缺氧,沒有硝化液迴流,當然總氮不會降,理論進出水總氮基本相等才對。回
可以在接觸氧化答前面加缺氧池。
接觸氧化工藝的脫氮,理論上的最佳條件為:HRT為10h左右,水溫為15℃以上,PH值為7.5,DO為2.5mg/l,進水COD濃度為400mg/L左右此條件下總氮的去除率可達到69%。廢水處理問題可到環.保.通探討,希望對你有幫助。建議調試的時候注意控制好這些條件。總之,生物膜內部溶解氧濃度梯度的存在是系統進行同步硝化反硝化的關鍵因素
⑧ 污水處理廠總氮高怎麼辦
我們在給某污水處理廠配套風機時,常遇到污水廠的總氮指標經過處理設施處理後的濃度總是達不到預期的處理效率的情況,現將我們掌握的總氮濃度偏高不下的原因歸納總結如下,希望能幫到您:
(1)污泥負荷與污泥齡。由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得而穩定的的反硝化。因此,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
(2)內、外迴流比。生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。相對來說,二沉池由於反硝化導致污泥上浮的危險性已很小。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。
(3)反硝化速率。反硝化速率系指單位活性污泥每天反硝化的硝酸鹽量。反硝化速率與溫度等因素有關,典型值為0.06~0.07gNO3- -N/gMLVSSd。
(4)缺氧區溶解氧。對反硝化來說,希望DO盡量低,是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。
(5)BOD5/TKN。因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。
(6)pH。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的有效pH范圍為6.5~8.0。
(7)溫度。反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至zui大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。因此,在冬季要保證脫氮效果,就必須增大SRT,提高污泥濃度或增加投運池數。
⑨ 污水處理廠總氮過低怎麼辦
污水的脫氮技術一般可以分為物理化學脫氮和生物脫氮兩種技術。其中生活污水處理廠常用的去除總氮的方法是後者。且生活污水處理廠去除總氮含量主要體現在去除水體氨氮的過程中。廢水生物處理中氮的轉化包括同化、氨化、硝化和反硝化作用。
1、同化作用:廢水生物處理中,一部分氮(氨氮或有機氮)被同化成微生物細胞的組分。按照細胞乾重來計算,微生物細胞中氮的含量約為12.5%。
2、氨化作用:有機氮化合物在氨化菌的作用下,分解、轉化為氨氮,這一過程成為氨化反應。以氨基酸為例,反應式如下:
RCHNH2COOH+O2→NH3+CO2+RCOOH
氨化菌為異養菌,一般氨化過程與微生物去除有機物同時進行,有機物去除結束時,已經完成氨化過程。
3、硝化作用:硝化左右是由硝化細菌經過兩個過程,將氨氮轉化為亞硝酸亞氮和硝酸鹽氮。
氨氮的細菌氧化過程為:
NH4++3/2O2→NO2-+H2O+2H+
亞硝酸氮的細菌氧化過程為:
NO2_+1/2O2→NO3_
總反應式:
NH4++2O2→NO3_ +H2O+2H+
4、反硝化作用:反硝化作用是在缺氧條件下。將亞硝酸氮和硝酸氮還原成氣態氮(N2)或N2O、NO。參與這一生化反應的是反硝化細菌,這類細菌在缺氧條件下,將硝酸根和亞硝酸根作為電子受體。
⑩ 污水處理後總氮偏高,如何解決
這個太正常了,進水總氮一般小於出水總氮,總氮包括NH3-N、NOx-N、凱氏氮。
1、進水中有凱氏氮。這玩意在水解酸化、厭氧、好氧段都能被氨化,如果後續有好氧,可以硝化成硝基氮,如果好氧段的溶解氧和鹼度或硝化菌等條件不行時,NH3沒被完全轉化。那出水NH3高正常。
2、葯劑影響。
這也是個不可忽略的問題,絮凝劑、硫酸、尿素投加量這幾個要重點看一下。廢酸和哪怕部分正酸里,我們都檢出過NH3-N,某些絮凝劑里也會有。
3、檢測干擾
NH3一般常用水楊酸法和納氏試劑法,可以去查一下排除干擾。水的色度也會有幾個氨氮的影響。
隨著國家環境保護力度的加大,國家和地方政府相繼出台一系列環保加嚴標准,要求企業嚴格按照排放標准執行,其中污水總氮排放需達到《城鎮污水處理廠污染物排放標准》(GB 18918—2002)一級A標准。
水體中的總氮處理是水污染控制行業關注的重點問題,因為總氮超標不僅會導致水體富營養化,如果硝態氮濃度過高,對人體健康有很大的威脅。
污水總氮超標的原因:
1. 內、外迴流比生物反硝化系統外迴流比較單純生物硝化系統要小。
2. 反硝化系統污泥沉速較快。缺氧區溶解氧DO過高。
3. 溫度調控不當,當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。
4. BOD5/TKN 因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。
5. 污泥負荷與污泥齡由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
污水總氮處理方法:
目前有採用離子交換、膜滲透、吸附以及生物脫氮的方法。
1. 污水處理廠常採用生物脫氮反應,通過控制各階段的工藝條件,使出水總氮達標。而反硝化反應階段是總氮處理的控制難點,因此要對生物脫氮反應機理充分了解,進行嚴格的條件控制。
2. 採用湛清環保富增集成裝備IDN-BMP系統脫氮,BMP 富增集成裝備是傳統活性污泥法的一種升級,解決了傳統生物脫氮法中反硝化反應難控制的難點。其原理是通過增加污泥濃度並改善流態,佐以功能強大的反硝化菌,最終達到高效反硝化,實現總氮處理。