㈠ 污水好氧微生物處理的基本原理
污水好氧微生物處理即硝化細菌降解氨氮的基本原理。
微生物氧化氨過程的化學表達
1)在好氧條件下:
①(NH4+)+2O2 → (NO2-)+2H2O
② 2(NO2-)+O2 → 2NO3-
2)在厭氧條件下:
③(NH4+)+(NO2-) → N2+2H2O
④ 5(NH4+)+3(NO3-)→ 4N2+9H2O+2H+
其中①②是由亞硝化細菌和硝化細菌分別完成,限制其反應的步驟是亞硝化細菌進行氨的氧化,其反應速率決定了整個總過程的速度。
㈡ 廢水厭氧生物處理的原理
在厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子有機物的厭氧過程的敘述,有助於我們了解這一過程的基本內容。
高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
(1)水解階段
水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在第一階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/L);
ρo———非溶解性底物的初始濃度(g/L);
Kh——水解常數(d^-1);
T——停留時間(d)
(2)發酵(或酸化)階段
發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
在這一階段,上述小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。
在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,並進一步引起酸化末端產物組成的改變。
(3)產乙酸階段
在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
其某些反應式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL
(4)甲烷階段
這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫氣等轉化為甲烷的過程有兩種生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3。
最主要的產甲烷過程反應有:
CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL
在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。
需要指出的是:一些書把厭氧消化過程分為三個階段,把第一、第二階段合成為一個階段,稱為水解酸化階段。在這里我們則認為分為四個階段能更清楚反應厭氧消化過程。
上述四個階段的反應速度依廢水的性質而異,在含纖維素、半纖維素、果膠和脂類等污染物為主的廢水中,水解易成為速度限制步驟;簡單的糖類、澱粉、氨基酸和一般蛋白質均能被微生物迅速分解,對含這類有機物的廢水,產甲烷易成為限速階段。雖然厭氧消化過程可分為以上四個過程,但是在厭氧反應器中,四個階段是同時進行的,並保持某種程度的動態平衡。該平衡一旦被pH值、溫度、有機負荷等外加因素所破壞,則首先將使產甲烷階段受到抑制,其結果會導致低級脂肪酸的積存和厭氧進程的異常變化,甚至導致整個消化過程停滯。
㈢ 簡答題:以傳統活性污泥法為例,說明廢水生物處理的基本原理
初次沉澱後的廢水與二沉池迴流的活性污泥混合後進入曝氣池,進水與迴流污泥通過擴散曝氣或機械曝氣作用進行混合,污水中的有機物被好氧細菌分解,從而被去除。
㈣ 水解-好氧處理工藝的基本原理
水解屬於厭氧生物處理,適用於高濃度廢水初步處理。
好氧屬於好氧生物處理,適用於低濃度污染廢水深度處理。
它們都是細菌利用污染物為食物進行生長,來消耗水中的污染物,使污水得以凈化。
㈤ 好氧生物處理與厭氧生物處理的基本原理是什麼
好氧生物處理復:
好氧微生制物(包括兼性微生物)在有氧氣存在的條件下進行生物代謝以降解有機物,使其穩定、無害化的處理方法。微生物利用水中存在的有機污染物為底物進行好氧代謝,經過一系列的生化反應,逐級釋放能量,最終以低能位的無機物穩定下來,達到無害化的要求,以便返回自然環境或進一步處理。另,在充足供氧條件下,好氧段自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-
,進而為厭氧異養菌提供NO3-。
厭氧生物處理:
缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),通過好氧段的迴流至厭氧段,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環。
實際運用中,A、O多是混合運用,A多在前。
㈥ 污水好氧微生物處理的原理
應用 好氧生物處理原理是一種在提供游離氧的前提下 以好氧微生物為主 使有機物降解 穩定的無害化處理方法 微生物以活性污泥和生物膜的形式存在 活性污泥 由細菌 原生動物等微生物與懸浮物質 膠體物質混雜在一起的絮狀體顆粒 生物膜 附著在填料上呈薄膜狀的活性污泥 活性污泥的主要特徵具有較強的吸附能力 10~30min 內吸附作用可以去除達85~90%的BOD 鐵 銅 鉛等金屬離子 約有30~90%能吸附去除 具有很強的分解 氧化有機物的能力 吸附的大分子有機物質在胞外酶的作用下 變成小分子可溶性物質 微生物的異化作用 微生物的同化作用 具有良好的沉降性能 具有絮狀結構 泥水分開 曝氣池 曝氣池出水堰 廢水好氧生物處理的優越性 效率高 物質遷移轉化效率高
㈦ 比較廢水厭氧生物處理與廢水好氧生物處理的原理,特點及適用條件
好氧生物處理
好氧生物處理是在有游離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。
過程:有機物被微生物攝取後,通過代謝活動,約有三分之一被分解、穩定,並提供其生理活動所需的能量;約有三分之二被轉化,合成為新的原生質(細胞質),即進行微生物自身生長繁殖。後者就是廢水生物處理中的活性污泥或生物膜的增長部分,通常稱其剩餘活性污泥或生物膜,又稱生物污泥。在廢水生物處理過程中,生物污泥經固—液分離後,需進行進一步處理和處置。
優點:好氧生物處理的反應速度較快,所需的反應時間較短,故處理構築物容積較小。且處理過程中散發的臭氣較少。所以,目前對中、低濃度的有機廢水,或者說BOD濃度小於500mg/L的有機廢水,基本上採用好氧生物處理法。
在廢水處理工程中,好氧生物處理法有活性污泥法和生物膜法兩大類。
厭氧生物處理是在沒有游離氧存在的條件下,兼性細菌與厭氧細菌降解和穩定有機物的生物處理方法。在厭氧生物處理過程中,復雜的有機化合物被降解、轉化為簡單的化合物,同時釋放能量。在這個過程中,有機物的轉化分為三部分進行:部分轉化為CH4,這是一種可燃氣體,可回收利用;還有部分被分解為 CO2、H20、NH3、H2S等無機物,並為細胞合成提供能量;少量有機物被轉化、合成為新的原生質的組成部分。由於僅少量有機物用於合成,故相對於好氧生物處理法,其污泥增長率小得多。
廢水厭氧生物處理
廢水厭氧生物處理過程不需另加氧源,故運行費用低。此外,它還具有剩餘污泥量少,可回收能量(CH4)等優點。其主要缺點是反應速度較慢,反應時間較長,處理構築物容積大等。但通過對新型構築物的研究開發,其容積可縮小。此外,為維持較高的反應速度,需維持較高的反應溫度,就要消耗能源。
對於有機污泥和高濃度有機廢水(一般B005≥2 000mg/L)可採用厭氧生物處理法。
㈧ 好氧生物處理廢水
傳統工藝好氧一般要與厭氧結合處理污水
廢水交替的進入厭氧段和好氧段,充分專利用屬缺氧生物和好氧生物的生物特點,使廢水得到凈化。廢水在好氧段時,廢水中含碳有機物(BOD5)被污泥中好氧微生物氧化分解;有機氮通過氨化作用和硝化作用,轉化為氧化態氮。在缺氧段中,活性污泥中的反硝化細菌利用氧化態氮和廢水中的含碳有機物進行反硝化作用,使化合態的氮轉化成分子態氮,獲得同時去碳和脫氮的效果。
現有清華出爐的新型工藝流化床就是通過好氧生物廢水處理
㈨ 廢水好氧生物處理方法有哪些
廢水生物處理方法有:
1,生物化學法
生物化學法指通過微生物處理含重金屬廢水,將可溶性離子轉化為不溶性化合物而去除。硫酸鹽生物還原法是一種典型生物化學法。該法是在厭氧條件下硫酸鹽還原菌通過異化的硫酸鹽還原作用,將硫酸鹽還原成H2S,廢水中的重金屬離子可以和所產生的H2S反應生成溶解度很低的金屬硫化物沉澱而被去除,同時H2SO4的還原作用可將SO42-轉化為S2-而使廢水的pH值升高。因許多重金屬離子氫氧化物的離子積很小而沉澱。有關研究表明,生物化學法處理含Cr 6+濃度為30—40mg/L的廢水去除率可達99.67%—99.97%[11]。有人還利用家畜糞便厭氧消化污泥進行礦山酸性廢水重金屬離子的處理,結果表明該方法能有效去除廢水中的重金屬。趙曉紅等人[12]用脫硫腸桿菌(SRV)去除電鍍廢水中的銅離子,在銅質量濃度為246.8 mg/L的溶液,當pH為4.0時,去除率達99.12%。
2,生物絮凝法
生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外,具有絮凝活性的代謝物。一般由多糖、蛋白質、DNA、纖維素、糖蛋白、聚氨基酸等高分子物質構成,分子中含有多種官能團,能使水中膠體懸浮物相互凝聚沉澱。至目前為止,對重金屬有絮凝作用的約有十幾個品種,生物絮凝劑中的氨基和羥基可與Cu2+、 Hg2+、Ag+、Au2+等重金屬離子形成穩定的鰲合物而沉澱下來。應用微生物絮凝法處理廢水安全方便無毒、不產生二次污染、絮凝效果好,且生長快、易於實現工業化等特點。此外,微生物可以通過遺傳工程、馴化或構造出具有特殊功能的菌株。因而微生物絮凝法具有廣闊的應用前景。
3,生物吸附法
生物吸附法是利用生物體本身的化學結構及成分特性來吸附溶於水中的金屬離子,再通過固液兩相分離去除水溶液中的金屬離子的方法。利用胞外聚合物分離金屬離子,有些細菌在生長過程中釋放的蛋白質,能使溶液中可溶性的重金屬離子轉化為沉澱物而去除。生物吸附劑具有來源廣、價格低、吸附能力強、易於分離回收重金屬等特點,已經被廣泛應用。
4,需氧生物處理法
利用需氧微生物在有氧條件下將廢水中復雜的有機物分解的方法。生活污水中的典型有機物是碳水化合物、合成洗滌劑、脂肪、蛋白質及其分解產物如尿素、甘氨酸、脂肪酸等。這些有機物可按生物體系中所含元素量的多寡順序表示為 COHNS。在廢水需氧生物處理中全部反應可用以下兩式表示:
微生物細胞+COHNS+O2─→ 較多的細胞+CO2+H2O+NH3
生物體系中這些反應有賴於生物體系中的酶來加速。酶按其催化反應分為:氧化還原酶:在細胞內催化有機物的氧化還原反應,促進電子轉移,使其與氧化合或脫氫。可分為氧化酶和還原酶。氧化酶可活化分子氧,作為受氫體而形成水或過氧化氫。還原酶包括各種脫氫酶,可活化基質上的氫,並由輔酶將氫傳給被還原的物質,使基質氧化,受氫體還原。水解酶:對有機物的加水分解反應起催化作用。水解反應是在細胞外產生的最基本的反應,能將復雜的高分子有機物分解為小分子,使之易於透過細胞壁。如將蛋白質分解為氨基酸,將脂肪分解為脂肪酸和甘油,將復雜的多糖分解為單糖等。此外還有脫氨基、脫羧基、磷酸化和脫磷酸等酶。許多酶只有在一些稱為輔酶和活化劑的特殊物質存在時才能進行催化反應,鉀、鈣、鎂、鋅、鈷、錳、氯化物、磷酸鹽離子在許多種酶的催化反應中是不可缺少的輔酶或活化劑。在需氧生物處理過程中,污水中的有機物在微生物酶的催化作用下被氧化降解,分三個階段:第一階段,大的有機物分子降解為構成單元──單糖、氨基酸或甘油和脂肪酸。在第二階段中,第一階段的產物部分地被氧化為下列物質中的一種或幾種:二氧化碳、水、乙醯基輔酶A、α-酮戊二酸(或稱 α-氧化戊二酸)或草醋酸(又稱草醯乙酸)。第三階段(即三羧酸循環,是有機物氧化的最終階段)是乙醯基輔酶A、α-酮戊二酸和草醋酸被氧化為二氧化碳和水。有機物在氧化降解的各個階段,都釋放出一定的能量。在有機物降解的同時,還發生微生物原生質的合成反應。在第一階段中由被作用物分解成的構成單元可以合成碳水化合物、蛋白質和脂肪,再進一步合成細胞原生質。合成能量是微生物在有機物的氧化過程中獲得的。
5,厭氧生物處理法
主要用於處理污水中的沉澱污泥,因而又稱〖HTK〗污泥消化〖HT〗,也用於處理高濃度的有機廢水。這種方法是在厭氧細菌或兼性細菌的作用下將污泥中的有機物分解,最後產生甲烷和二氧化碳等氣體,這些氣體是有經濟價值的能源。中國大量建設的沼氣池就是具體應用這種方法的典型實例。消化後的污泥比原生污泥容易脫水,所含致病菌大大減少,臭味顯著減弱,肥分變成速效的,體積縮小,易於處置。城市污水沉澱污泥和高濃度有機廢水的完全厭氧消化過程可分為三個階段(見圖)。在第一階段,污泥中的固態有機化合物藉助於從厭氧菌分泌出的細胞外水解酶得到溶解,並通過細胞壁進入細胞中進行代謝的生化反應。在水解酶的催化下,將復雜的多糖類水解為單糖類,將蛋白質水解為縮氨酸和氨基酸,並將脂肪水解為甘油和脂肪酸。第二階段是在產酸菌的作用下將第一階段的產物進一步降解為比較簡單的揮發性有機酸等,如乙酸、丙酸、丁酸等揮發性有機酸,以及醇類、醛類等;同時生成二氧化碳和新的微生物細胞。
反應原理
第一、二階段又稱為液化過程。第三階段是在甲烷菌的作用下將第二階段產生的揮發酸轉化成甲烷和二氧化碳,因此又稱為氣化過程,其反應可用下式表示:
一些有機酸或醇的氣化過程舉例如下:乙酸:
CH3COOH─→CO2+CH4
丙酸:
4CH3CH2COOH+2H2O─→5CO2+7CH4
甲醇:
4CH3OH─→CO2+3CH4+2H2O
乙醇:
2CH3CH2OH+CO2─→2CH3COOH+CH4
為了使厭氧消化過程正常進行,必須將溫度、pH值、氧化還原電勢等保持在一定的范圍內,以維持甲烷菌的正常活動,保證及時地和完全地將第二階段產生的揮發酸轉化成甲烷。
生物化學反應的速度直接受溫度的影響。進行厭氧消化的微生物有兩類:中溫消化菌和高溫消化菌。前者的適應溫度范圍為17~43℃,最佳溫度為32~35℃;後者則在50~55℃具有最佳反應速度。
近年來,厭氧消化處理法發展到應用於處理高濃度有機廢水,如屠宰場廢水、肉類加工廢水、製糖工業廢水、酒精工業廢水、罐頭工業廢水、亞硫酸鹽制漿廢水等,比採用需氧生物處理法節省費用。
利用生物法處理廢水的具體方法有〖HTK〗活性污泥法〖HT〗、〖HTK〗生物膜法〖HT〗、〖HTK〗氧化塘法〖HT〗、〖HTK〗土地處理系統〖HT〗和污泥消化等。〖HT〗。
隨著工業的發展,污水成分已愈來愈復雜。 某些難降解的有機物質和有毒物質,需要運用微 生物的方法進行處理,污水具備微生物生長和繁 殖的條件,因而微生物能從污水中獲取養分,同時 降解和利用有害物質,從而使污水得到凈化。廢 水生物處理是利用微生物的生命活動,對廢水中 呈溶解態或膠體狀態的有機污染物降解作用,從 而使廢水得到凈化的一種處理方法。廢水生物處 理技術以其消耗少、效率高、成本低、工藝操作管 理方便可靠和無二次污染等顯著優點而備受人們 的青睞。
㈩ 簡述好氧和厭氧生物處理有機污水的原理和適用條件。
好氧生物處理:在有游離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。
這些高能位的有機物質經過一系列的生化反應,逐級釋放能量,最終以低能位的無機物質穩定下來,達到無害化的要求,以便返回自然環境或進一步處置。適用於中、低濃度的有機廢水,或者說BOD5濃度小於500mgL的有機廢水。
厭氧生物處理:在沒有游離氧存在的條件下,兼性細菌與厭氧細菌降解和穩定有機物的生物處理方法。在厭氧生物處理過程中,復雜的有機化合物被降解、轉化為簡單的化合物,同時釋放能量。適用於有機污泥和高濃度有機廢水(一般BOD5≥2000mg/L)
(10)廢水好氧生物處理的基本原理擴展閱讀:
在生活污水、食品加工和造紙等工業廢水中,含有碳水化合物、蛋白質、油脂、木質素等有機物質。
這些物質以懸浮或溶解狀態存在於污水中,可通過微生物的生物化學作用而分解。在其分解過程中需要消耗氧氣,因而被稱為耗氧污染物。這種污染物可造成水中溶解氧減少,影響魚類和其他水生生物的生長。
水中溶解氧耗盡後,有機物進行厭氧分解,產生硫化氫、氨和硫醇等難聞氣味使水質惡化。水體中有機物成分非常復雜,耗氧有機物濃度常用單位體積水中耗氧物質生化分解過程中所消耗的氧量表示。