導航:首頁 > 污水知識 > 厭氧處理廢水水解階段

厭氧處理廢水水解階段

發布時間:2022-01-15 03:46:48

污水處理中水解酸化階段的酸化度怎麼計算

所有的污水處理都要經過水解酸化嗎?不是說只有難降解的長鏈較多時,才經過水解酸化嗎?

廢水厭氧生物處理要經歷哪幾個階段

厭氧處理用處很多的,我只說一些我了解的
1高濃度可生化廢水,例如版屠宰廢水權這種廢水有機物含量高,分子量大,需要先進行水解等處理,為後續的好氧處理提供條件
2產沼氣例如污泥厭氧消化,因為甲烷菌嚴格厭氧,但是一般來說對設備要求比較高
3脫氮除磷現在國標越來越嚴格,對n/p營養物質要求越來越嚴格,主要就是利用聚磷菌厭氧釋放磷,好氧吸收磷作為一個單元
4防止絲狀菌膨脹主要就是當接觸池用,利用聚磷菌轉化有機物為pha防止後續單元絲狀菌利用cod繁殖個人就知道這些,你可以聽聽別人的意見

③ 污水處理水解酸化是厭氧過程嗎

水解酸化可以理解為是厭氧反應的前兩個階段
厭氧反應分四個階段:
1、水解專階段
水解可定義為復雜的非溶解性的聚合屬物被轉化為簡單的溶解性單體或二聚體的過程。
2、發酵(或酸化)階段
發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
3、產乙酸階段
在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
4、甲烷階段
這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
水解酸化是污水處理的一種預處理方式
兩點普遍認同的作用:
1、提高廢水可生化性:能將大分子有機物轉化為小分子。
2、去除廢水中的COD:既然是異養型微生物細菌,那麼就必須從環境中汲取養分,所以必定有部分有機物降解合成自身細胞。

④ 厭氧處理COD生成什麼

一、厭氧反應四個階段
一般來說,廢水中復雜有機物物料比較多,通過厭氧分解分四個階段加以降解:
(1)水解階段:高分子有機物由於其大分子體積,不能直接通過厭氧菌的細胞壁,需要在微生物體外通過胞外酶加以分解成小分子。廢水中典型的有機物質比如纖維素被纖維素酶分解成纖維二糖和葡萄糖,澱粉被分解成麥芽糖和葡萄糖,蛋白質被分解成短肽和氨基酸。分解後的這些小分子能夠通過細胞壁進入到細胞的體內進行下一步的分解。
(2)酸化階段:上述的小分子有機物進入到細胞體內轉化成更為簡單的化合物並被分配到細胞外,這一階段的主要產物為揮發性脂肪酸(VFA),同時還有部分的醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等產物產生。
(3)產乙酸階段:在此階段,上一步的產物進一步被轉化成乙酸、碳酸、氫氣以及新的細胞物質。
(4)產甲烷階段:在這一階段,乙酸、氫氣、碳酸、甲酸和甲醇都被轉化成甲烷、二氧化碳和新的細胞物質。這一階段也是整個厭氧過程最為重要的階段和整個厭氧反應過程的限速階段。
再上述四個階段中,有人認為第二個階段和第三個階段可以分為一個階段,在這兩個階段的反應是在同一類細菌體類完成的。前三個階段的反應速度很快,如果用莫諾方程來模擬前三個階段的反應速率的話,Ks(半速率常數)可以在50mg/l以下,μ可以達到5KgCOD/KgMLSS.d。而第四個反應階段通常很慢,同時也是最為重要的反應過程,在前面幾個階段中,廢水的中污染物質只是形態上發生變化,COD幾乎沒有什麼去除,只是在第四個階段中污染物質變成甲烷等氣體,使廢水中COD大幅度下降。同時在第四個階段產生大量的鹼度這與前三個階段產生的有機酸相平衡,維持廢水中的PH穩定,保證反應的連續進行。
三 水解反應
水解可定義為復雜的非溶解性的聚合物被轉化成簡單的溶解性單體和二聚體的過程。水解反應針對不同的廢水類型差別很大,這要取決於胞外酶能否有效的接觸到底物。因此,大的顆粒比小顆粒底物要難降解很多,比如造紙廢水、印染廢水和制葯廢水的木質素、大分子纖維素就很難水解。
水解速度的可由以下動力學方程加以描述:
ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/l);
ρo———非溶解性底物的初始濃度(g/l);
Kh——水解常數(d-1);
T——停留時間(d)。
一般來說,影響Kh的因素很多,很難確定一個特定的方程來求解Kh,但我們可以根據一些特定條件的Kh,反推導出水解反應器的容積和最佳反應條件。在實際工程實施中,有條件的話,最好針對要處理的廢水作一些Kh的測試工作。通過對國內外一些報道的研究,提出在低溫下水解對脂肪和蛋白質的降解速率非常慢,這個時候,可以不考慮厭氧處理方式。對於生活污水來說,在溫度15的情況下,Kh=0.2左右。但在水解階段我們不需要過多的COD去除效果,而且在一個反應器中你很難嚴格的把厭氧反應的幾個階段區分開來,一旦停留時間過長,對工程的經濟性就不太實用。如果就單獨的水解反應針對生活污水來說,COD可以控制到0.1的去除效果就可以了。
把這些參數和給定的條件代入到水解動力學方程中,可以得到停留水解停留時間:
T=13.44h
這對於水解和後續階段處於一個反應器中厭氧處理單元來說是一個很短的時間,在實際工程中也完全可以實現。如果有條件的地方我們可以適當提高廢水的反應溫度,這樣反應時間還會大大縮短。而且一般對於城市污水來說,長的排水管網和廢水中本生的生物多樣性,所以當廢水流到廢水處理場時,這個過程也在很大程度上完成,到目前為止還沒有看到關於水解作為生活污水厭氧反應的限速報道。
四 發酵酸化反應
發酵可以被定義為有機化合物既作為電子受體也作為電子供體的生物降解過程,在此過程中有機物被轉化成以揮發性脂肪酸為主的末端產物。
酸化過程是由大量的、多種多樣的發酵細菌來完成的,在這些細菌中大部分是專性厭氧菌,只有1%是兼性厭氧菌,但正是這1%的兼性菌在反應器受到氧氣的沖擊時,能迅速消耗掉這些氧氣,保持廢水低的氧化還原電位,同時也保護了產甲烷菌的運行條件。
酸化過程的底物取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。對於一個穩態的反應器來說,乙酸、二氧化碳、氫氣則是酸化反應的最主要產物。這些都是產甲烷階段所需要的底物。
在這個階段產生兩種重要的厭氧反應是否正常的底物就是揮發性脂肪酸(VFA)和氨氮。VFA過高會使廢水的PH下降,逐漸影響到產甲烷菌的正常進行,使產氣量減小,同時整個反應的自然鹼度也會較少,系統平衡PH的能力減弱,整個反應會形成惡性循環,使得整個反應器最終失敗。氨氮它起到一個平衡的作用,一方面,它能夠中和一部分VFA,使廢水PH具有更大的緩沖能力,同時又給生物體合成自生生長需要的營養物質,但過高的氨氮會給微生物帶來毒性,廢水中的氨氮主要是由於蛋白質的分解帶來的,典型的生活污水中含有20-50mg/l左右的氨氮,這個范圍是厭氧微生物非常理想的范圍。
另外一個重要指標就是廢水中氫氣的濃度,以含碳17的脂肪酸降解為例:
CH3(CH2)15COO-+14H2O—> 7CH3COO-+CH3CH2COO-+7H++14H2
脂肪酸的降解都會產生大量的氫氣,如果要使上述反應得以正常進行,必須在下一反應中消耗掉足夠的氫氣,來維持這一反應的平衡。如果廢水的氫氣指標過高,表明廢水的產甲烷反應已經受到嚴重抑制,需要進行修復,一般來說氫氣濃度升高是伴隨PH指標降低的,所以不難監測到廢水中氫氣的變化情況,但廢水本身有一定的緩沖能力,所以完全通過PH下降來判斷氫氣濃度的變化有一定的滯後性,所以通過監測廢水中氫氣濃度的變化是對整個反應器反應狀態一個最快捷的表現形式。
五 產乙酸反應
發酵階段的產物揮發性脂肪酸VFA在產乙酸階段進一步降解成乙酸,其常用反應式如以下幾種:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL
從上面的反應方程式可以看出,乙醇、丁酸和丙酸不會被降解,但由於後續反應中氫的消耗,使得反應能夠向右進行,在一階段,氫的平衡顯得更加重要,同時後續的產甲烷過程為這一階段的轉化提供能量。實際上這一階段和前面的發酵階段都是由同一類細菌完成,都在細菌體內進行,並且產物排放到水體中,界限並沒有十分清楚,在設計反應器時,沒有足夠的理由把他們分開。
六 產甲烷反應
在厭氧反應中,大約有70%左右的甲烷由乙酸歧化菌產生,這也是這幾個階段中遵循莫諾方程反應的階段。
另一類產生甲烷的微生物是由氫氣和二氧化碳形成的。在正常條件下,他們大約佔30%左右。其中約有一般的嗜氫細菌也能利用甲酸產生甲烷。最主要的產甲烷過程反應有:
CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL
在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。

⑤ 水解酸化池是怎麼保持在水解酸化階段 而不是整個厭氧階段的

1、厭氧池密閉,水解池一般敞開頂蓋;
2、厭氧最終產物為甲烷和二氧化碳,水解最終產物為低濃度有機酸;
3、厭氧優勢微生物為厭氧菌,水解優勢微生物為兼性菌;
4、厭氧一般控制溫度,水解常溫;
5、厭氧停留時間長,水解停留時間4小時左右;
6、厭氧階段有水解、酸化、乙酸化和甲烷階段,水解是前三個階段。

控制是:停留時間、池子敞開,請參考。

⑥ 廢水厭氧生物處理和好氧生物處理的區別

最大的區別就是處理環境. 厭氧生物處理就是在厭氧條件下微生物降解廢水中的有機物
好氧生物處理就是在有氧條件下微生物降解廢水中的有機物
其次是所能處理的有機物. 厭氧生物處理處理大分子量的有機物. 主要是將大分子量的有機物分
解成較小分子量的有機物並將其中一部分的有機物轉化成甲烷等可利
用的能源
好氧生物處理處理經厭氧生物處理後的廢水中分子量較小的有機物並
將其分解成無機物, 分解的無機物在二沉池加入一定量的混凝劑和/或絮
凝劑將其沉降與水分離從而達到廢水凈化的目的
厭氧處理是利用厭氧菌的作用,去除廢水中的有機物,通常需要時間較長。厭氧過程可分為水解階段、酸化階段和甲烷化階段。
水解酸化的產物主要是小分子有機物,使廢水中溶解性有機物顯著提高,而微生物對有機物的攝取只有溶解性的小分子物質才可直接進入細胞內,而不溶性大分子物質首先要通過胞外酶的分解才得以進入微生物體內代謝。例如天然膠聯劑(主要為澱粉類),首先被轉化為多糖,再水解為單糖。纖維素被纖維素酶水解成纖維二糖與葡萄糖。半纖維素被聚木糖酶等水解成低聚糖和單糖。
水解過程較緩慢,同時受多種因素的影響,是厭氧降解的限速階段。在酸化這一階段,上述第一階段形成的小分子化合物在發酵細菌即酸化菌的細胞內轉化為更簡單的化合物並分泌到細菌體外,主要包括揮發性有機酸(VFA)、乳醇、醇類等,接著進一步轉化為乙酸、氫氣、碳酸等。酸化過程是由大量發酵細菌和產乙酸菌完成的,他們絕大多數是嚴格厭氧菌,可分解糖、氨基酸和有機酸。
好氧池的作用是讓活性污泥進行有氧呼吸,進一步把有機物分解成無機物。去除污染物的功能。運行好是要控制好含氧量及微生物的其他各需條件的最佳,這樣才能是微生物具有最大效益的進行有氧呼吸

⑦ 廢水厭氧生物處理的原理

在厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子有機物的厭氧過程的敘述,有助於我們了解這一過程的基本內容。
高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
(1)水解階段
水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在第一階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/L);
ρo———非溶解性底物的初始濃度(g/L);
Kh——水解常數(d^-1);
T——停留時間(d)
(2)發酵(或酸化)階段
發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
在這一階段,上述小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。
在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,並進一步引起酸化末端產物組成的改變。
(3)產乙酸階段
在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
其某些反應式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL
(4)甲烷階段
這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫氣等轉化為甲烷的過程有兩種生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3。
最主要的產甲烷過程反應有:
CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL
在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。
需要指出的是:一些書把厭氧消化過程分為三個階段,把第一、第二階段合成為一個階段,稱為水解酸化階段。在這里我們則認為分為四個階段能更清楚反應厭氧消化過程。
上述四個階段的反應速度依廢水的性質而異,在含纖維素、半纖維素、果膠和脂類等污染物為主的廢水中,水解易成為速度限制步驟;簡單的糖類、澱粉、氨基酸和一般蛋白質均能被微生物迅速分解,對含這類有機物的廢水,產甲烷易成為限速階段。雖然厭氧消化過程可分為以上四個過程,但是在厭氧反應器中,四個階段是同時進行的,並保持某種程度的動態平衡。該平衡一旦被pH值、溫度、有機負荷等外加因素所破壞,則首先將使產甲烷階段受到抑制,其結果會導致低級脂肪酸的積存和厭氧進程的異常變化,甚至導致整個消化過程停滯。

⑧ 污水凈化處理厭氧生物處理的三個階段是怎樣的

理論研究認為三個階段,即厭氧消化過程分為水解發酵階段、產內乙酸產氫階段、容產甲烷階段三部分。
水解發酵階段和產乙酸產氫階段又可合稱為酸性發酵階段。在這個階段,污水中的復雜有機物,在酸性腐化菌或產酸菌的作用下,分解成簡單的有機物,如有機酸,醇類等,以及CO2、NH3和H2S等無機物。由於有機酸的積累,污水的pH值下降到6以下。此後,由於有機酸和含氮化合物的分解,產生碳酸鹽和氨等使酸性減退,pH值回升到6.6~6.8左右。
⑴ 水解酸化階段。污水中復雜的大分子、不溶性的有機物在細胞外酶的作用下水解為小分子、溶解性有機物,然後滲入細胞體內,水解產生揮發性有機酸、醇類及醛類等。
⑵ 產氫產乙酸階段。在產氫產酸菌的作用下,各種有機酸分解轉化為乙酸、氫和二氧化碳。
⑶ 產甲烷階段。產甲烷菌將乙酸、氫及二氧化碳轉化為甲烷。

⑨ 厭氧廢水處理分哪三個階段

水解酸化、產氫產乙酸、產甲烷 階段!

⑩ 污水處理工藝中水解的作用是什麼

水解(酸化)工藝的研究工作是從厭氧
生物處理
的試驗開始,經過反復實驗和理論研究,逐步發展為水解(酸化)生物處理工藝。通常把厭氧反應發酵產生沼氣的過程分為水解階段、酸化階段、
甲烷化
階段。水解工藝就是利用厭氧工藝的前兩段,即把反應控制在第二階段完成之前,不進入第三階段。為區別厭氧工藝,定名為水解(Hydrolization)工藝
水解工藝是在缺氧條件下(DO小於0.3—0.5mg/L),主要利用微生物水解菌和產酸菌的作用完成水解、酸化兩個過程。
在水解階段,固體物質溶解為溶解性物質,
大分子物質
降解為小分子物質,
難生物降解
物質轉化為易生物降解物質。在酸化階段,有機物降解為各種有機酸。
正因為水解工藝是在缺氧條件下完成,因而在工程實施中,可將水解工藝和後續好氧工藝串聯組合,實現水解-好氧工藝。為區別厭氧-好氧工藝,把水解(H)-好氧(O)工藝,定名為H/O法。
水解
工藝特點
:1與厭氧相比不需要密閉的
池子
,不需要
攪拌器
,不需要水、氣、固三相分離器,
水解反應

水力停留時間
短,降低了造價,便於維護。2水解產酸階段的產物主要是小分子有機物,可生化性較好,污水經水解處理後,
BOD5
/CODCR的比值明顯升高,故水解工藝可以改變原污水的可生化性,從而減少後續生化處理(如接觸氧化)反應時間、處理能耗及總投資。3水解工藝不產生如厭氧反應那樣的臭味,改善了處理廠的環境。4水解工藝對固體有機物的降解,減少了污泥量,具有消化功能。5水解菌種是一種兼性菌種,在自然界存在量較多,而且存在面較廣,在工程實施時。容易培菌。一旦污水中有機物(底物)發生變化,處理裝置也能很快適應,故調試時間短。
水解,在兼性微生物作用下水解和酸化,使大分子的
有機污染物
小分子化,使非溶性的有機物水解為水溶性物質,使難生物降解的物質轉化為易生物降解物質,提高了污水的可生化性,為後續
好氧處理
創造良好的生化條件,因而提高了整個污水站的
CODcr\BODs去除率(CDOcr去除率可達96-98%),並可降低能耗。該工藝可根據污水
CODcr濃度、有機污染物分子結構及除磷
脫氮
要求,連續串聯二次或三次水解一好氧生化處理過程。
該技術與全好氧生化處理技術相比,具有以下優點:可處理高濃度
有機廢水
;可降低能耗40%左右,佔地面積可減少25%左右;耐沖擊負荷能力大,受氣溫變化影響小。與厭氧生化處理相比顯示出以下優越性:水力停留對間可縮短
l/2-2/3,故污水處理站基建投資省;可實現生化脫氮,且一般情況桭無需外加碳源;可有效地處理含分子態氧濃度較高的有機廢水;對原水pH值適用范圍較寬,水溫為常溫,耐沖擊負荷;運行穩定,一旦有相,物成分改變,可在短時間內恢復正常運行。該技術可作為有機污水處理的基本方法加以推廣應用,目前已在全國30多個工程上推廣應用,取得了較好的經濟和社會效益。

閱讀全文

與厭氧處理廢水水解階段相關的資料

熱點內容
蓮蓬頭怎麼除垢 瀏覽:969
近視鏡片怎麼裝進樹脂 瀏覽:899
提升泵故障影響 瀏覽:782
機油濾芯蓋壞了有什麼影響 瀏覽:108
飲水機接水老有渣子怎麼回事 瀏覽:590
抽污水池哪裡專業 瀏覽:375
凈水機凈水流量達到多少標尺 瀏覽:316
水壺的水垢怎麼處理 瀏覽:457
煙過濾紙層數 瀏覽:800
華陽反滲透膜殼 瀏覽:897
銅球做的濾芯叫什麼 瀏覽:36
晉通飲水機有什麼樣的 瀏覽:379
利生源飲水凈化器怎麼樣 瀏覽:97
不銹鋼內膽怎樣除垢 瀏覽:169
國家樹脂瓦生產標准 瀏覽:159
污水廠中水回用技術 瀏覽:433
安徽槽車接納廢水 瀏覽:78
樹脂井蓋的使用年限 瀏覽:982
立式泵提升量怎麼測 瀏覽:481
往污水處理廠卸車怎麼去 瀏覽:195