1. 電鍍廢水中含氰廢水的處理方法有哪些
1·各種處理方法簡述
國內含氰廢水處理方法比較多[3,4],但應用哪一種工藝主要決定於含氰廢水的質量濃度、性質以及實際處理的效果。廢水中氰的質量濃度可粗略分為高、中、低3種。一般情況下,成分復雜的高質量濃度廢水CN>800 mg/L,也有多種廢水氰的質量濃度在(1-10)×103 mg/L之間,可先採用酸化法回收氰化物,殘液再繼續氧化處理。中質量濃度含氰廢水一般在200 mg/L~800 mg/L之間,根據廢水成分的復雜程度選擇處理工藝;廢水成分簡單、回收氰化物有經濟效益的,適合先採用酸化法,殘液再繼續採用二次處理;酸化回收無經濟效益的廢水,可直接採用氧化法進行破壞。在國內實際生產時,高、中質量濃度(接近800 mg/L)含氰廢水一般根據成分復雜程度而決定採用的工藝方法;有些成分簡單的廢水,也可以先回收氰化物,回收後殘液再直接進行氧化破壞CN-,中、低質量濃度的廢水均採用直接氧化處理工藝。近些年,回收氰化物的方法較多,如酸化揮發-鹼吸收法、萃取法、酸沉澱-中和法(兩步沉澱法)、三步沉澱法等。目前,廠礦企業實際採用單一處理工藝的較少,因單一工藝處理很難達到國家排放標准,大部分企業均採用多種組合的工藝進行處理。主要組合處理工藝是酸化回收與直接氧化的技術結合,另一種組合是直接氧化、自然凈化[5]與活性炭吸附工藝[6]的技術組合,許多新的廢水全循環技術組合工藝也是主要發展趨勢之一。含氰廢水處理方法的選擇主要根據廢水的來源、性質及水量來決定。其中包括化學法、物理化學法、物理法及生化法,但是運用最多的是採用化學法來處理含氰廢水。以下主要對幾種常用的物理、化學法處理含氰廢水進行介紹。
2·常用處理技術
2.1加酸曝氣法
這是已進入實用化階段的方法,在美國等一些國家中正在興建一定規模的設施。最初試驗室在中性液中利用曝氣來把氰排除到大氣中去,以後改進為先加酸使污水最大限度地酸化,然後進行曝氣,這樣可以更有效地去除氰。所使用的酸通常是硫酸。雖然也有利用煙氣來進行酸性化的建議,但尚未到成熟階段,所以沒有普及。此法的效果受曝氣程度和酸性化程度的支配,按照實例來看,當pH為2.8時,對含氰濃度達500 mg/L的污水進行曝氣,可以獲得含氰濃度為0.09 mg/L~0.14 mg/L的處理水。因為在實施此法以後,氰仍保持原有狀態,作為有毒氣體而被排放到大氣中,既要有利的廠址條件,又必須具備高煙囪,因而只有在極有限的地區,才有採用此法的可能。如用液鹼來捕集已氣化的氰,這樣既可彌補上述缺點,還可回收氰。
2.2絡鹽法
20世紀70年代,國內企業有的曾經採用該方法,但現在均不採用。從環境安全防範的觀點出發,這種方法可以作為氰化物產生突發性污染事故時而採用快速補救的方法之一,硫酸亞鐵溶液投入水中可以迅速降低水中含氰污染物所造成的危害程度,減小對環境的危害,特別是對水生生物的傷害。廢水中CN-質量濃度很低時,該方法處理效果不好。可以使用的葯品雖多種多樣,但最廣泛使用的是硫酸亞鐵。該法利用硫酸亞鐵與氰形成絡鹽,然後使絡鹽沉澱並加以除去。硫酸亞鐵法將氰化物轉化為鐵的亞鐵氰化物,再轉化成普魯士藍型不溶性化合物[7],然後傾析或過濾出來。
其特點是操作簡單,處理費用低,且可回收普魯士藍沉澱作顏料。缺點是處理效果差,淤渣很多,分離出不溶物後的廢水呈藍色,濃度超過一定限度,就不能被去除。從反應的平衡來看,上述濃度過高,去除率下降是難以避免的問題,按一般情況來說,用石灰等使水的pH值保持在7.5~10.5之間,這樣就使沉澱生成處於最佳狀態。但即使採用上述措施,因為含氰量在一定數值以下,就不再降低,在處理含氰濃度低的污水時,其效果是微小的。如改用鎳做處理劑,其效果雖比鐵有利,但價格昂貴。熊正為[8]對硫酸亞鐵法處理電鍍含氰廢水進行了試驗研究,探討了硫酸亞鐵除氰的原理及其去除效果。試驗結果表明:硫酸亞鐵法處理電鍍含氰廢水,硫酸亞鐵加入量為理論值的1.69倍,0.1%PAM絮凝劑用量為1 mg/L時,氰化物的去除率可達98%,同時還可去除部分重金屬污染物和COD,COD可去除約59%;pH值對除氰效果的影響較大,CN-與硫酸亞鐵絡合成亞鐵氰化物時pH值控制在9.50~10.50,生成的亞鐵氰化物再轉化成較穩定的普魯士藍型不溶性化合物須將pH值反調控制在7.00~8.00時,除氰效果較好。
2.3臭氧處理法
近年來,用臭氧處理氰化物方法的研究,開展得相當普遍,但由於電力費用高昂的缺點,所以還沒達到一般性的實用化階段
O3+KCN→KCNO+O2
KCNO+O3+H2O→KHCO3+N2+O2
臭氧在水溶液中可釋放出原子氧參加反應,表現出很強的氧化性,能徹底氧化游離狀態的氰化物。銅離子對氰離子和氰根離子的氧化分解有觸媒作用,添加10 mg/L左右的硫酸銅能促進氰的分解反應。
臭氧法的突出特點是在整個過程中不增加其他污染物質,污泥量少,且因增加了水中的溶解氧而使出水不易發臭。採用臭氧氧化法處理廢水中的氰化物,只需臭氧發生設備,無需葯劑購置和運輸,而且工藝簡單、方便,處理後廢水總氰化物質量濃度可以達到國家污水綜合排放標准,處理廢液中不增加其它有害物質,無二次污染,不需要進一步處理。但是,由於臭氧發生器產生臭氧的成本高、設備維修困難,工業應用受到了一定限制。只要臭氧發生器能突破產生臭氧的瓶頸,工業應用前景非常廣闊。臭氧氧化法要消耗大量的電能[9],在缺少電力的地方難以應用。我國已有臭氧發生裝置成品出售,一些工廠目前正在使用這種處理技術。應該指出的是目前的臭氧發生器能耗很大,生產1 kg O3耗電12 kW·h~15 kW·h,處理費用較高。除個別地方外,一般難以達到廢水處理的經濟要求。另外,單獨使用臭氧不能使絡合狀態存在的氰化物徹底氧化。顏海波[10]等採用臭氧技術對電鍍含氰廢水進行處理,電鍍含氰廢水中的CN-濃度在30 mg/L~36 mg/L之間,採用以臭氧為氧化劑的活性炭催化氧化技術處理後,CN-的出口濃度<0.5 mg/L,去除率在97.7%以上。該處理系統實現了廢水處理自動化,具有投資省、效果好、成本低、運行穩定等優點,且不會產生二次污染,值得推廣應用。
2.4過氧化氫法
2.4.1鹼性條件
在常溫、鹼性(pH=9.5~11)、有Cu2+作催化劑的條件下,H2O2能使游離氰化物及其金屬絡合物(但不能使鐵氰化物)氧化成氰酸鹽,以金屬氰絡合物形式存在的銅、鎳和鋅等金屬,一旦氰化物被氧化除去後,他們就會生成氫氧化物沉澱。那些過量的過氧化氫也能迅速分解成水和氧氣。污水中亞鐵氰化物被銅沉澱而除去。其反應方程式如下。游離氰化物與過氧化氫反應的方程式:
上述反應中生成的氰酸鹽水解生成銨離子和碳酸鹽離子或碳酸氫鹽離子,水解速度取決於pH值。一般情況下,硫氰酸鹽不會或很少被氧化。污水處理過程中,含氰絡合物的反應順序如下:
2.4.2酸性條件
一般將廢水加熱至40℃,在不斷攪拌條件下加入含有少量金屬離子作催化劑的H2O2和37%甲醛的混合溶液,再攪拌1 h左右完成反應。反應在酸性條件下分兩步進行:
此法適用於濃度波動較大的含氰廢水的處理,整個過程無HCN氣體產生,操作安全,但所需試劑費用較高。山東黃金集團有限公司三山島金礦採用過氧化氫對含氰污水酸化回收後尾液進行二次處理[11]。
近1 a的生產應用情況表明,該法具有工藝操作簡單、投資省、成本低等優點,能容易地將含氰(CN)-5 mg/L~50 mg/L的酸化回收尾液處理到<0.5 mg/L,葯劑費用為7.56元/m3。
2.5鹼性氯化處理法
目前處理含氰廢水比較成熟的技術是採用鹼性氯化法處理,必須注意含氰廢水要與其它廢水嚴格分流,避免混入鎳、鐵等金屬離子,否則處理困難。
通過氯處理來分解氰化物的可能性,早已肯定,可是在初期氯處理是在酸性溶液中進行,因而有濃度相當大的氯化氫有毒氣體產生,操作也很不安全。但如果在鹼性條件下進行氯處理,中間產物氯化氫幾乎在一剎那間都轉化為氰酸鹽,於是此法在氰化物處理方面已成為實際的而且安全的方法。該法的原理是廢水在鹼性條件下,採用氯系氧化劑將氰化物破壞而除去的方法,處理過程分為兩個階段,第一階段是將氰氧化為氰酸鹽,對氰破壞不徹底,叫做不完全氧化階段,該工藝的原理是在鹼性條件下(一般pH≥10),用次氯酸鹽將氰化物氧化成氰酸鹽。
CN-+ClO-+H2O→CNCl+2OHCNCl+2OH-→
CNO-+Cl-+H2O
將兩式合並,得
CN-+ClO-→CNO-+Cl-
CNO-+2H2O→CO2+NH3+OH-
局部氧化法破氰反應生成的氰酸根的毒性是CN-的1/1 000,所以有的廠在廢水濃度比較低時,廢水經局部破氰處理後就排入後續的處理金屬離子的處理設施。但是,CNO-畢竟是有毒物質,在酸性條件下極易水解生成氨(NH)3。pH反應條件控制:一級氧化破氰:值10~11;理論投葯量:簡單氰化物CN-:Cl2=1:2.73,復合氰化物CN-:Cl2=1:3.42。用ORP儀控制反應終點為300 mv~350 mv,反應時間10 min~15 min。
第二階段是將氰酸鹽進一步氧化分解成二氧化碳和水,叫完全氧化階段。在局部氧化處理的基礎上,調節廢水的pH(一般pH≥8.5),再投加一定量的氧化劑,經攪拌使CNO-完全氧化為N2和CO2。
pH反應條件控制:二級氧化破氰:pH值7-8(用H2SO4回調);理論投葯量:簡單氰化物CN-:Cl2=1:4.09,復合氰化物CN-:Cl2=1:4.09。用ORP儀控制反應終點為600mv~700mv;反應時間10min~30min。反應出水余氯濃度控制在3 mg/L~5 mg/L。
滕華妹[12]等採用兩級鹼性氯化法處理工藝對杭州西爾靈鍾廠含氰廢水進行處理,間隙法操作,手工控制投葯量,原廢水含氰濃度59.8 mg/L~141.1 mg/L,平均為84.6 mg/L,分段調節pH,採用自製的機械攪拌器攪拌,根據在實驗室測得的氰化物濃度,分段計算投葯量,廢水處理取得很好的效果,排放廢水中氰化物濃度均小於國家排放標准0.5 mg/L。另有採用次氯酸鈉、亞氯酸鈉、漂粉等替代氯氣的方法,其原理和方法與通氯氣相同,而類似加氯器的特殊裝置卻不再需要,而且可以避免氯氣泄露的危險,它適用於小規模的污水處理。在已決定採用這種處理法的場合,必須考慮到殘存的氯在放流目的地所發生的影響。
2.6食鹽電解法
通過食鹽水電解同時生成氯氣和強鹼,把他們使用於氰的分解。以電鍍廠而言,因為容易獲得電力供應,所以操作方便,處理葯品費用非常低廉。尤其在分批操作時,能夠在夜間空閑時間,充分利用原來供電鍍操作用的整流器,因而設備費用也可以降低。此法的缺點是電解陽極用的碳極的使用壽命較短。它適用於較小規模的工廠。
(1)隔膜電解法:這是在食鹽電解法中使用隔膜的方法,其原理是鹼性氯化處理法。食鹽中如有很多雜質,隔膜所用的石棉就容易發生間隙堵塞的缺點。在連續運轉的場合,使用飽和食鹽水,如管理不善,容易發生食鹽補充不足的情況,因而分解反應不能繼續進行,所以必須經常注意。
(2)無隔膜電解法:進行食鹽水的無隔膜電解時,在陽極上有氯氣發生,它與陰極上生成的鹼反應後,即生成次氯酸鹽。
Cl2+2NaOH→NaOCl+NaCl+H2O
如把生成的此氯酸鹽加註在含氰污水中,氰就被氧化而生成氰酸鹽。
NaCN+NaOCl→NaCNO+NaCl
並且進一步分解為碳酸氣和氮氣。
2NaCNO+3NaOCl+H2O→2CO2+N2+NaOH+3NaCl
3·含氰廢水生物處理方法的應用進展
有學者[13]採用BOD5/COD比值法和好氧呼吸曲線法在國內外首次針對高濃度有機氰廢水及其污染物進行了全面的好氧可生化性研究,結果表明,低濃度氰工藝含氰廢水在低濃度下,可生化性較好,在高濃度下,可生化性較差,濃度過高的甚至無法被好氧生物降解;肖敏[14]等在30℃條件下,採用血清瓶液體置換系統,撒氣厭氧水化反應設備條件,測定了丙烯腈、腈綸生產過程廢水等各種高濃度有機氰廢水的厭氧生物可降解性及廢水中丙烯腈、乙腈和氰化物等主要污染物對產甲烷菌的毒性。結果表明,丙烯腈在低質量濃度下為代謝毒素,厭氧菌產甲烷活性在恢復試驗中得到恢復,在高質量濃度(>120 mg/L)為生理毒素,毒性引起的產甲烷活性受抑制,但在短時期內得到恢復;氰化物在低質量濃度下為生理毒;較高質量濃度下(25 mg/L)為殺菌性毒素,厭氧菌細胞已遭受嚴重破壞,無法修復;乙腈始終為代謝毒素;張力等[15]採用膜分離技術處理丙烯晴含氰廢水,處理後外排氰根離子濃度CN-<0.0005%,COD<1 500 mg/L,表明了使用超濾膜對原水能有效的凈化,並在一定程度上能降低原水的COD含量。
2. 含氰廢水如何處理
含氰廢水有抄很多種處理方法,襲需要根據廢水水質情況來選擇。
鹼性氯氣氧化破氰,在鹼性含氰廢水中通入氯氣氧化;
UV光催化破氰,以雙氧水為氧化劑,通過光輻射催化處理含氰廢水;
雙氧水催化氧化,通常以銅離子作為催化劑,在弱鹼性條件下常溫氧化;
臭氧氧化法,採用臭氧發生器制備臭氧氧化氫化物和硫氰酸鹽;
高溫加壓水解法,65℃以上氰根即可與水反應生成氨和碳酸鹽,200℃以上時水解速度非常快;
還有活性炭吸附、膜分離、溶劑萃取、金屬離子絡合法等等。
3. 電解法處理含氰廢水的反應原理是什麼
陽極:
CN-
+
2OH-
=
OCN-
+
H2O
+
2e
CN-失去兩個電子,被氧化為無毒的氰酸根。
4. 為什麼電鍍廢水的電解法處理成本高 為什麼說含氰廢水不能分離徹底
電解法處理電鍍廢水優點是由於電解過程本身有氧化與還原過程,對廢水分流要求不高.
但電能消耗與電極(鐵板)消耗較大,效率較低,不利於連續處理.因而成本較高.
5. 含氰廢水處理工藝採用什麼運行方式,運行參數
對於Ni含量高(CN-濃度大於50mg/L)的廢水,應首先考慮回收利用;Ni含量低(CN-濃度小於50mg/L)的廢水才進行如下處理。
含Ni廢水處理實驗研究
實驗研究方法——鹼性氯化法
鹼性氯化法可分為兩個階段來處理含Ni廢水:第一階段為不完全氧化處理;第二階段為完全氧化處理。
第一階段反應:CN-+ClO+H2O——CNCl+2OH-
CNCl+2OH——CNO-+Cl-+H2O
第二階段反應:2CNO-+2OH-+3ClO——2CO32-+N2+3CL-+H2O
在破Ni過程中,pH值對氧化反應的影響很大。當pH>10時,完成不完全氧化反應只需五分鍾;pH<8.5時,則有劇毒催淚的氯化Ni氣體產生。而完全氧化則相反,低pH值的反應速度較快。pH=7.5~8.0時,需時10~15分;pH=9~9.5時,需時30分;pH=12時,反應趨於停止。實際上,亦可一次調整pH=8.5~9,加氯一小時,使Ni化物氧化為氯及二氧化碳。但是投加氯量增加10%~30%,操作更簡單。
此方法的優點是工藝成熟,設備簡單,操作方便,氧化最終產物為碳酸鹽和氮氣沒有毒性;缺點是可能造成CNCl逸出污染大氣,余氯可能超標,不能處理鐵Ni配合物等。
實驗研究方法——加熱水解法
使用此方法,一般控制溫度在170~180范圍內,壓力控制在0.9MPa左右,反應的pH值控制在10.5左右。加熱水解法化學反應機理如下:
CN-+2H2O——HCOO-+NH3
2HCOO-——CO32-+H2+CO
總反應式:
2CN-+H2O——CO32-+H2+CO+NH3
加熱水解法的特點是不消耗化學葯劑,反應徹底,對Ni化物濃度和存在形式無要求,對雜質也無要求,適應性廣,運行穩定。缺點是反應溫度高、對設備質量要求高、投資大、反應時間長。
實驗研究方法——電解法
電解法利對於含Ni廢水的運行機理是,利用電化學氧化還原反應破壞廢水中的Ni&化物,就是在pH值為10的條件下,廢水中的Ni&化物離子電解時在陽極上失去電子氧化成Ni酸鹽、碳酸鹽和氮氣或銨。電化學反應過程如下:
CN-+2OH--2e——CNO-+H2O
CNO-+2H2O——NH4++CO32-
還可以向含Ni廢水中加入NaCl,電解過程中Cl-被電解成活性氯,提高了破壞Ni化物的效果。
電解法的優點是不向廢水中加入新的有毒化學物質,排水水質好;處理高濃度Ni化物廢水,處理成本低;設備可以隨時運行,電力用量大小自如;設備簡單投資小;操作和控制容易。缺點是處理低濃度Ni&化物廢水時電效率隨Ni化物濃度的降低而大幅度降低,雖然加入少量的氯化鈉可以提高電解效果,但處理成本仍高於其它氧化法。
實驗研究方法——二氧化硫-空氣氧化法
二氧化硫-空氣氧化法pH值在7.5~10的范圍內,在銅的催化作用下,利用SO2和空氣的協同作用氧化廢水中的Ni化物。化學反應機理如下:
CN-+O2+SO2+2OH-+H2O=HCO3-+NH3+SO42-
二氧化硫-空氣氧化法的優點是工藝簡單,設備不復雜,處理效果一般優於氯氧化法(不考慮硫Ni化物的毒性),葯劑來源廣,處理成本不高,投資少。
二氧化硫-空氣氧化法的缺點是不能消除廢水中的硫Ni&化物。用銅作為催化劑排放口銅離子有時超標。反應產生物為Ni酸鈉,需要放置氧化去除後再排放。
實驗研究方法——過氧化氫氧化法
過氧化氫在酸性和加溫的條件下,與硫Ni酸鹽反應生成氫Ni酸,化學反應式如下:
CN-+H2O2——CNO-+H2O
反應生成的氫Ni酸可通過水解生成無毒的化合物。
過氧化氫法的優點是設備簡單,可以去除鐵Ni配合物,過氧化氫分解產物為水,不增加有毒物質。缺點是使用銅作為催化劑,可能造成排放水銅超標,原料成本較高,不能氧化水中的硫Ni化物。
實驗研究方法——酸化回收法
用酸調節含Ni廢水的pH值,使之呈酸性,Ni化物轉變為HCN,由於HCN蒸氣壓較高,向廢水中充入氣體時,HCN就會被氣流帶走,載有HCN的氣體與NaOH溶液接觸,HCN與NaOH反應生成NaCN,這種處理含Ni廢水的方法被稱為酸化回收法。
此方法的優點葯劑來源廣、價格低,處理成本受廢水組成影響小,Ni化物濃度高時具有較好的經濟效益,受Ni化物的濃度和廢水組成影響較小。缺點是投資較氯氧化法高,可能需要二次處理Ni根才能符合排放標准。
實驗研究方法——生物法
生物法處理含Ni廢水分兩個階段,第一階段是革蘭氏桿菌以Ni化物、硫Ni化物中的碳、氮為食物源,將Ni化物和硫Ni化物分解成碳酸鹽和氨;第二階段為硝化階段,利用嗜氧自養細菌把NH3分解。
生物化學法的優點是處理的廢水,水質比較好,去除率高,排水無毒,尤其是能徹底去除SCN-,是二氧化硫-空氣法、過氧化氫氧化法、酸化回收法等無法做到的。缺點是適應性差,僅能處理極低濃度而且濃度范圍波動小的含Ni廢水,含Ni廢水往往需要經過稀釋後方可進行處理。由於是微生物處理,需要保持生物生長的合適范圍,因此需要處理液的溫度波動也不能太大。
6. 某研究小組模擬工業無隔膜電解法處理電鍍含氰廢水,進行以下有關實驗.填寫下列空白.實驗I 製取次氯酸
I.(1)a電極一側有一根導氣管,說明該電極產生氫氣,a連接的電極為陰極,則a為原電池負極,
故答案為:負極;
(2)氯氣和氫氧化鈉溶液反應生成氯化鈉、次氯酸鈉和水,離子反應方程式為:Cl2+2OH-=ClO-+Cl-+H2O,
故答案為:Cl2+2OH-=ClO-+Cl-+H2O;
(3)根據裝置①⑥中試劑的性質和裝置位置知,其作用為防止空氣中二氧化碳對實驗結果造成干擾,所以其作用是排除空氣中的二氧化碳對實驗的干擾,
故答案為:排除空氣中的二氧化碳對實驗的干擾;
(4)根據已知裝置②中發生的主要反應依次為CN-+ClO-═CNO-+Cl-、2CNO-+2H++3ClO-═N2↑+2CO2↑+3Cl-+H2O,可知溶液中有氯離子、氫離子和次氯酸根離子,酸性條件下,氯離子和次氯酸根離子反應生成氯氣,產生的氯氣用碘化鉀吸收,所以發生的離子反應方程式為:ClO-+Cl-+2H+=Cl2↑+H2O,
故答案為:ClO-+Cl-+2H+=Cl2↑+H2O;
(5)反應後裝置中殘留二氧化碳,應繼續通過將凈化的空氣,將裝置內的殘留的二氧化碳全部進入裝置⑤,以減少實驗誤差,
故答案為:使裝置中殘留的二氧化碳全部進入裝置⑤;
(6)通過測定氫氧化鋇溶液的質量的變化測得二氧化碳的質量,根據關系式計算含氰廢水處理百分率,則需要測定裝置⑤反應前後的質量,
故答案為:裝置⑤反應前後質量;
(7)四氯化碳不溶於水,可通過分液分離,然後蒸餾可得到,
故答案為:分液、蒸餾.
7. 含氰廢水最常用的處理方法有哪些
1·各種處理方法簡述 國內含氰廢水處理方法比較多[3,4],但應用哪一種工藝主要決定於含氰廢水的質量濃度、性質以及實際處理的效果。廢水中氰的質量濃度可粗略分為高、中、低3種。
8. 用漂白粉除去含氰廢水反應化學方程式
CN-+ClO-+H2O→CNCl+OH-
CNCl+2OH-→CNO-+Cl-+H2O
在該階段氧化過程中,pH值應在10以上,因為反應中間產物CNCl是易揮發內物,其毒性與HCN相當,在容鹼性較大的溶液中,CNCl才能與OH-反應生成CNO-,故應保持較高的鹼性。如果溶液為酸性,則因CNCl很穩定,隨污水排放會造成二次污染。當pH<9.5時,CNCl與OH-的化學反應不完全,速度又很慢,有時長達數小時以上。只有pH>10時,反應速度才快,只需10~15分鍾,反應即可完成
9. 廢水電解處理法的化學反應原理
電解槽內裝有極板,一般用普通鋼板製成。極板取適當間距,以保證電能消耗較少而又便於安裝、運行和維修。電解槽按極板聯接電源方式分單極性和雙極性兩種。雙極性電極電解槽的特點是中間電極靠靜電感應產生雙極性。這種電解槽較單極性電極電解槽的電極連接簡單,運行安全,耗電量顯著減少。陽極與整流器陽極相聯接,陰極與整流器陰極相聯接。通電後,在外電場作用下,陽極失去電子發生氧化反應,陰極獲得電子發生還原反應。廢水流經電解槽,作 為電解液,在陽極和陰極分別發生氧化和還原反應,有害物質被去除。這種直接在電極上的氧化或還原反應稱為初級反應。以含氰廢水為例,它在陽極表面上的電化學氧化過程為:
CN-+2OH--2e─→CNO-+H2O
2CNO-+4OH--6e─→2CO2↑+N2↑+2H2O氰被轉化為無毒而穩定的無機物。
電解處理廢水也可採用間接氧化和間接還原方式,即利用電極氧化和還原產物與廢水中的有害物質發生化學反應,生成不溶於水的沉澱物,以分離除去有害物質。電鍍含鉻廢水的電解處理過程是:
鐵陽極溶解:
Fe-2e─→Fe2+
6Fe2++Cr2O崼+14H+─→6Fe3++2Cr3++7H2O
CrO厈+3Fe2++8H+─→Cr3++3Fe3++4H2O
在上述電解過程中,廢水中大量氫離子被消耗,氫氧根離子濃度增加,廢水從酸性過渡到鹼性,進而生成氫氧化鉻和氫氧化鐵等物質沉澱下來:
Cr3++3OH-─→Cr(OH)3↓
Fe3++3OH-─→Fe(OH)3↓
把沉澱物質同水分離,達到去除鉻離子,凈化廢水的目的。以上反應式中除鐵陽極發生陽極溶解是初級反應外,其他為次級反應。
在上述電解過程中,除初級反應和次級反應的處理廢水作用外,還因電解水的作用,分別在陰極和陽極產生氫氣和氧氣,這兩種初生態【H】和【O】能對廢水中污染物起化學還原和氧化作用,並能產生細小的氣泡,使絮凝物或油分附在氣泡上浮升至液面以利於排除。這種方法稱為電浮選。此外,由於鐵或鋁制金屬陽極溶解的離子進一步水解,可以成為氫氧化亞鐵或氫氧化鋁等不溶於水的金屬氫氧化物活性混凝劑。這種物質呈多孔性凝膠結構,具有表面電荷作用和較強的吸附作用,能對廢水中的有機或無機污染物起抱合凝聚作用,使污染物相互凝聚而從廢水中分離出來。這種方法稱為電絮凝處理。
由此可見,廢水電解處理包括電極表面上電化學作用、間接氧化和間接還原、電浮選和電絮凝等過程,分別以不同的作用去除廢水中的污染物。
10. 電解處理含氰廢水要求在什麼條件下進行,這是因為什麼
這類廢水沒有接觸過,不過含氰廢水有毒應該會有什麼特殊的要求吧,比如分流處理之類的吧。這類問題你可以到環保通跟大家一起討論