導航:首頁 > 污水知識 > 軋鋼廢水設計規范

軋鋼廢水設計規范

發布時間:2022-01-05 01:20:13

❶ 關於軋鋼的問題

你們是做線材的嗎?導輪材質在設計的時候就應該考慮好的,應該是耐磨的,導輪損壞主要是什麼原因,才能解決這個問題。你想高清這個問題從這幾個方面考慮:
1、安裝是否正確(導衛組裝和線上安裝)。
2、冷卻水是否正確。
3、加熱工藝(鋼種)是否有變化(溫度超高)

廢水排放量與用水量的關系(比例多少)

一、統計用水、排水等有關指標,必須首先對給水系統有個概略了解。在工業生產中按給水的路線和利用程度,分為直流、循環和循序三種給水系統。
1、直流給水系統指工業生產用水由就近水源取消,水經過一次使用後便以廢水形式全部或大部分排走。其生產用水量等於企業從地下水源和地面水源取用的新鮮水量。
2、循環給水系統指使用過後的水經適當處理重新回用,不再排走。在循環過程中所損耗的水量,須從水源取水加以補充。
3、循序給水系統是根據各車間對水質的要求,將水重復利用,將水源送來的水先供甲車間使用,甲車間使用後的水或直接送乙車間使用,或經適當處理(冷卻、沉澱等)後加壓送乙車間或丙車間使用,然後排放。這種系統也叫串級給水系統。
二、廢水排放量的計算有兩種:
1、使用各種流量計進行測量,如監測數據、各種流量計測得的數據和連續自動監控測得的數據等。
2、系數估演算法。從排污單位的新鮮用水量來估算其污水排放量。
(1)排污單位的新鮮水量沒有進入其產品,一般其污水排放量可以估算為新鮮水量的0.8―0.9倍。
(2)有相當部分變成產品(如啤酒、飲料行業),則其污水排放量應以新鮮水量減去轉成產品數量的0.8―0.9倍。
(3)部分行業水的重復利用率很高,如軋鋼、選礦等行業水的重復利用率都高達80%~90%,水經過多次使用,蒸發和流失都很大,這時用新鮮水量推算污水排放量時所用的系數就比較小,有時甚至會達到40%~50%。還可以利用產污系數進行測算。

❸ 廢水污染物主要控制哪些參數

一般污染物:
COD、懸浮物、氨氮(總氮)、總磷

根據工廠排放廢水污染特性,如存在以下物質也需控制
一類污染物質、「三致」物質、其它重金屬、其他有毒有害物質

❹ 鋼廠軋鋼廢水聚合氯化鋁能處理嗎

鋼廠冷軋廢水組成比較復雜,主要有含油乳化廢水、高濃度含鉻廢水、硫氰化鈉廢水以及酸洗的廢酸液等。處理方法也有不同。
含油乳化液廢水經蒸汽間接加熱後,分離出油,在貯槽一段的為浮油,經吸附分離,底部為污泥,經刮泥並送至污泥池。位於貯槽中部乳化液進入二級超濾濃縮,再經最終離子分離,得到90%濃度廢油,回收,而超濾廢水進入收集分配槽中。高濃度含鉻廢水利用陽離子交換樹脂去除,而陽離子交換樹脂的再生液和其他含鉻廢水通過化學還原法處理。硫氰化鈉廢水用氧化劑次氯酸鈉處理,但反應時要加石灰水或鹽酸調PH值。經各路處理後的廢水收集與分配槽中,經過兩級中和處理後進入混凝池,投加高分子絮凝劑(高分子絮凝劑:無機高分子絮凝劑聚合氯化鋁,有機高分子絮凝劑聚丙烯醯胺),流入沉澱池凈化,出水控制好PH值後排放。沉澱池污泥另行處理。
鋼廠污水處理用絮凝劑選型。鋼廠在軋鋼生產過程中,會產生大量的廢水,廢水中主要含有噴淋冷卻軋機軋輥輥道和軋制鋼材的表面產生的氧化鐵皮,機械設備上的油類物質,固體雜質等廢棄物及污泥等。軋鋼廢水可分為熱軋廢水和冷軋廢水兩種,主要污染物是大量的粒度不同的氧化鐵皮及潤滑油類,其中熱軋廢水中含油廢水的治理及廢油的回收技術在軋鋼廢水中具有代表性,此外,細顆粒含油氧化鐵皮的濃縮、脫水處理等也是主要的治理內容。
鋼廠污水特徵:
1.煉鐵廢水 來源於高爐煤氣洗滌水和沖渣廢水,特點是:廢水水溫較高,懸浮物濃度大,可高達1000~3000毫克/升;
2.煉鋼廢水 來源於設備間接冷卻水、設備和產品的直接冷卻廢水、除塵廢水、沖渣廢水,特點是:設備和產品的直接冷卻廢水。含有大量氧化鐵和少量潤滑油脂,處理後可循環利用;
3.軋鋼廢水 來源於熱軋和冷軋產品過程中需要大量直接冷卻水,沖洗鋼材和設備,特點是:熱軋廢水含有大量氧化鐵和油,水溫高、水量大。
根據以上的鋼廠污水特點,鋼廠污水處理主要用到污水處理絮凝劑有聚丙烯醯胺、聚合氯化鋁兩種,聚合氯化鋁相對要簡單,看氧化鋁含量優選適合自己的葯劑即可,而鋼廠用聚丙烯醯胺混凝處理用陰離子聚丙烯醯胺即可,轉爐除塵廢水處理要用到陽離子聚丙烯醯胺。

❺ 煉鋼廠廢水中含有哪些物質,越具體越好,它的用水水質標準是什麼

1焦化廢水 含有高濃度酚。
2高爐煤氣洗滌水 含有大量的固形物和雜質
3轉爐煙氣廢水 含有大量懸浮物。
4軋鋼廢水 主要污染物為氧化鐵皮、懸浮物和油類。
5鋼材酸洗廢水, 其中主要含酸和鐵鹽。

至於它的用水標准 工業用水就好。。。。

❻ 請問,工業污水中總鐵排放標準是多少

《污水綜合排放標准:GB8978-1996》並未規定總鐵排放標准,各個地方環保排放標準的規內定似未統一,有的容規定:現有企業 10mg/L,(污染物排放監控位置為廢水總排放口)
新建企業 5 mg/L ,敏感區域 1mg/L
也有的按:
現有企業 5mg/L,新建企業 3 mg/L ,敏感區域 2mg/L 等

參照以下標准:
《電鍍污染物排放標准》(GB21900-2008)
3 mg/L ,敏感區域 2mg/L
《污水排入城市下水道水質標准》(CJ3082-1999)
污水排入城市下水道水質標准 10mg/L

❼ 給水排水設計手冊的作品目錄

1 工業排水管道
1.1 工業排水系統及水量水質
1.1.1 工業排水系統
1.1.2 工業污水的來源
1.1.3 生產污水的水量水質調查
1.1.4 生產污水的水量水質實例
1.2 工業排水管道的設置
1.2.1 一般規定
1.2.2 管道計算
1.2.3 工業排水管道設置方法
1.3 耐酸(鹼)管道
1.3.1 管材選擇
1.3.2 管道設計
1.4 排水管道安全措施
1.4.1 管道絕熱
1.4.2 工業排水管道的防火、防爆
2 料渣水力輸送
2.1 物料的主要物理性質
2.1.1 密度和重度
2.1.2 粒徑及其分布
2.1.3 顆粒形狀系數
2.1.4 顆粒沉降阻力系數與沉速
2.2 物料漿體主要特性
2.2.1 漿體密度
2.2.2 漿體濃度
2.2.3 漿體沉降極限濃度
2.2.4 漿體流變特性
2.2.5 漿體磨蝕特性
2.2.6 漿體熱力特性
2.3 物料水力輸送的方式及實例
2.3.1 物料水力輸送方式
2.3.2 物料水力輸送實例
2.4 水力計算
2.4.1 尾礦壓力輸送水力計算
2.4.2 尾礦自流輸送水力計算
2.4.3 灰渣壓力輸送水力計算
2.4.4 灰渣自流輸送水力計算
2.5 漿體濃縮
2.5.1 普通濃縮池的計算與選擇
2.5.2 斜板、斜管濃縮池的計算
2.5.3 高效濃縮機
2.6 高濃度輸送水力計算
2.7 輸送管槽
2.7.1 管槽設計
2.7.2 管槽材料及附屬零件
2.7.3 支座及枕墊
2.7.4 管槽的路基
2.8 渣泵及泵站
2.8.1 離心渣泵的選擇
2.8.2 砂泵站位置
2.8.3 泵站的配置
2.9 油隔離泥漿泵
2.9.1 特點
2.9.2 適用條件
2.9.3 油隔離泥漿泵的選擇及應用實例
2.10 PZNB型噴水式柱塞泥漿泵
2.10.1 結構特點
2.10.2 適用條件
2.10.3 型號與參數
2.11 SGB型水隔離泵
2.11.1 工作原理
2.11.2 結構特點
2.11.3 技術參數
2.11.4 應用范圍
2.11.5 選型要求
3 工業污水處理的前期工作及預處理
3.1 工業污水處理的前期工作
3.1.1 工業污水的組成
3.1.2 工業污水處理的前提
3.1.3 工業污水水量、水質的調研項目
3.1.4 可能選用的處理工藝或其組合
3.1.5 水體和水體標准
3.1.6 工業污水的排放標准
3.1.7 下水道排放標准
3.1.8 工業污水的回用
3.1.9 工業污水的其他利用
3.1.10 12種可能的處理方案布置
3.2 常用預處理
3.2.1 細固體雜質的去除
3.2.2 均化
3.2.3 中和
3.2.4 其他預處理
3.3 工業廢水總程平衡治理技術
3.3.1 技術概況
3.3.2 技術原理
3.3.3 技術內容及實施步驟
3.3.4 總程平衡與清污分流的區別
3.3.5 適用范圍及推廣前景
3.3.6應用範例
4 鋼鐵工業污水處理及實例
4.1 鋼鐵工業污水處理
4.1.1 煉鐵污水處理
4.1.2 煉鋼污水處理
4.1.3 軋鋼污水處理
4.1.4 鐵合金污水處理
4.2 鋼鐵工業污水處理實例
4.2.1 例1 燒結污水處理實例
4.2.2 例2 煤氣洗滌污水處理實例
4.2.3 例3 煤氣洗滌污水處理實例
4.2.4 例4 軋鋼污水處理實例
4.2.5 例5 焦化污水處理實例
4.2.6 例6 焦化污水處理實例
4.2.7 例7 焦化污水處理實例
4.2.8 例8 焦化污水處理實例
4.2.9 例9 焦化污水處理實例
5 有色金屬工業污水處理及實例
5.1 有色金屬工業污水處理
5.1.1 采礦污水處理
5.1.2 選礦污水處理
5.1.3 冶煉污水處理
5.2 有色金屬工業污水處理實例
5.2.1 例10 黃金工業污水處理實例
5.2.2 例11 銅冶煉煙氣制酸污水處理實例
5.2.3 例12 銅冶煉煙氣制酸污水處理實例
5.2.4 例13 有色金屬冶煉污水處理實例
6 煉油工業污水處理及實例
6.1 煉油工業污水處理
6.2 煉油污水處理實例
6.2.1 例14 煉油污水處理實例
6.2.2 例15 煉油污水處理實例
6.2.3 例16 煉油污水處理實例
6.2.4 例17 煉油污水處理實例
6.2.5 例18 煉油及石油化工污水處理實例
6.2.6 例19 煉油污水處理實例
6.2.7 例20 煉油廠廢渣處理實例
7 石油化工污水處理及實例
7.1 石油化工污水處理
7.2 石油化工污水處理實例
7.2.1 例21 石油化工污水處理實例
7.2.2 例22 對苯二甲酸、聚酯、滌綸紡絲污水處理實例
7.2.3 例23 錦綸、滌綸污水處理實例
7.2.4 例24 聚酯、三綸污水處理實例
7.2.5 例25 某石化聯合裝置污水處理實例
7.2.6 例26 某石化區污水處理實例
7.2.7 例27 某30萬t乙烯污水處理實例
7.2.8 例28 某PTA裝置污水處理實例
8 化工污水處理及實例
8.1 化工污水處理
8.2 化工污水處理實例
8.2.1 例29 化工酸鹼污水處理實例
8.2.2 例30 化工含酚污水處理實例
8.2.3 例31 化工污水處理實例
8.2.4 例32 化工酸鹼污水處理實例
8.2.5 例33 氯鹼高濃度有機污水處理實例
8.2.6 例34 烯烴兩醇污水處理實例
8.2.7 例35 腈綸污水處理實例
8.2.8 例36 PTA污水處理實例
8.2.9 例37 PTA污水處理實例
8.2.10 例38 維尼綸污水處理實例
8.2.11 例39 維尼綸污水處理實例
8.2.12 例40 維尼綸污水處理實例
8.2.13 例41 維尼綸污水處理實例
8.2.14 例42 維尼綸瀉水處理實例
8.2.15 例43 氯丁橡膠污水處理實例
8.2.16 例44 含硝酸污水處理實例
8.2.17 例45 化工污水處理實例
9 紡織工業污水處理及實例
9.1 紡織工業污水處理
9.1.1 紡織工業污水分類
9.1.2 各種紡織工業生產及污水水質水量
9.1.3 紡織工業污水處理方法及構築物
9.2 紡織工業污水處理實例
9.2.1 例46 印染污水處理實例
9.2.2 例47 印刷染污水處理實例
9.2.3 例48 印染污水處理實例
9.2.4 例49 印染污水處理實例
9.2.5 例50 印染污水處理實例
9.2.6 例51 毛紡污水處理實例
9.2.7 例52 毛紡污水處理實例
9.2.8 例53 毛紡污水處理實例
9.2.9 例54 毛紡污水處理實例
9.2.10 例55 毛紡污水處理實例
9.2.11 例56 針織污水處理實例
9.2.12 例57 針織污水處理實例
9.2.13 例58 針織污水處理實例
9.2.14 例59 針織污水處理實例
9.2.15 例60 針織污水處理實例
9.2.16 例61 絲綢污水處理實例
9.2.17 例62 絲綢污水處理實例
9.2.18 例63 絲綢污水處理實例
9.2.19 例64 絲綢污水處理實例
9.2.20 例65 絲綢污水處理實例
9.2.21 例66 化纖污水處理實例
9.2.22 例67 化纖污水處理實例
9.2.23 例68 化纖污水處理實例
9.2.24 例69 化纖污水處理實例
9.2.25 例70 化纖污水處理實例
9.2.26 例71 化纖污水處理實例
9.2.27 例72 化纖污水處理實例
9.2.28 例73 化纖污水處理實例
9.2.29 例74 薴麻污水處理實例
9.2.30 例75 薴麻污水處理實例
9.2.31 例76 印染、漂煉污水處理實例
9.2.32 例77 印染污水處理實例
9.2.33 例78 印染污水處理實例
9.2.34 例79 印染污水處理實例
9.2.35 例80 印染污水處理實例
9.2.36 例81 漂染污水處理實例
9.2.37 例82 印染污水處理實例
9.2.38 例83 印染污水處理實例
9.2.39 例84 毛紡污水處理實例
9.2.40 例85 毛紡污水處理實例
9.2.41 例86 毛紡污水處理實例
9.2.42 例87 毛紡污水處理實例
9.2.43 例88 毛紡污水處理實例
9.2.44 例89 毛紡污水處理實例
9.2.45 例90 毛紡污水處理實例
9.2.46 例91 印染污水處理實例
9.2.47 例92 印染污水處理實例
9.2.48 例93 印染污水處理實例
9.2.49 例94 洗毛污水處理實例
10 電子工業污水處理及實例
10.1 電子工業污水處理
10.1.1 污水分類
10.1.2 污水來源及主要有害物質
10.2 電子工業污水處理實例
10.2.1 例95 彩色顯像管總裝工廠污水處理實例
10.2.2 例96 彩色顯像管玻殼工廠污水處理實例
10.2.3 例97 彩色顯像管蔭罩廠污水處理實例
10.2.4 例98 彩色顯像管熒光粉廠污水處理實例
10.2.5 例99 電鍍車間污水處理實例
10.2.6 例100 制電路板廠污水處理實例
10.2.7 例101 半導體器件生產污水處理實例
10.2.8 例102 鍋爐房灰渣污水處理實例
10.2.9 例103 汞鈦齊消氣劑含汞污水處理實例
10.2.10 例104 鹼性蓄電池廠污水處理實例
11 輕工業污水處理及實例
11.1 造紙工業污水處理及實例
11.1.1 造紙工業污水處理
11.1.2 造紙工業污水處理實例(例105~108)
11.2 屠宰污水處理實例
11.2.1 例109 屠宰污水處理實例
11.2.2 例110 屠宰污水處理實例
11.2.3 例111 屠宰污水處理實例
11.2.4 例112 屠宰污水處理實例
11.3 製革污水處理實例
11.3.1 例113 製革污水處理實例
11.3.2 例114 製革污水處理實例
11.4 油脂工業污水處理及實例
11.4.1 油脂工業污水處理
11.4.2 油脂工業污水處理實例(例115~117)
11.5 釀酒工業污水處理及實例
11.5.1 釀酒工業污水處理
11.5.2 釀酒工業污水處理實例(例118~120)
11.6 碳酸飲料工業污水處理及實例
11.6.1 碳酸飲料工業污水處理
11.6.2 碳酸飲料工業污水處理實例(例121~125)
12 其他工業污水處理及實例
12.1 合成洗滌劑污水處理及實例
12.1.1 合成洗滌劑污水處理
12.1.2 合成洗滌劑污水處理實例(例126~128)
12.2 電鍍污水處理實例
12.2.1 例129 含氰、含鉻污水處理實例
12.2.2 例130 含鉻電鍍污水處理實例
12.2.3 例131 鍍鋅鈍化污水處理實例
12.2.4 例132 含鉻電鍍污水處理實例
12.2.5 例133 鍍鉻、銅、鎘污水處理實例
12.2.6 例134 酸洗污水處理實例
12.3 炸葯污水處理實例
12.3.1 例135 炸葯污水處理實例
12.3.2 例136 炸葯污水處理實例
12.4 鐵路污水處理實例
12.4.1 例137 罐車洗刷污水處理實例
12.4.2 例138 洗刷污水處理實例
12.4.3 例139 洗刷污水處理實例
12.5 膠片洗印污水處理實例
12.5.1 例140 膠片洗印污水處理實例
12.5.2 例141 膠片洗印污水處理實例
12.6 冷飲、制葯、養魚、建材、鑄造生產污水處理實例
12.6.1 例142 冰激凌污水處理實例
12.6.2 例143 VC制葯污水處理實例
12.6.3 例144 工廠養魚污水處理實例
12.6.4 例145 纖維板污水處理實例
12.6.5 例146 鑄造水力清砂污水處理實例
13 有關標准
13.1 現行標准
13.1.1 地表水環境質量標准(GHZB 1—99)
13.1.2 海水水質標准(GB 3097—97)
13.1.3 地下水質量標准(GB/T 14848—93)
13.1.4 漁業水質標准(GB 11607—89)
13.1.5 農田灌溉水質標准(GB 5084—92)
13.1.6 生活雜用水水質標准(CJ 25.1—89)
13.1.7 土壤環境質量標准(GB 15618—95)
13.1.8 污水綜合排放標准(GB 8978—96)
13.1.9 污水排人城市下水道水質標准(CJ 3082—99)
13.1.10 農用污泥中污染物控制標准(GB 4284—84)
13.1.11 惡臭污染物排放標准(GB 14554—93)
13.1.12 造紙工業水污染物排放標准((GWPB 2—99)
13.1.13 燒鹼、聚氯乙烯工業水污染物排放標准(GB 15581—95)
13.1.14 磷肥工業水污染物排放標准(GB 15580—95)
13.1.15 放射性廢物的分類(GB 9133—95)
13.1.16 輕水堆核電廠放射性廢水排放系統技術規定(GB 14587—93)
13.1.17 兵器工業水污染物排放標准(GB 14470.1~ 14470.3—93)
13.1.18 航天推進劑水污染物排放與分析方法標准(GB 14374—93、GB/T 14375~14378—93)
13.1.19 合成氨工業水污染物排放標准(GB 13458—92)
13.1.20 肉類加工工業水污染物排放標准(GB 13457—92)
13.1.21 鋼鐵工業水污染物排放標准(GB 13456—92)
13.1.22 紡織染整工業水污染物排放標准(GB 4287—92)
13.1.23 含多氯聯苯廢物污染控制標准(GB 13015—91)
13.1.24 海洋石油開發工業含油污水排放標准(GB 4914—85)
13.1.25 普鈣工業污染物排放標准(GB 4917—85)
13.1.26 船舶工業污染物排放標准(GB 4286—84)
13.1.27 梯恩梯工業水污染物排放標准(GB 4274—84)
13.1.28 黑索金工業水污染物排放標准(GB 4275—84)
13.1.29 火炸葯工業水污染物排放標准(GB 4276—84)
13.1.30 雷汞工業污染物排放標准(GB 4277—84)
13.1.31 二硝基重氮酚工業水污染物排放標准(GB 4278—84)
13.1.32 疊氮化鉛、三硝基間苯二酚鉛、DS共晶工業水污染物排放標准(GB 4279—84)
13.1.33 船舶污染物排放標准(GB 3552—83)
13.2 地方標准
13.2.1 上海市:污水綜合排放標准(DB 31/199—97)
13.2.2 貴州省環境污染物排放標准(DB 52/12—99)
13.2.3 北京市:中水水質標准
13.3 參考標准
13.4 已被取代的標准

❽ 軋鋼廠工業廢水原液

1軋鋼廢水閉路循環治理 1.1治理工藝流程
軋鋼廢水中主要污染物為氧化鐵皮和油,治理改造後要求處理後的循環水質為:懸浮物含量≤50mg/L,油含量≤5 mg/L。在總結軋鋼廢水處理技術的基礎上,結合我公司軋鋼作業生產區的特點,採用浮油回收—電磁凝聚—斜板沉澱的方法對一廠區軋鋼廢水進行集中處理,閉路循環使用。為了匯總所有的軋鋼廢水,採用了軋鋼廢水同生活污水、雨水分流的單獨軋鋼廢水排水總溝。各廠軋鋼廢水首先由軋鋼廢水總溝匯入隔油池(利用現有土水池改建而成),經除油設施除油,再由升壓泵組提升送至電磁凝聚器磁化處理然後自流入斜板沉澱器,廢水經沉澱處理後,進入現有5000 m3蓄水池,再經現有二級加壓泵站送至各軋鋼廠循環使用,補充水來自南淝河現有一級水源泵站。
斜板沉澱器沉澱的氧化鐵皮,由沉澱器底部的螺旋輸泥機輸出,經泥漿氣力提升器送至氧化鐵皮脫水槽脫水,脫水後的氧化鐵皮,用電動抓鬥裝車送燒結廠回收利用。
經除油設施回收的廢油也可重新利用。
軋鋼廢水閉路循環治理工藝流程見圖2(圖中虛線框所示為現有設施)。

1.2主要處理設施
1.2.1除油設施
軋鋼廢水含油主要是軋制設備潤滑時的跑、冒、滴、漏造成的,針對廢水含油主要是浮油的特點,採用平流隔油池,軋鋼廢水先流經隔油池,大量的浮油被隔油池的擋板阻隔並浮集在水的表面,再通過SY-120型浮油回收機進行回收。該浮油回收機與傳統的浮桶式除油機等相比較,具有除油效果好、安裝、操作簡便等優點,它的工作原理是依靠一條親油疏水的環形集油拖,通過機械驅動以一定的速度在隔油池水面上連續不斷地回轉,把浮油從含油污水中粘附上來,經擠壓輥把油擠落到油箱中,進行油的回收。除油設施安裝使用後,經實測,進水水質含油量為16~4.5 mg/L,經除油設施除油後,出水水質含油量為4.8~2.3 mg/L,除油效果明顯,出水含油濃度符合循環水質要求。
1.2.2電磁凝聚器
經一次鐵皮沉澱地沉澱處理後的軋鋼氧化鐵皮廢水,其中氧化鐵皮主要為微細顆粒組成,小於60 μm的微粒佔80%左右,如採用平流式沉澱池進行自然沉澱處理,當水力負荷為0.7 m3/(m2·h)時,沉澱效率僅為50%左右,對廢水取樣進行靜態沉澱試驗,沉澱15 min後,沉澱效率僅為56%。鑒於氧化鐵皮具有良好的鐵磁性,採用磁凝聚技術,可使廢水中微細氧化鐵皮流經磁場時產生磁感應,離開磁場後具有剩磁,帶磁的微粒在沉澱過程中互相吸引,聚結成較大的鏈條狀聚合體,加速沉降,提高沉澱效率,並能改善氧化鐵皮脫水性能,提高脫水速度。同時,經磁場處理過的水,有抑制水垢形成的作用。
選用MWG型渠式電磁凝聚器,該電磁凝聚器安全可靠,不須設專人管理,且運行費用低。該設施投入運行數年,大修時未發現循環水系統中有明顯結垢現象,取得了好的效果。
1.2.3斜板沉澱器
採用新型CFC-20型異向流斜板沉澱器(共14台),以取代平流式沉澱池進行軋鋼氧化鐵皮廢水處理。該斜板沉澱器不僅水力負荷高,佔地面積省,處理水質好,還由於沉澱器底部配有適合沉澱泥漿特性的螺旋輸泥機,排出泥漿含水率低達50%左右,且排、停自由掌握,沉澱器和輸泥管路,不會有堵塞事故發生,為氧化鐵皮的脫水輸送,創造了有利條件。
CFC-20型斜板沉澱器主要技術參數為:水表面積:20 m2;高度:7.4 m;處理水量:100~140 m3/h;出水懸浮物含量≤50mg/L;沉降時間:8~10min;排出泥漿含水率:50% 左右。 2治理後效果 軋鋼廢水閉路循環治理工程,於1996年投入運行,經合肥市環境監測站和合鋼公司環境監測站對治理效果進行監測,結果表明,各項治理指標均達到循環水質要求(見表1),治理效果明顯。 表1一廠區軋鋼廢水治理工程水質檢測情況 進水出水 高值中間值低值高值中間值低值懸浮物/(mg·L-1)21013979484031油/(mg·L-1)16.19.24.44.63.02.1一廠區軋鋼廢水實現了閉路循環,一廠區總排水量由原來的45 km3/d,減少到14.8 km3/d,每年可減少向南淝河排放懸浮物 600t,油130t。 3經濟效益 治理系統投入運行後,經濟效益十分顯著。
① 每年可回收氧化鐵皮1400t,廢油90t,價值約36萬元。
② 與治理工程投入使用前相比,每年可減少外排廢水11.02 Mm3,可節約排水費約80多萬元。
③ 與治理工程投入使用前相比,每年減少從南淝河提水10.5 Mm3,可減少水資源費約27萬元,節約電費約47萬元。 4結論 軋鋼廢水治理改造後,使循環水系統實現了閉路循環,經濟效益顯著,同時也為巢湖流域的環境保護發揮了重要作用,達到了保護環境、綜合利用的目的,有顯著的環境、社會效益。

❾ 鋼鐵廠水處理工藝、程序

煉鋼水系統工藝流程及設備
1、系統工藝流程簡述:
(1)轉爐凈環工藝流程:本系統主要供給轉爐冷卻、氧槍、一文水套冷卻、混鐵爐除塵風機冷卻、一次、二次除塵風機冷卻等用水,設備冷卻後開式迴流至水泵房熱水池,由冷卻上塔泵加壓上塔,冷卻後流入冷水池,再由加壓泵送至設備循環使用。
(2)轉爐濁環工藝流程:本系統主要供給煤氣洗滌用水,使用後的水經粗顆粒分離器去除大的雜質顆粒後,再經斜板沉澱池沉澱,處理後的水流入濁環熱水池,由泵加壓送至用水點循環使用。污泥部分加壓送至污泥濃縮池處理。
(3)連鑄濁環工藝流程:本系統主要供給連鑄設備冷卻、二冷水、沖氧化鐵皮等,使用後的水流入旋流井沉澱後,一部分加壓供沖渣循環使用,另一部分水加壓送至化學除油器處理,處理後的水流入泵房連鑄濁環水池,經過濾後加壓上冷卻塔,冷卻後的水流入冷水池,再由泵加壓供生產循環使用。污泥部分加壓送至污泥濃縮池處理。
(4)連鑄凈環工藝流程:本系統主要供給連鑄結晶器冷卻用水,使用後的水利用余壓上冷卻塔,冷卻後流入冷水池,然後經加壓過濾供設備冷卻循環使用,系統消耗用水由軟水補入。
(5)汽包軟水系統:軟水制備後,經除氧器處理後,供汽包。
以上各系統為保證水質均設加葯裝置。
各系統消耗水均由廠區新水管道補入。
2、主要設備:
各系統加壓泵組、泵房起吊設備、過濾器、冷卻塔、加葯裝置、斜板沉澱池、化學除油器、電磁絮凝器、刮泥機,除氧器,軟化裝置、清渣設施等。
四、軋鋼水系統工藝流程及設備
1、系統工藝流程簡述:
(1)軋機凈環工藝流程:本系統的不主要供給軋機電機設備冷卻,使用後的水流入凈環熱水池,由泵加壓上塔冷卻後,流入冷水池,再由泵加壓送至用水點循環使用。
(2)軋機濁環工藝流程:本系統主要供給沖渣及軋機噴射冷卻等,使用後的水流入旋流井,沉澱後的水一部分加壓送至沖渣循環使用,另一部分的水加壓送至化學除油池,處理後的水自流入濁環熱水池,加壓過濾後上冷卻塔,冷卻後的水進入冷水池,再由泵加壓送至設備冷卻用水點循環使用。污泥部分加壓送至污泥濃縮池處理。
(3) 冷軋車間 各個機組場地沖洗排出的含油廢水,酸洗-軋機聯合機組的地坑、軋機清洗等產生的含乳化液和油廢水,連續退火機組的清洗循環處理段、地坑產生的含油廢水,熱鍍鋅機組脫脂的清洗段、地坑產生的含油廢水,彩塗塗層機組脫脂的清洗及工藝段產生的含油廢水,機修修磨輥間產生的乳化液和油廢水,油庫等沖洗廢水進入軋鋼廠的含油、乳化液廢水處理系統。
工藝流程:酸洗機組間斷或連續排出的含酸、含油及乳化液等廢水。乳化液和含油廢水計入調節槽,經靜置分離後,上部的油經帶式撇油機取出,中部濃度的乳化液送一級、二級超濾裝置的循環槽循環濃縮分離,產生濃度為50%的廢油。含酸廢水採取中和沉澱及生化處理工藝,含酸廢水進入調節均衡池,進行水量調節和PH的均衡,用泵送至輻流式中和沉澱池與石灰進行中和反應。
酸洗機組的漂洗水和其他含酸廢水排入酸水處理系統,脫脂廢水經過除油處理後,鈍化清洗水除鉻處理後都進入酸洗水處理系統。酸洗機組的高濃度廢酸進入廢酸再生站,採用RUTHNER噴霧焙燒工藝對廢酸進行再生。回收廢酸中99%以上的煙酸,並獲得可作為磁性材料的氧化鐵粉附加產品。
以上各系統為保證水質均設加葯裝置。
各系統消耗水均由廠區新水管道補入。
2、主要設備:
各系統加壓泵組、泵房起吊設備、過濾器、冷卻塔、加葯裝置、化學除油器、刮泥機,清渣設施等。

❿ 軋鋼導衛使用檢查標准

···軋機導衛? 導衛有N多種結構形式,西馬克、奧鋼聯以及國內設計的都有區別,另外不用軋機上應用的導衛結構也不一樣

閱讀全文

與軋鋼廢水設計規范相關的資料

熱點內容
ctpps版樹脂感光液 瀏覽:144
反滲透純水設備廣州 瀏覽:496
凈水器哪個好性價比高2020 瀏覽:654
用醋洗水垢化學方程式 瀏覽:810
泰州二手煙凈化器大概多少錢 瀏覽:374
RO反滲透膜的安裝方向 瀏覽:3
污水管覆土達不到要求怎辦 瀏覽:264
如何更換陶瓷台式濾芯 瀏覽:592
edi構造 瀏覽:929
污水處理初級證好考嗎 瀏覽:598
EDI酸最多清洗多久 瀏覽:962
誤喝5克除垢劑的水 瀏覽:343
樹脂飾品設備 瀏覽:994
污水處理廠畢業設計日誌 瀏覽:97
飛利浦gc2046除垢沖不出水 瀏覽:548
污水廠先進班組資料 瀏覽:898
污水處理有哪些污泥 瀏覽:944
超量排放廢水如何處罰 瀏覽:50
機油泵濾芯在哪裡 瀏覽:907
老房子衛生間污水排到哪裡 瀏覽:300