導航:首頁 > 污水知識 > 銻廢水處理方法

銻廢水處理方法

發布時間:2021-12-28 16:57:48

⑴ 金屬銻的性質

元素名稱

銻(antimony)的拉丁名稱stibium和元素符號Sb均來自輝銻礦的英文名stibnite。這個詞的原意是「反對僧侶」,據說在古代西方國家的一些僧侶中,曾有許多人患有癩病,他們試圖服用含銻的輝銻礦來治療。可是許多服用輝銻礦的僧侶不但沒有恢復健康,反而病情惡化,一個個地死去。

元素描述

銻在地殼中的含量為0.0001%,主要以單質或輝銻礦、方銻礦、銻華和銻赭石的形式存在,目前已知的含銻礦物多達120種。銻質堅而脆,容易粉碎,有光澤,無延性和展性。銻具有黃銻、灰銻、黑銻三種同素異形體。金屬銻呈銀白色,性脆,有獨特的熱縮冷脹性。無定形銻呈灰色,可由鹵化銻電解製得。

銻有兩種同素異形體:黃色變體僅在-90℃以下才穩定;金屬變體是銻的穩定形式。2070℃時銻蒸汽為單原子分子。

金屬銻不是一種活潑性很強的元素,它僅在赤熱時與水反應放出氫氣,在室溫中不會被空氣氧化,但能與氟、氯、溴化合;加熱時才能與碘和其他百金屬化合。銻易溶於熱硝酸,形成水合的氧化銻。能與熱硫反應,生成硫酸銻。銻在高溫時可與氧反應,生成三氧化二銻,為兩性氧化物,難溶於水,但溶於酸和鹼;可與濃硝酸反應。

性質

元素原子量: 121.8
原子序數: 51
元素類型: 金屬
密度 6.684克/立方厘米
熔點 630.74℃。
沸點 1750℃。

莫氏硬度:3

比重 4.6
化合價 +3和+5。
電離能 8.641電子伏特。

晶體結構:
晶胞為三斜晶胞。

發現和使用過程

銻的發現,約於公元前18世紀在匈牙利曾發現的小銻塊,但在很長時間,人們並未真正地認識這種金屬。1556年德國冶金學者阿格里科拉 (G.Agricola)在其著作中敘述了用礦石熔析生產硫化銻的方法,但將硫化銻誤認為銻。1604年德國人瓦倫廷 (B.Valentine)記述了銻與硫化銻的提取方法。18世紀已用焙燒還原法煉銻,1896年制出電解銻。1930年以後,銻礦鼓風爐熔煉法成為生產金屬銻的重要方法。60~70年代發展了多種揮發熔煉和揮發焙燒法。

中國是世界上發現、利用銻較早的國家之一。據《漢書•食貨志》記載:「王莽居攝,變漢制,鑄作錢幣均用銅,淆以連錫。」《史記》記載:「長沙出連錫」。秦墓出土文物的秦代箭,經光譜分析含銻,由此可知中國對銻的利用很早,當時不叫銻,而稱「連錫」。明朝末年(1541年),中國發現了世界最大的銻礦產地——湖南錫礦山,但當時把銻誤認為錫,故命名錫礦山,至清光緒16年(1890)經化驗始知是銻。光緒23年(1897)創辦「積善」廠,為錫礦山最早的銻煉廠,使我國的「連錫」轉入銻生產的時代。1908年湖南華昌公司從法國引進揮發焙燒法,開始用此法煉銻。隨著機械製造業的興起,銻的用途和需求量擴大,繼開發錫礦山之後又先後開發了湖南桃江板溪、新邵龍山、桃源沃溪等地銻礦,使湖南銻業居全國之首。接著,黔、滇、桂等省區也相繼開采一些銻礦。從1908年以後數十年間,中國產銻量常佔世界總產量50%以上,僅就錫礦山自1912—1935年間的銻品產量佔世界產量的36.6%,佔全國的60.9%。1942年中國著名的有色金屬冶金學家,世界最早的銻冶金專家之一王寵佑與美國人霍德森 (Hodson)共同取得飄浮熔煉—氣態還原熔煉的專利權。

新中國成立之後,對銻礦進行了大規模的地質勘探和開發,並發展了硫化銻精礦鼓風爐揮發熔煉。我國銻礦儲量和產量均居世界首位,並大量出口,生產高純度金屬銻(含銻99.999%)及優質特級銻白,代表著世界銻業先進生產水平。

元素用途

銻是電和熱的不良導體,在常溫下不易氧化,有抗腐蝕性能。因此,銻在合金中的主要作用是增加硬度,常被稱為金屬或合金的硬化劑。在金屬中加入比例不等的銻後,金屬的硬度就會加大,可以用來製造軍火。銻及銻化合物首先使用於耐磨合金、印刷鉛字合金及軍火工業,是重要的戰略物資。

銻可用作PET生產中的縮聚催化劑。含銻合金及化合物則用途十分廣泛,銻化物可阻燃,所以常應用在各式塑料和防火材料中。含銻、鉛的合金耐腐蝕,是生產蓄電池極板、化工管道、電纜包皮的首選材料;銻與錫、鉛、銅的合金強度高、極耐磨,是製造軸承、齒輪的好材料,高純度銻及其它金屬的復合物 (如銀銻、鎵銻)是生產半導體和電熱裝置的理想材料。銻的化合物銻白是優良的白色顏料,常用在陶瓷、橡膠、油漆、玻璃、紡織及化工產業。

隨著科學技術的發展,銻現在已被廣泛用於生產各種阻燃劑、搪瓷、玻璃、橡膠、塗料、顏料、陶瓷、塑料、半導體元件、煙花、醫葯及化工等部門產品。

銻資源分布

世界目前已探明的銻礦儲量為400多萬噸,中國佔了一半多。中國銻的儲量、產量、出口量在世界上均佔有重要地位。中國目前有銻產地111處。主要包括貴州萬山、務川、丹寨、銅仁、半坡;湖南省新晃等汞礦,湖南省冷水江市錫礦山、板溪;廣西壯族自治區南丹縣大廠礦山;甘肅省崖灣銻礦、陝西省旬陽汞銻礦。

銻的毒性

銻會刺激人的眼、鼻、喉嚨及皮膚,持續接觸可破壞心臟及肝臟功能,吸入高含量的銻會導致銻中毒,症狀包括嘔吐、頭痛、呼吸困難,嚴重者可能死亡。德國音樂神童莫扎特死因不明,有一派說法就說他死於銻中毒。

國際氧化銻工業協會早年運行的試驗表明,老鼠若長時間暴露在含銻高濃度空氣中,肺部會產生炎症,近而染上肺癌。雖然至今尚未出現因吸入過量銻而染上肺癌的個案,但仍不排除其對人體的潛在危險。2002年9月,世界衛生組織規定,對水中銻含量和日攝入量應小於0.86微克/千克每日。日本限定寶特瓶中的銻含量應小於200ppm,對熱灌裝用的飲料,則禁用含銻的寶特瓶。歐盟則規定,食品中的銻含量應小於20ppb,環保極PET纖維中的銻含量不得大於260ppm。

元素輔助資料

銻在地殼中含量是比較少的,但它在自然界中有單質狀態存在。1777年,德國采礦官員包恩在西班包根(siebenbürgen)發現天然銻。把這種輝銻礦焙燒後,變成氧化物,再用碳還原,就可獲得金屬銻:

2Sb2S3 + 9O2 → 2Sb2O3 + 6SO2↑

Sb2O3 + 3C → 2Sb + 3CO↑

⑵ 工地污水排放要求

工業廢水是指工業生產過程中產生的廢水和廢液,裡面含有多重有毒物質,不只是污染環境,對人類的健康也有很大的危害。因此,工業廢水的排放一定要達到排放標准才可以,否則就會危及人類的健康。

GB/T 21814-2008 工業廢水的試驗方法 魚類急性毒性試驗

GB/T 32327-2015 工業廢水處理回用技術評價導則

YS/T 740-2010 氧化鋁工業廢水苛性鹼度測定方法

DB43/350-2007 工業廢水中銻灝鋤融標准

DB43/ 968-2014 工業廢水鉈污染物排放標准

DB36/ 1149-2019 工業廢水鉈污染物排放標准

DB44/ 1889-2017 工業廢水鉈污染物排放標准

DB34/T 2499-2015 白酒工業廢水中揮發性脂肪酸的測定 酸化蒸餾滴定法

DB34/T 2500-2015 白酒工業廢水中活性污泥性能指標的測定

DB32/ 3431-2018 鋼鐵工業廢水中鉈污染物排放標准

DB32/ 3432-2018 紡織染整工業廢水中銻污染物排放標准

DB32/T 3432-2018 紡織染整工業廢水中銻污染物排放標准

HJ 2019-2012 鋼鐵工業廢水治理及回用工程技術規范

HJ 2030-2013 味精工業廢水治理工程技術規范

HJ 2036-2013 染料工業廢水治理工程技術規范

HJ 2044-2014 發酵類制葯工業廢水治理工程技術規范

HJ 2045-2014 石油煉制工業廢水治理工程技術規范

HJ 2051-2016 燒鹼、聚氯乙烯工業廢水處理工程技術規范

HJ 2054-2018 磷肥工業廢水治理工程技術規范

HJ 471-2020 紡織染整工業廢水治理工程技術規范

HJ 575-2010 釀造工業廢水治理工程技術規范

T/CNS 8-2018 電子束處理印染和造紙工業廢水技術規范

⑶ 環境保護廢水排放總銻超標後整改報告書怎麼寫

找一個環保公司,最好是做過含重金屬污水處理的。由他們提供一份技術方案。在此基礎上結合你們自身情況,做一份保證報告書。

⑷ 制酸廢水中的砷怎麼處理,選用什麼濾料

凱得菲(KDF)濾料在水處理中的應用

摘要:介紹高純銅鋅合金凱得菲(KDF)的特性,在水處理行業的應用范圍及前景

關鍵詞:高純銅鋅合金、凱得菲(KDF)、電化反應、重金屬、余氯、阻垢、水處理

一、 凱得菲(KDF)的作用及作用機理

凱得菲(KDF)是高純度的銅/鋅合金顆粒,它通過微電化學氧化-還原反應(Redox)進行水處理工作,在與水接觸時,合金中的兩種金屬在亞微觀尺度上構成無數小的原電池系統,這種材料在水中具有強大的反應能力和極快的反應速度,可以清除水中高達99%的氯和水中溶解的鉛、汞、鎳、鉻等金屬離子和化合物。對抑制細菌、真菌、污垢、水藻的滋生效果卓著。被用於預處理、主處理與廢水處理設備。凱得菲(KDF)完善或取代現有技術,可大輻度延長了系統壽命,減少了重金屬、微生物、污垢,降低了總費用,減化系統維護。

(1) 去除強氧化劑(余氯)

凱得菲(KDF)具有強大的還原能力,能去除水中的各種強氧化劑,對余氯特別有效。凱得菲(KDF)是由銅、鋅二種不同的金屬組成的,與水接觸時,合金中電位正的銅成為陰極,而電位負的鋅是陽極,構成原電池。鋅陽極在反應中失去了電子,生成鋅離子進入溶液,銅陰極上發生游離氯的還原反應,而不會發生金屬銅的溶解,水和余氯成為最後的電子接受者,同時生成氫離子、氫氧根離子和氯離子總反應式如下:

Zn+HOCl+H2O+2e—Zn2++Cl-+H++2OH-

水中其他的氧化劑,如臭氧、溴、碘等與凱得菲(KDF)接觸後也能發生類似的氧化還原反應。

(2)去除重金屬

凱得菲(KDF)處理介質可以去除水中的多種重金屬離子,如鉛、汞、銅、鎳、鎘、砷、銻、鋁和其他許多可溶性重金屬離子,它們的去除是通過置換反應和物理和化學吸附反應來完成的。凱得菲(KDF)去除重金屬離子的機理如下:金屬離子吸附於凱得菲(KDF)處理介質的表面並與凱得菲(KDF)中的鋅發生置換反應,生成的金屬或吸附在凱得菲(KDF)表面,或進入凱得菲(KDF)晶格中,從而使有毒重金屬污染物結合在凱得菲(KDF)上。例如,水中溶解的鉛離子還原成不溶性的鉛原子,並吸附於凱得菲(KDF)介質的表面,汞離子與凱得菲(KDF)也發生類似的反應,X射線衍射研究發現汞的去除是形成了銅-汞合金。凱得菲(KDF)處理重金屬離子的化學反應式如下:

Zn/Cu/Zn+Pb2+ →Zn/Cu/Pb+Zn2+

Zn/Cu/Zn+Hg2+→Zn/Cu/Hg+Zn2+

金屬離子在水的PH升高時水解形成金屬氫氧化物沉澱,也能去除金屬離子。

(3)去除硫化氫

在應用膜法進行水處理時,如果選用地下水作水源,水中可能存在硫化氫,硫化氫如被氧化成硫磺就會污染濾膜表面,凱得菲(KDF)過濾介質有去除硫化氫的功能,生成的硫化銅不溶於水,可在凱得菲(KDF)介質反沖洗時去除,化學反應式如下:

Cu/Zn + H2S → Cu/Zn + CuS + H2

2H2 +02 →2H20

(4)減少懸浮固體

凱得菲(KDF)處理介質的顆粒平均尺寸大約為60目,最小的顆粒約110目,也能起到物理過濾去除懸浮物質的作用,通常凱得菲(KDF)過濾介質能夠有效地去除直徑小於至50μm的顆粒。

由鋼鐵材料製成的輸水管件腐蝕時,鐵氧化形成FeO膠體,FeO與凱得菲(KDF)接觸,也可以發生氧化還原反應,FeO最終形成Fe2O3固體沉澱在凱得菲(KDF)表面,可用反沖洗方法將它們去除,化學反應式如下:

Zn + FeO = ZnO + Fe

2Fe + 3O2=2Fe2O3

(5)減少礦物質結垢

凱得菲(KDF)處理介質對碳酸鈣垢的作用有兩上方面。

①一方面,根據PH、二氧化碳濃度和碳酸鈣溶解度之間的關系,當二氧化碳從溶液中除去時,PH值升高,因而使碳酸鈣的溶解度降低。凱得菲(KDF)通過電化學反應也使水的PH值升高,降低碳酸鈣的溶解度,結果使碳酸鈣垢容易析出。

②另一方面,由於凱得菲(KDF)處理介質中鋅離子的溶出,水中的鋅離子含量有所增加,水中鋅離子的存在能改變垢的晶體生長機理,使水中的碳酸鈣垢以文石的結晶形態產生沉澱,在容器的器壁上形成軟垢,而不是結晶為方解石型的硬垢。曾有人研究過水中雜質存在對方解石結晶生長的影響,研究發現,即使鋅離子的濃度很低時,也能阻止方解石結晶的形成。

通過試驗可以進一步證明,凱得菲(KDF)處理介質防止礦物硬垢的形成和積累,主要是阻止方解石形態碳酸鈣的結晶。採用掃描電子顯微鏡和X射線衍射進行結晶學研究證明,未經凱得菲(KDF)處理的水中產生的硬垢是一些相對大的、具有規則形態的針狀鈣鹽和鎂鹽的結晶,這些鹽類質地堅硬、溶解度低、具有網狀結構,是玻璃石灰石垢,經過凱得菲(KDF)處理介質的水中結成的垢,從根本上改變了碳酸鈣(鎂)結晶的形態,垢形相對變小,外觀平坦呈圓形、顆粒形和棒形,都是由不堅硬的粉狀成分組成的,這些成分不會粘附於金屬、塑料或陶瓷的表面,很容易用物理過濾方法將它們除去。

(6)抑制微生物繁殖

凱得菲(KDF)處理介質不是通過一種機理、而是幾種機理控制微生物的生長繁殖,通過每一種的單獨作用或協同作用來達到抑制微生物的作用。主要機理包括:氧化還原電位的變化,氫氧根離子和過氧化氫的形成,介質中鋅的溶出等。在一般情況下,凱得菲(KDF)處理介質作為反滲透膜的預處理手段時,能夠抑制細菌、藻類等微生物的繁殖,從而防止了微生物對膜的破壞。

①氧化還原電位的變化

水通過凱得菲(KDF)處理介質時,其氧化還原電位從+200mV變化到-500mV,在一般情況下,各種類型的微生物只能在特定的氧化還原電位下生長,電位的大幅度變化,能破壞細菌的細胞,從而控制了微生物的生長。但是,水的氧化還原電位變化很小,用凱得菲(KDF)控制細菌,必須使細菌與凱得菲(KDF)直接接觸,凱得菲(KDF)對細菌的抑製作用主要發生於凱得菲(KDF)與水接觸面上,所以僅靠氧化還原電位的變化並不能完全控制微生物。

②氫氧根離子和過氧化氫

在凱得菲(KDF)將二價鐵氧化到三價鐵的過程中會產生氫氧根離子和過氧化氫,這就可以抑制那些在低氧化電位時尚能存活,但對氫離子和過氧化氫敏感的微生物,但是氫氧根離子和過氧化氫的壽命短,只是在過濾過程中具有高的反應活性,對微生物的抑制效果比較明顯,在流出水中的殘余效應比較小。

③鋅離子對微生物的控制

凱得菲(KDF)處理介質中釋放出來的鋅對微生物有明顯的控製作用,鋅能阻止酶的合成,從而影響有機體的正常生長,達到抑制微生物繁殖的目的.另外,凱得菲(KDF)介質通過阻止葉綠素合成而控制藻類生長,鋅離子的存在從本質上降低了有機體從光合作用生產食物的能力,這將顯著影響細菌的生長。

二、凱得菲(KDF)的可應用范圍

凱得菲(KDF)可廣泛應用於預處理、主處理與廢水處理設備中。它們多與活性碳顆粒過濾器,碳塊或管內過濾器共同使用,也可單獨使用。

用凱得菲(KDF)介質進行水的預處理是一種簡單、低耗的方法。對於微濾、超濾、反滲透膜、離子交換樹脂、顆粒狀活性碳,凱得菲(KDF)介質能夠保護這些昂貴易損的水處理組件不受氯、微生物、結垢影響。此外,凱得菲(KDF)介質能去除高達98%的重金屬,如Pb、Cd、Ce、Ag、Ar、Al、Se、Cu、Hg,另外,藉助沉澱在凱得菲(KDF)介質上發生的氧化還原反應還可以降低水中碳酸鹽、硝酸鹽和硫酸鹽。

影響膜分離工藝效率的主要問題是各種污染物在膜表面的沉積,造成膜表面孔的堵塞,這已是無可爭議的事實。凱得菲(KDF)介質與微濾、超濾、反滲透膜、離子交換樹脂、顆粒狀活性碳相比,在提高水處理效率和持續保持高效方面具有更多的優勢,消耗更低。

(1)去除市政飲用水中的余氯

凱得菲(KDF)處理介質正日益被用來替代或與活性碳過濾器聯合使用,去除市政自來水中的余氯(可高達99%),其主要特點是使用壽命長。進行凱得菲(KDF)介質預處理可延長顆粒活性炭的使用壽命,並保護活性炭層(床)免受細菌污染。使碳的去污能力提升到原來的15倍,並且凱得菲(KDF)使更小型的碳過濾器的使用成為可能,從而降低了使用成本。

(2)保護反滲透裝置

反滲透膜很容易受氯腐蝕。凱得菲(KDF)介質可代替活性炭處理以保護反滲透(RO)免受氯氣、細菌污染。活性炭過濾器也可有效地去除余氯,但是由於活性炭在高氯水中會很快吸附飽和,所以在操作時必須嚴格控制水中氯氣的濃度,而且活性炭過濾床容易孳生細菌。凱得菲(KDF)處理介質除氯率高。有抑制微生物繁殖的作用,因而可為反滲透膜提供了穩定、長期的保護。

(3)抑製冷卻水中細菌及藻類的繁殖、減少結垢

冷卻塔及水冷式熱交換器中的水常被加溫並曝於空氣——因而成為細菌、藻類繁殖的絕好溫床(例如LEGIONELLA(軍團菌)可得自冷卻塔)。傳統化學方法通過投加葯劑控製冷卻塔中藻類及細菌生長、其費用昂貴,後續污水處理成本也高。凱得菲(KDF)處理介質處理冷卻水成本低,可有效控制藻類及細菌生長,不使用對環境有害的化學物質。另外,經凱得菲(KDF)介質處理後的水可減少硬水垢的生成。

(4)凱得菲(KDF)處理介質與其它凈水系統

凱得菲(KDF)介質可以控制顆粒活性碳層或活性碳濾芯內細菌、藻類和繁殖。當活性碳與凱得菲(KDF)處理介質一起使用時,活性碳去除有機雜質及余氯的能力增強。

凱得菲(KDF)處理介質也可以代替滲銀活性炭。從而降低成本。也避免了滲銀活性炭銀的毒性造成的潛在危險。

(5)去除有害重金屬及其他可溶性重金屬離子

凱得菲(KDF)介質,可單獨用來從水中除去鉛、汞、砷等有害重金屬以達到滿足飲用水的要求。以除砷為例,美國《水工業》雜志1994年第4期報導,當進水含砷量為5mg/l,凱得菲(KDF)過濾處理後水中含砷量為0.01mg/l,去除率達99.7%。在應用凱得菲(KDF)除砷時,毋須投加葯劑,所需設備也較簡單,僅需配備一台凱得菲(KDF)過濾器,處理過程也十分迅速,其過濾速度是一般採用石英砂的機械過濾器的三倍,因而設備佔地面積也較小。

三、凱得菲(KDF)的其他優點

凱得菲(KDF)處理介質的高壽命

所有的水處理介質都具有一個有效期。硅砂(SiO2)無疑是壽命最長的過濾介質,其次就是使用凱得菲(KDF)處理介質。有兩種情況會降低凱得菲(KDF)的使用壽命,每一種都有很長的時間。第一種是水中余氯的含量比鋅的溶解量要大得多時,余氯濃度為0.55ppm的市政自來水通過凱得菲(KDF)僅產生0.25ppm的鋅,除去10ppm的氯,其鋅的含量也不會超標。第二種是凱得菲(KDF)的物理降解,如腐蝕、磨擦或消耗,但是物理作用對凱得菲(KDF)使用壽命影響很小,據保守估計使用壽命在10年以上。

提供高質量家庭用水

天然無毒的高純銅鋅合金凱得菲(KDF)減少了飲用水與其它家庭用水中的細菌、重金屬、氯及其它有害成份,使用戶看不到氯的影響,如片狀皮膚乾燥、頭發粗糙、浴缸蓬頭中的青苔、綠藻的減少,從而得到口感更好,雜味更少的水質。

四、 總結

KDF已經在國外水處理行業中得到普遍使用,但國內企業應用較少,我公司通過不斷的嘗試,使其成功的國產化,且已批量出口,凱得菲(KDF)在我公司自有產品中使用,有良好的使用效果,並通過了北京市防疫站的鑒定,從國內外用戶反饋來看,也達到了國外同類產品的水平。可以預見,隨著國內企業對凱得菲(KDF)的逐步認識,凱得菲(KDF)在國內水處理行業中必將得到更加廣泛的應用。

參考資料:香凝桃溪

⑸ 印染污泥中含有銻化合物,將污泥加熱後,銻會擴散到空氣中嗎

印染污泥中含有哪些重金屬 ,Zn是我國城市污泥中平均含量最高的重金屬元素 ,其次是Cu ,再次是Cr,而毒性較大的元素Hg、Cd、As含量往往較低

⑹ 求廢水處理中,印花廢水,銻的化學處理方法。

(1)物理法:是利用物理作用來分離污水中的懸浮物或乳濁物,可去除廢水中專的COD。常見的有屬:格柵、篩濾、離心、澄清、過濾、隔油等方法。(2)化學法:是利用化學反應的作用來去除污水中的溶解物質或膠體物質,可去除廢水中的COD。常見的有:中和、沉澱、氧化還原、催化氧化、光催化氧化、微電解、電解絮凝、焚燒等方法。

⑺ 銻的物理性質和化學性質

銻,元素符號Sb,原子序數51,原子量121.75,外圍電子排布5s25p3,位於第五周期第ⅤA族。共價半徑141皮米,離子半徑Sb-3245皮米,Sb+562皮米,第一電離能833.7千焦/摩爾,電負性1.9,主要氧化數(-3)、+3、+5。銻有幾種同素異形體。通常最穩定的是灰銻,銀白或銀灰色菱形晶體,脆而硬,由液態凝固時體積膨脹,即有冷脹性,密度6.68g/cm3,熔點 630.74℃,沸點1750℃,銻蒸氣分子為Sb4,導電性差。此外還有灰色的無定形銻,黃色的黃銻,黑色的黑銻等。銻化學性質不很活動。室溫下不能被空氣中氧氣氧化,但能跟氟、氯、溴化合生成三價或五價鹵化物。加熱時可跟碘、硫化合。高溫時燃燒顯藍色並生成Sb4O6。常溫時不跟水反應,紅熱時跟水反應放出氫氣。跟熱硝酸反應,生成水合氧化銻:
6Sb+10HNO3+3xH2O=3Sb2O5·xH2O+10NO↑+5H2O
能溶於熱的濃鹽酸和硫酸生成氯化銻和硫酸銻。與強鹼反應生成亞銻酸鹽,主要用於制合金如印刷用的活字合金、硬質合金、巴氏合金。還用於制銻鹽、醫葯、顏料及半導體材料等。古代已應用銻及其化合物。在自然界中有游離態和化合態兩種形式存在,主要礦物有輝銻礦(Sb2S3)和方銻礦(Sb2O3)。在地殼中的豐度為1.0×10-4%。用輝銻礦跟鐵屑共熱,或用三氧化二銻與碳共熱都可還原出銻。

來自:http://chemyq.com/xz/xz1/685likvv.htm

性質:第15族(VA)主族准金屬元素。原子序數51。穩定同位素121,123。密度6.691g/cm3(20℃)。熔點630.76℃(3。沸點1587℃。氧化態0,-3,+3,+5。銻有兩種同素異形體:正常穩定的金屬銻和非晶態的灰銻。金屬銻呈藍白色,具有金屬光澤,質地硬而脆。室溫下不與乾燥空氣作用。受熱時燃燒生成三氧化二銻白煙。不與稀酸和鹼作用。主要礦物有輝銻礦(主要組分三硫化二銻)、銻硫鎳礦(硫化銻鎳)和重金屬銻化物。將銻礦石焙燒成氧化物,再用鐵或碳還原可得金屬銻,並經電解精製。在半導體工業中用於製造二極體,紅外檢測器、合金增硬劑、抗摩擦合金、鉛字合金、蓄電池等。銻的氧化物、硫化物和銻酸鈉、用於製造阻燃劑、塗料、陶器釉質,玻璃和瓷器等。

來自:http://chemyq.com/xz/xz6/56104nce.htm

密度:6.684
熔點:630.5℃
沸點:1635℃
性狀:有金屬變體和黃色變體兩種同素異形體,前者有銀白色金屬光澤,具有鮮明的晶體結構。
溶解情況:不溶於水、鹽酸和鹼溶液,溶於王水、濃硫酸,以及硝酸和酒石酸的混合液。
用途:主要供製印刷合金、巴比合金、銻鹽和顏料、蓄電池、白冰銅、硬質合金、軸承合金。也用於半導體工業。
制備或來源:自然界所產的銻大多數是灰銻礦。可將灰銻礦與鐵粉混合共熱而取代出銻,或煅燒成氧化物後再與碳共熱而使氧化物還原成銻。

來自:http://chemyq.com/xz/xz13/127320ntdph.htm

銀白色或深灰色金屬粉末;蒸汽壓 0.13kPa(886℃);熔點630.5℃;沸點1635℃;溶解性:不溶於水、鹽酸、鹼液,溶於王水及濃硫酸;密度:相對密度(水=1)6.68;穩定性:穩定;危險標記 15(有害品,遠離食品);主要用途 主要用於製造合金,也用於印刷和顏料行業

2.對環境的影響:
一、健康危害

侵入途徑:吸入、食入。
健康危害:銻對粘膜有刺激作用,可引起內臟損害。
急性中毒:接觸較高濃度引起化學性結膜炎、鼻炎、咽炎、喉炎、支氣管炎、肺炎。口服引起急性胃腸炎。全身症狀有疲乏無力、頭暈、頭痛、四肢肌肉酸痛。可引起心、肝、腎損害。
慢性影響:常出現頭痛、頭暈、易興奮、失眠、乏力、胃腸功能紊亂、粘膜刺激症狀。可引起鼻中隔穿孔;在銻冶煉過程中可引起銻塵肺;對皮膚有明顯的刺激作用和致敏作用。

二、毒理學資料及環境行為

急性毒性:LD507000mg/kg(大鼠經口)
銻以+3、+4、+5價化合物存在於環境中,尤以三價化合物為常見,主要的有三硫化二銻、三氧化二銻、三氯化銻等。

遷移轉化:天然水中銻的自然含量一般為0.01~5.0ppb,平均為0.5ppb。海水中含銻量為0.18~5.6ppb,平均為0.24ppb。銻在水中的遷移機制,有通過結晶礦物的遷移,有機螯合遷移、被吸附性離子遷移、與氧化物相締合的遷移,以及可溶性遷移。溶於水中的銻化合物有三氯化銻、硫酸銻、酒石酸銻和五氯化銻。銻在淡水中以五價銻存在。海水中的銻以絡合物形式存在,其主要配位體是羥基,下不為例上的形態為Sb(OH)6-或二聚物Sb2O(OH)4。受銻污染的土壤,銻一般富集在表層,主要是土壤表層無機和有機膠體的吸附作用。銻在土壤中是以+3、+5價狀態存在。在旱田或干土中,土壤處於氧化狀態,此時土壤中的Sb3+可氧化成Sb5+,銻以Sb5+存在居多。水田土壤處於淹沒還原狀態,土壤中的銻主要以Sb3+存在。

危險特性:遇明火、高熱可燃。粉體與空氣可形成爆炸性混合物,當達到一定的濃度時,遇火星會發生爆炸。與硝酸銨、二氟化溴、三氮化溴、氯酸、氧化氯、三氟化氯、硝酸、硝酸鉀、高錳酸鉀、過氧化鉀接觸能引起反應。
燃燒(分解)產物:氧化銻。

3.現場應急監測方法:

4.實驗室監測方法:
5-Br-PADAP光度法;原子吸收法《水和廢水監測分析方法》(第三版)國家環保局編
5-Br-PADAP光度法《空氣和廢氣監測分析方法》國家環保局編
原子吸收法《固體廢棄物試驗分析評價手冊》中國環境監測總站等譯

5.環境標准:
前蘇聯(1975) 車間衛生標准 0.5mg/m3
中國(待頒布) 飲用水源水中有害物質的最高容許濃度 0.05mg/L
歐洲共同體(1980) 飲用水中最高容許濃度 10μg/L

6.應急處理處置方法:
一、泄漏應急處理

隔離泄漏污染區,限制出入。切斷火源。建議應急處理人員戴自給正壓式呼吸器,穿一般作業工作服。不要直接接觸泄漏物。小量泄漏:避免揚塵,用潔凈的鏟子收集於乾燥、潔凈、有蓋的容器中。轉移回收。大量泄漏:用塑料布、帆布覆蓋,減少飛散。然後轉移回收。

二、防護措施

呼吸系統防護:可能接觸其粉塵時,應該佩戴自吸過濾式防塵口罩。必要時,佩戴空氣呼吸器、氧氣呼吸器或長管面具。
眼睛防護:戴化學安全防護眼鏡。
身體防護:穿透氣型防毒服。
手防護:戴防化學品手套。
其它:工作現場禁止吸煙、進食和飲水。工作畢,淋浴更衣。單獨存放被毒物污染的衣服,洗後備用。保持良好的衛生習慣。

三、急救措施

皮膚接觸:脫去被污染的衣著,用肥皂水和清水徹底沖洗皮膚。
眼睛接觸:提起眼瞼,用流動清水或生理鹽水沖洗,就醫。
吸入:迅速脫離現場至空氣新鮮處。保持呼吸道通暢。如呼吸困難,給輸氧。如呼吸停止,立即進行人工呼吸。就醫。
食入:飲足量溫水,催吐,洗胃。就醫。

滅火方法:滅火劑:乾粉、干砂。禁止用二氧化碳和酸鹼滅火劑滅火。

來自:http://chemyq.com/xz/xz1/3078iybob.htm

⑻ 從源頭解決印染行業環保問題,怎樣去除印染廢水中的銻

一種印染抄 廢水中銻的去除方法,襲其特徵在於,包括以下步驟:
(1)鹼減量廢水和退漿廢水加入過量酸,調節PH值,進行酸析處理;
(2)酸析處理後的廢水與調節池中染色廢水混合,向混合廢水中加入聚硫酸鐵,並調節PH值,然後通入氣浮池,回收浮渣;
(3)氣浮池處理完成,向廢水中加入液鹼,通入水解池進行水解酸化處理,收集廢氣,將廢水繼續通入生化池;
(4)廢水經生化池處理後進入二沉池,二沉池中分離的污泥迴流進入生化池,分離的廢水加入聚硫酸鐵,並調節PH值,然後進入三沉池;
(5)經三沉池處理的廢水達排放要求,直接排放到外環境或者進入車間回收利用,污泥進行填埋或焚燒處理。

⑼ 怎麼從電子垃圾中提取黃金

1、第一步:把這些金手指放在塑料濾網中,在准備一些鹽酸、少量氯化銅溶液、以及一小根通直流申的空氣起泡器。


注意:使用到強腐蝕性酸請務必在戶外或者通風櫚進行操作(請使用手套護目鏡等護具務必戴上口罩)。

閱讀全文

與銻廢水處理方法相關的資料

熱點內容
汽車空調濾芯怎麼看風道 瀏覽:49
繽越pro空調濾芯怎麼樣 瀏覽:947
企業污水接管證明 瀏覽:624
抽煙機怎麼換濾芯 瀏覽:666
廢水貯槽 瀏覽:418
超濾凈水器和反滲透凈水器的 瀏覽:628
民用污水管道半小時降水多少合理 瀏覽:74
黑色廢水脫色 瀏覽:875
樹脂日用品廠 瀏覽:346
襄陽玻璃鋼污水 瀏覽:844
即熱式飲水機不加熱什麼原因 瀏覽:592
紙杯怎麼變成飲水機 瀏覽:353
不屬於生活污水來源是 瀏覽:969
建造污水處理廠需要什麼工程師證 瀏覽:784
蒸餾結束後防止倒吸 瀏覽:412
中空纖維超濾膜凈水器的優點 瀏覽:904
凈水設備怎麼發朋友圈 瀏覽:72
水處理葯品供貨方案 瀏覽:105
廢水銅超標是什麼工藝產生的 瀏覽:876
如何利用濾芯實現廢水除油 瀏覽:942