導航:首頁 > 污水知識 > 測廢水的水溫的方法

測廢水的水溫的方法

發布時間:2021-12-26 15:23:37

1. 誰有[水和廢水監測方法]第三版電子版

網頁鏈接可在線學習

2. 實驗室檢測污水的方法及步驟

http://..com/question/4375484.html?fr=idnw

3. 常規污水水質檢測實驗方法

常規的污水水質監測要檢測的內容有:COD,BOD,PH,DO,濁度,以及各種需要檢測的污染物的量

4. 如何測污水的色度

理化檢驗-化學分冊(PARTB:CHEM.ANAL.)2008年 第44卷
① 工作簡報 污水色度的測定 姚 國,王建衛 (東莞市市區污水處理廠,東莞523080) 摘 要:作為對常規方法的改進,提出用分光光度法代替目視比色法作為污水色度的測試方法, 並採用重鉻酸鉀及硫酸鈷配製的稀硫酸溶液(酸度約0.02mol・L-1)作為測定色度的標准溶液。 以此標准溶液的吸收峰350nm作為測定波長測定標准及水樣的吸光度。製作了色度在10°~100°之間的標准曲線,對試液的溫度、濁度及酸度的影響作了試驗,此方法的檢出限為色度5°。 關鍵詞:分光光度法;目視比色法;色度;污水 中圖分類號:O657.31 文獻標識碼:A 文章編號:100124020(2008)0120061202 YAOGuo,WANGJian2wei (,Dongguan523080,China) Abstract:, ,ansingadil.H2SO4solution(ca.0.02mol・L-1).,.°to100°wasprepared.(i.e.temperature,)werestudied.°. Keywords:Spectrophotometry;Visualcolorimetry;Colority;Sewagewater 色度是城鎮污水處理廠水質監測的一項基本控制項目。水中色度的測定方法有兩種,測定較清潔的天然水和飲用水的色度用鉑鈷標准比色法或鉻鈷標准比色法[1],測定工業污水和受工業污水污染的地表水及生活污水用稀釋倍數法。新鮮的生活污水中含大量的有機物、無機鹽、懸浮物和膠態物質,使水體混濁,呈淺灰褐色。生活污水經污水處理廠處理後或用0.45μm濾膜過濾後,水樣較清,色度很低,微黃色,可以採用上述兩種方法測定。 稀釋倍數法需將水樣稀釋成不同的稀釋倍數,然後與光學純水比較最後確定出水樣的稀釋倍數,對未受工業廢水污染的生活污水及污水處理廠處理後的出水,在稀釋5~20倍之間色度差異不大,
很難 收稿日期:2006206213 作者簡介:姚國(1965-),女,廣州市人,工程師,主要從事化 學分析工作。 用眼睛分辨。標准比色法通過配製一系列色度標准 溶液,然後與水樣進行目視比色,最後確定出水樣的色度。這兩種方法的共同缺點是受比色管顏色、刻度、天氣和人為影響因素大。試驗結果發現:鉻鈷標准溶液在350nm波長附近有最大吸收峰,且在10°~100°色度范圍內吸光度與色度符合朗伯比耳定律,本法改用重鉻酸鉀代替氯鉑酸鉀配製色度標准溶液,用分光光度計代替人眼進行定量測定。 1 試驗部分 1.1 儀器與試劑 Carry50紫外2可見分光光度計;Millipore純水 機,濾膜及抽濾裝置。 500°鉻鈷標准溶液[1]:准確稱取重鉻酸鉀0.0437g及硫酸鈷(CoSO4・7H2O)1.000g溶於少量水中,加入濃硫酸0.5mL,用水稀釋至500mL。此溶液的色度為500°。 ・ 16・
理化檢驗-化學分冊 姚國等:
污水色度的測定 1.2 標准曲線的繪制 分別取500°鉻鈷標准溶液0,1,2,…,10mL於50mL比色管中,用純化水稀至刻度,搖勻,各管的色度分別為10°,20°,40°,60°,80°,100°,於350nm波長處,以純水為空白,以1cm石英比色皿測定吸光度,繪制標准曲線,相關系數為0.9999,見圖1
。 圖1 用鉻(Ⅵ)2鈷(Ⅱ)標准溶液(色度范圍10°~100° )製作的色度標准曲線 Fig.1 Standardcurveofcolority(intherangeof10°-100° )preparedwithCr(Ⅵ )2Co(Ⅱ)standardsolution500°鉑鈷標准溶液與鉻鈷標准溶液顏色一致, 均呈黃色。稀釋後同一色度的標准溶液顏色也一 致,可用鉻鈷標准溶液代替鉑鈷標准溶液進行測定。 2 結果與討論 2.1 測定波長的選擇 (1)分別取10°~100°鉑鈷標准溶液,以純化水 為空白進行基線效正,用1cm石英比色皿在200~ 800nm波長范圍內掃描,在262nm波長處有最大吸收峰,且吸光度大於1,小於300nm波長處幾乎無吸收,故鉑鈷標准溶液在10°~100°范圍內不適合用於定量測定。掃描圖譜見圖2
。 圖2 色度為10°的鉑鈷標准溶液的吸收光譜 Fig.2 solutionequivalentto10°colority (2)分別取10°~100°鉻鈷標准溶液,以相同的 操作步驟在200~800nm波長范圍內掃描,鉻鈷標准溶液有兩個最大吸收峰,第一個在257nm附近,第二個在350nm附近,為重鉻酸鉀的兩個特徵吸 收峰,掃描圖譜見圖3
。 圖3 色度為10° (a),20°(b),40°(c),60°(d),80°(e)及100° (f)的鉻(Ⅵ)2鈷(Ⅱ)標准溶液的吸收光譜Fig.3 AbsorptionspectraofChromium(Ⅵ)2Cobalt(Ⅱ)° (a),20° (b),40°(c),60°(d),80°(e)and100°(f)(3)分別取污水處理廠的生活污水的原進水和 處理後的出水,以相同的操作步驟在200~800nm波長范圍內掃描;在257nm處的紫外區,由於水樣中含有機物和硝酸鹽干擾色度的測定,選取用靠近可見光區且無干擾的350nm作為測定波長,並製作色度在10°~100°之間的標准曲線。掃描圖譜見圖4
。 圖4 進水及出水樣的吸收光譜 Fig.4 2.2 溫度、濁度[1]、酸度[2]的影響 常溫下溫度對色度的影響很小,可以忽略。濁 度對色度的影響較大,可將水樣經0.45μm濾膜過濾後除去。在微酸性和中性條件下,酸度對色度的影響較小,可以忽略。2.3 檢出限[1] 分光光度法中以扣除空白值後的與0.01吸光度相對應的濃度為檢出限。本法檢出限為色度5°。2.4 水樣的測定 含懸浮物、混濁的水樣需經0.45μm濾膜過濾後進行測定。分取預處理過的水樣50mL於比色管中(或進行適當稀釋),按繪制標准曲線的步驟測定吸光度,根據標准曲線儀器自動算出水樣的色度。 (下轉第65頁) ・ 26・
理化檢驗-化學分冊 王永祥等:
大別山區野生黎豆中微量元素的測定與品質評價 表2 回收率和精密度試驗及與ICP2AES法 測定結果的比較(n=8) Tab.2 Testsforrecoveryandprecision,andanalyt. 元素 Element 測得量Am′toftheelementfound加標量Am′tofstdsaddedρ/(mg・L-1)測得總量Totalam′t ofthe element found 回收率 Recovery /% RSD /% ICP2AES法 測定值 ResultsobtainedbyICP2AESρ/(mg・L-1
) Mg0.180.200.40110.00.170.
19Ca0.350.400.7292.51.140.37Zn0.410.400.8097.50.480.38Cu0.330.300.65106.71.340.29Fe5.255.0010.495.81.865.10Mn 0.46 0.50 0.95 98.0 2.17 0.
44 表3 黎豆與黃豆、黑豆中6種微量元素含量的比較
Tab.3 ,
樣品 Sample 6種痕量元素的測定值 w/(μg・g-1)Mg CaZnCuFeMn黎豆2532177767.0920.86112.9041.02黃豆2270204770.4615.14117.5424.37黑豆 2098 2124 66.72 18.85 139.74 25.80 鎂、鐵等元素,從黎豆與黑豆、黃豆的測定結果比較 中可以看出,黎豆中鎂、錳、銅的含量均明顯高於其 他兩種同類作物,有較高的開發利用價值。參考文獻: [1] 劉萍,吳世德.原子吸收光譜法測竹香米和大米中銅 鋅錳鈉鎂含量[J].中國公共衛生雜志,2002,23(3): 5282528. [2] 李雯,杜秀月.原子吸收光譜法及其應用[J].鹽湖研 究雜志,2003,11(4):67271. [3] 燕冰,楊軍,周靖.火焰原子吸收光譜法測定冬葵葉 中幾種營養元素含量[J].哈爾濱師范大學:自然科學學報,2003,19(4):77280. [4] 王秀敏.原子吸收光譜法測定小麥品種子粒中鉀鈉鈣 鎂的含量[J].河北農業大學學報,2003,26(4):90293. [5] 王平,孫慧,張蘭傑.黑米、黑豆、黑芝麻中幾種微量元 素含量的測定[J].鞍山師范學院學報,2000,2(1):952 98. [6] UmemuraT,KitaguchiR,HaraguchiH.Counterion2 [J].AnalChem,1998,70(5):9362942. [7] DonerG,Ege
A.Evaluationofdigestionproceres rometry[J].AnalChimActa,2004,520(1/2):2172222. [8] BalasubramanianS,PugalenthiV.Determinationof nspectrometry[J].Talanta,1999,50(3):4572
467.
(上接第62頁) 分取污水處理廠的生活污水的原進水和處理後的出水,經預處理後,按文獻[1]中的標准比色法和本方法進行測定,結果見表1
。 表1 用目視比色法與分光光度法測得的色度結果的比較 Tab.1
byvisualcolorimetry andspectrophotometry 測定方法 Methodofdetermination 測得色度值 Valuesofcolorityfounddegree 20050403進水 20050403inletwater20050403出水 20050403 outletwater20050507進水 20050507 inletwater20050507 出水 20050507 outletwater目視比色法15°~20°10°左右10°~15°5°~10°分光光度法 18.9° 11.1° 10.8° 8.4° 由表1可知,鉻鈷標准比色法得到的結果是某 一范圍,本方法得到結果是一個確定的值,兩種方法得到結果一致。本方法的優點:預先建好標准曲線,每次測定時只需將水樣進行預處理,然後測定吸光度,儀器自動算出水樣的色度。操作簡單,結果准確,減少了人為誤差。參考文獻: [1] 國家環保局《水和廢水監測分析方法》編委會.水和廢 水監測分析方法[M].4版.北京:中國環境出版社, 2002. [2] GB11903-1989 水質色度的測定[S]. ・ 56・

5. 測污水中的氨氮有幾種檢測方法

氨氮的測復定方法,通制常有納氏比色法、苯酚-次氯酸鹽(或水楊酸-次氯酸鹽)比色法和電極法等。納氏試劑比色法具操作簡便、靈敏等特點,水中鈣、鎂和鐵等金屬離子、硫化物、醛和酮類、顏色,以及渾濁等干擾測定,需做相應的預處理,苯酚-次氯酸鹽比色法具靈敏、穩定等優點,干擾情況和消除方法同納氏試劑比色法。電極法通常不需要對水樣進行預處理和具測量范圍寬等優點。氨氮含量較高時,尚可採用蒸餾﹣酸滴定法。

6. 測量污水COD有幾種方法

在學校做實驗時我們用高錳酸鉀滴定法,另外還有重鉻酸鉀滴定法,具體的你在「網路文庫」中輸入「化學需氧量」搜索,裡面有詳細介紹。

7. 廢水氣樣的採集與檢測方法,要具體方法包括操作過程什麼的,推薦本書也行

僅供參考! 所謂水質指標是用以評價一般淡水水域、海水水域特性的重要參數.可以根據這些參數對水質的類型進行分類,對水體質量進行判斷和綜合評價.水質指標已形成比較完整的指標體系.
許多水質指標是表示水中某一種或一類物質的含量,常直接用其濃度表示,有些水質指標則是利用某一類物質的共同特性來間接反映其含量.例如水中有機物質具有易被氧化的共同特性,可用其耗氧量作為有機物含量的綜合性指標;還有一些水質指標是同測定方法直接聯系的,例如混濁度,色度等用人為規定的並配製某種人工標准溶液作為衡量的尺度.水質指標按其性質不同,可分為物理的,生物的和化學的指標.關於生物指標,根據水生生物的組成(種類與數量)以及它們的生態學特徵而提出的各項指標已在有關課程中介紹.本節概要討論一下幾項常用的水質物理指標的含義.對於化學指標的含義將在本書的其他有關部門章節中作有關深入的討論,這里按測定所使用的不同方法作粗略的分類.
(一)水質的物理指標
水體環境的物理指標項 目頗多,包括 水溫、滲透壓、混濁度(透明度)、色度、懸浮固體、蒸發殘渣以及其它感官指標如味覺、嗅覺屬性等等.
1. 溫度 溫度是最常用的物理 指標 之一.由於水的許多物理特性、水中進行的化學過程和生物過程 都同 溫度有關,所以它經 常是必須加以測定的.天然水的溫度因水源的不同而異.地表水的溫度與季節氣候條件有關,其變化范圍大約在0.1--30℃;地下水的溫度則比較穩定,一般變化於8--12℃左右,而海水的溫度變化范圍為-2--30℃.
2. 嗅與味 被污染的水體往 往具有不正 常 的氣味,用鼻聞到的稱為嗅,口嘗到的稱為味.有時嗅與味 不能截然分開.常常根據水的氣味,可以推測水中所含雜質和有害成分.水中的嗅與味的來 源可能有:水生植物或微生物的繁殖和衰亡;有機物的腐敗分解;溶解氣體H2S等;溶解的礦物鹽或混入的泥土;工業廢水中 的 各種 雜質 如 石油、酚等;飲用水消毒過程的余氯等.不同的物質有著不同的氣味,例如湖 沼水因藻類繁生或有機物產生的魚腥及霉爛氣味;渾濁河水常含有泥土的澀 味;溫泉水常有硫酸味;有些地下水的H2S氣味;含溶解氧較多的帶甜味;含有機物較多的也常具有甜味;水中含NaCl帶有鹹味,含MgSO4,Na2SO4等帶有苦味;含CuSO4帶有甜味,而Fe的水帶有澀味. 人的感官分辨嗅與味,不可避免帶有主觀性.目前對嗅與味尚無完全客觀的標准和檢測的儀器,只有極清潔或 已消毒過的 水才可用口嘗試.由於水溫對水的氣味有很大影響,所以測定嗅 與味常常在室溫20℃和加熱(40-50℃)兩種情況下進行. 此外,有人提出 以臭氣濃度及臭氣強度指數來度量水質的嗅覺屬性.臭氣濃度(TO)=200/a,式中a為感覺到臭氣的最小水樣量(mL).在給水水源的標准中,要求(TO)值低於3-5. 臭氣 強度指數(PO)系指被測水樣稀釋到沒有臭氣為止時以百分率表示的稀釋倍數. PO與TO通常具有如下關系:PO=lgTO/lg2(合田健,1989).
3.顏色與色度 天然水經常表現出各種顏色.湖沼水常有黃褐色、或黃綠色, 這往往是由腐殖質造成的.水 中懸浮泥沙和不溶解 的礦物質也長帶有顏色,例如粘土使水呈黃色;鐵的氧化物使水呈黃褐色; 硫化氫氧化析出的硫使水呈藍色等等.各種水藻如球藻、硅藻等的繁殖使水 呈黃綠色、褐色等.根據水的顏色,可以推測水中雜質的數量和種類.色 度是對天然的或處理之後的各種用水進行水色測定時所規定的指標.目前世 界各國統一用氯化鉑酸鉀(K2PtCl6)和 氯 化鈷(CoCl2.6H2O)配製的混合溶液作為色度的標准.
4.混濁度與透明度 水中若含有懸浮及膠體狀態的物質,常會發生混濁現象.地表水的混濁是由泥沙、粘土、有機物造成的.地下水一般比較清澈透明,但若水中含有Fe2+鹽,與空氣接觸後就可能產生Fe(OH)3,使水呈棕黃色混濁狀態;海洋在近岸和河口區由於陸地徑流攜帶大量泥沙、粘土、有機物造成的.不同河流因流經地區的地質土壤條件不同,混濁程度可能有很大的差別.地下水一般比較清澈透明,但若水中含有Fe2+鹽,與空氣接觸後就可能產生Fe(OH)3,使水呈棕黃色混濁狀態;海洋在近岸和河口區由於陸地徑流攜帶大量泥沙和其它有機物,水質比較混濁而遠岸海區水區水質透明.
混濁度是一種光學效應,它表示光線透過水層時受到阻礙的程度.這種光學效應和和微粒的大小及形狀有關.從膠體顆粒到懸浮顆粒都能產生混濁現象,其粒徑的變化幅度是很大的.所有有相同懸浮物質含量的兩種水體若顆粒粒徑分級狀況不同,其混濁程度就未必相等.渾濁度的標准單位是以不溶性硅如漂白土、高嶺土在光學阻礙作為測量的基礎,即規定1mgSiO2.L-1所構成的混濁度為1度.把預測水樣與標准混濁度按照比濁法原理進行比較就可以測得其混濁度.
透明度是表示水體透明程度的指標.它與混濁度的意義恰恰相反.都表明水中雜質對透過光線的阻礙程度.若把某一方面白色或黑白相間的圓盤作為觀察對象,透過水層俯視圓盤並調節圓盤深度至恰能看到為止,此時圓盤所在深度位置稱為透明度.
5. 固體含量 天然水體中所含物質大部分屬於固體物質,經常有必要測定其含量作為直接的水質指標.各種固體含量可以分為以下幾類:(1)總固體.即水樣在一定溫度下蒸發乾燥後殘存的固體物質總量,也稱蒸發殘留物;(2)懸浮性固體.即將水樣過濾①,截留物烘乾後的殘存的固體物質的量,也就是懸浮物質的含量,包括不溶於水的泥土、有機物、微生物等;(3)溶解性固體.即水樣過濾後,濾液蒸乾的殘余固體量.包括可溶於水的無機鹽類及有機物質.總固體量是懸浮固體和溶解性固體二者之和.此外還有可沉降固體,固體的灼燒減重等指標.各種固體含量的測定都是以重量法進行的,測定時蒸干溫度對結果的影響很大.一般規定的確105--110℃,不能徹底趕走硫酸鈣、硫酸鎂等結晶水.不易得到固定不變的重量;若在180℃蒸干,所得結果雖比較穩定,但由於一些鹽類如CaCl2 、Ca(NO3)2MgCl2、Mg(NO3)2等具有強烈的吸濕性,極易吸收空氣中的水分,在稱量時也不易得到滿意的結果.因此測定的結果比較粗略.
(二)水質化學指標
利用化學反應、生物化學的反應及物理化學的原理測定的水質指標,總稱為化學指標.由於化學組成的復雜性,通常選擇適當的化學特性進行檢查或作定性、定量的分析.根據不同的分析方法可以把化學指標歸納如下:
1.中和的方法 包括水體的鹼度、酸度等;
2.生成螯合物的方法 如Ca2+ Mg2+及硬度等;
3.加熱和氧化劑分解法 將含生物體在內的有機化合物的含量以加熱分解時產生CO2的量[總有機碳(TOC);微粒有機碳(POC)]、分解時消耗的氧量[總耗氧量(TOD)]或消耗氧化的量[化學耗氧量(COD)]來表示的指標;
4.生物化學反應的方法論 以生物化學耗氧量(BOD)為代表,是測定微生物分解有機物時所需消耗的氧量,包括測定微生物在呼吸過程中產生的CO2的量以及利用脫氫酶等酶活性法來測定有效生物量等指標;
5.氧化還原反應及沉澱法.最典型為溶解氧含量及氯離子含量等指標.
6.電化學法.有水的電導率,氯化-還原電位(pE)以及包括pH在內的離子選擇電極的各種指標,如F-、NH4+以及許多金屬離子;
7.微量成分.以儀器分析為主要檢測手段.包括分光光度法,原子吸收光譜法,氣相、液相色譜法,中子活化分析法以及等離子發射光譜法等.指標項目眾多,如生物營養元素、各種化學形態的重金屬離子及非金屬微量元素、微量有機物、水已的污染物(如有機農葯、油類)以及放射性元素等等. 總之,系統了解各類水質指標的含義具有重要意義.因為對於任何水生生態系統環境都是通過對一系列的、經過嚴格選擇的、具有典型意義代表性的指標進行調查或監測分析結果,而加以綜合評價的.必須強調,水質的生物學指標的調查分析結果對於科學評價水環境質量越來越大越顯示其重要性.象英、美、日等國對水環境的要求,都從生態學的觀點出發,重視生物監測.例如英國泰晤士河由於進行了常時間的治理,1969年已有魚群重新出現,其治理效果就是用已有礙100多種魚類重新回到泰晤士河加以表徵的;日本1970年將生物學水知判斷法列入有關水環境質量指標中;我國現在已將細菌學指標列為部頒水環境質量標准.
二、 我國當前沿用的主要水質理化指標及測試系統
(一) 主要理化指標 當前許多國家都頒布了各自不同的水質質量標准,規定了為數繁多的指標項目.我國於1973年頒布了《工業「三廢」排放試行標准》,規定了工業廢水中有14項有害物質的最高排放濃度.1976年頒發《生活飲用水水質標准》,其中感官性指標有4項(色、混濁度、嗅與味、肉眼可見物);化學指標有8項(Ph、總硬度、鐵、錳、銅、鋅、揮發酚、陰離子合成洗滌劑);毒理學指標有8項(氰化物、砷、硒、汞、鎬、六價鉻、鉛);細菌學指標有3項(細菌總數、大腸菌群、游離余氯).1983年發布《地表水環境質量標准》,規定出20種監測項目的三級質量標准,其中包括pH、水溫、色、嗅、溶解氧,生化需氧量,揮發性酚類、氮化物、砷、總汞、鎘、六價鉻、鉛、銅、石油類、大腸菌群等.我國先行的《海水水質標准(GB3097-82)》規定的理化指標包括物理感官指標,化學感官指標和微生物指標計25項;《漁業水域水質標准(GB11607-89)》包括感官和化學指標34項.
水環境調查或監測分析項目在理化指標方面多根據各類水體目前和將來的用途而加以選擇和確定的.在養殖生產和有關部門水生生物科學研究中,為了充分利用和改良或控制水的理化條件,常常必須對10多項常規指標進行分析,包括溫度、含鹽量(鹽度)、溶解氧、pH、鹼度、硬度、硝酸鹽、亞硝酸鹽、銨氮、總氮、磷酸鹽、總磷、硅酸鹽、化學耗氧量等等;對水環境的污染物質的調查中常按基礎調查、檢測性調查、專題性調查及應急性調查等多種不同類型的用途而選擇不同的指標項目.淡水水體和海水水體常常也有所差異.
從國外報道各種類型的水質調查或監測標准來看,由於國情的不同,其側重點各異.而且調查或監測指標的選擇和確定問題本身也還有一個逐步深入和不斷發展的過程,例如對污染指標隨著新的化學物質的品種的增加、分析技術的發展,以及在流行病學研究中對致癌、致畸及致突變的生理生化過程的深入研究,監測或調查項目會不斷的加以改變,方法也會逐步發展和完善.
(二) 測試系統 對水質理化指標進行的測試實驗可採用現場測試、船上測試和陸上實驗室測試三種方式.採用不同方式測試所得結果的確切程度是不同的,特別是深層水樣的 採集和儲存,其溫度、壓力產生變化,都將使化學平衡點產生變化.例如[HCO3-]/[CO32-]等離子成分的濃度比值以及溶解氣體的含量等都回發生變化.;儲存的水樣,即使排除了容器污染和通過容器表面散失的可能性,水質也會因為懸浮物的凝聚沉降以及生物提的代謝過程、死亡分解過程等的影響而發生改變.
目前,可採用現場測試的項目越來越多,遙控遙感技術的發展使許多水質指標項目的測試可以字響當大的范圍進行同步觀測.但藉助儀器的探頭作高深度水域(特別是海洋)的現場測試常常遇到很多困難.加在現場測試儀器尚未能普及的情況下,水質理化指標測試工作常常必須先採樣後在船上實驗室或陸上實驗室進行.
天貓美國普衛欣提示:霧霾天氣出行記得做好防護。
隨著自動化分析技術的發展,水質指標的調查、監測分析已經逐步使用自動測試系統.該系統一般由采樣裝置,水質連續監測儀器,數據傳輸、記錄及處理幾部分組成,其特點是自動化、儀器化和連續性.目前已採用自動化試系統的有:水溫、Ph、電導率、氧化還原電位、混濁度、懸浮物、溶解氧、COD、TOC、TOD、某些金屬離子、氰化物等等.自動測試系統可避免人工采樣所得數據的不全面性,大大縮短采樣分析到獲得結果之間的時間.但自動測試系統也有局限性,不能對大部分指標逐一單項進行測定,因為水質化學組成(尤其是污染物)復雜,組分價態、形態多變,干擾嚴重,需要一系列的化學預處理操作和各種高靈敏度的檢測方法.因此,發展規律連續自動測試技術並和實驗室(船上和陸上)采樣分析技術相結合,是完善水質理化指標的一系列切實可行的途徑

8. 水和廢水監測分析方法第五版出了嗎

電子版水和廢水監測分析方法第四,沒有增補版。書就有增補版,一個樣的。 w我也想知道第四版和第四版增補的區別有多大,一個02年,一個06年的

9. 廢水的色度怎麼測量的

所謂色度是指含在水中的溶解性的物質或膠狀物質所呈現的類黃色乃至黃褐色的程度。溶液狀態的物質所產生的顏色稱為「真色」;由懸浮物質產生的顏色稱為「假色」。測定前必須將水樣中的懸浮物除去。通常測定清潔的天然水是用鉑鈷比色法。此法操作簡便,色度穩定,標准色列如保存適宜,可長期使用。但其中氯鉑酸鉀太貴,大量使用很不經濟。鉻鈷比色法,試劑便宜易得。方法精密度和准確度與鉑鈷比色法相同,只是標准色列保存時間較短。
1. 鉑鈷標准比色法
1.1 測定范圍
本法最低檢測色度為5度,測定范圍5~50度。即使輕微的渾濁度也干擾測定,故渾濁水樣需先離心使之清澈,然後取上清液測定。
1.2 方法提要
用氯鉑酸鉀和氯化鈷配成與天然水黃色色調相同的標准比色列,用於水樣目視比色測定。規定每升水含有1mg鉑和0.5mg鈷所具有的顏色作為一個色度單位,稱為1度。
1.3 試劑
1.3.1 鉑鈷標准溶液:稱取1.246g氯鉑酸鉀(K2PtCl6)t 1.000g氯化鈷(CoCl2•6H2O),溶於100mL純水中,加入100mL鹽酸,用純水定容至1000mL。此標准溶液的色度為500度。
1.4 儀器、設備
1.4.1 50mL成套高型具塞比色管。
1.4.2 離心機。
1.5 分析步驟
1.5.1 取50mL透明水樣於比色管中。如水樣渾濁應先進行離心,取上清液測定。如水樣色度過高,可少取水樣,加純水稀釋後比色,將結果乘以稀釋倍數。
1.5.2 另取比色管11支,分別加入鉑鈷標准溶液0,0.50,1.00,1.50,2.00,2.50,3.00,3.50,4.00,4.50和5.00mL,加純水至刻度,搖勻。配成的標准色列依次為0,5,10,15,20,25,30,35,40,45和50度。此標准色列可長期使用,但應防止此溶液蒸發及被玷污。
1.5.3 在光線充足處,將水樣與標准色列並列,依白紙為襯底,使光線從底部向上透過比色管,自管口向下垂直觀察比色。
1.5.4 記錄相當標准管色度的度數。
1.6 計算
C=(m/V)×500.............................................(1)
式中: C——水樣的色度,度;
m——鉑鈷標准溶液的用量,mL;
V——水樣體積,mL。
2. 鉻鈷標准比色法
2.1 測定范圍本法最低檢測色度為5度,測定范圍5~50度。即使輕微的渾濁度也干擾測定,故渾濁水樣需先離心使之清澈,然後取上清液測定。
2.2 方法提要用重鉻酸鉀和硫酸鈷配成與天然水黃色色調相近的的標准色列,用於水樣目視比色定量,色度單位與鉑鈷法相同。
2.3 試劑
2.3.1 稀鹽酸溶液:取1mL鹽酸(d20=1.19g/mL),加純水至1000mL。
2.3.2 鉻鈷標准溶液(鉻鈷色度為500度):稱取0.0437g重鉻酸鉀(K2Cr2O7)和1.00g乾燥的硫酸鈷(CoSO4•7H2O),溶於少量純水中,加入0.50mL硫酸(d20=1.84g/mL),攪勻,用純水定容至500mL。
2.4 儀器、設備
2.4.1 50mL成套高型具塞比色管。
2.4.2 離心機。
2.5 分析步驟
2.5.1 取50mL透明水樣於比色管中。如水樣渾濁應先進行離心,取上清液測定。如水樣色度過高,可少取水樣,加純水稀釋後比色,將結果乘以稀釋倍數。
2.5.2 另取比色管11支,分別加入鉻鈷標准溶液(2.3.2)0,0.50,1.00,1.50,2.00,2.50,3.00,3.50,4.00,4.50和5.00mL,加純水至刻度,搖勻。各管的鉻鈷色度依次為0,5,10,15,20,25,30,35,40,45和50度。
2.5.3 水樣測定方法: 同1.5.3。
2.6 計算
C=(m/V)×500 ...........................(2)
式中: C——水樣的色度,度;
m——鉻鈷標准溶液的用量,mL;
V——水樣體積,mL。

10. 工業廢水檢測方法

工業廢水檢測主要是對企業工廠在生產工藝過程中排出的廢水、污水和水生物檢測的總稱。工藝廢水檢測包括生產廢水和生產廢水。按工業企業的產品和加工對象可分為造紙廢水、紡織廢水、製革廢水、農葯廢水、冶金廢水、煉油廢水等。
一、生化需氧量(BOD)
生化需氧量又稱生化耗氧量,縮寫BOD,懇表示水中有機物等需氧污染物質含量的一個綜合指標,它說明水中有機物出於微生物的生化作用進行氧化分解,使之無機化或氣體化時所消耗水中溶解氧的總數量,其單位以ppm成毫克/升表示。其值越高,說明水中有機污染物質越多,污染也就越嚴重。加以懸浮或溶解狀態存在於生活污水和製糖、食品、造紙、纖維等工業廢水中的碳氫化合物、蛋白質、油脂、木質素等均為有機污染物,可經好氣菌的生物化學作用而分解,由於在分解過程中消耗氧氣,故亦稱需氧污染物質。若這類污染物質排人水體過多,將造成水中溶解氧缺乏,同時,有機物又通過水中厭氧菌的分解引起腐敗現象,產生甲烷、硫化氫、硫醇和氨等惡具氣體,使水體變質發臭。
廢水中各種有機物得到完會氧化分解的時間,總共約需一百天,為了縮短檢測時間,一般生化需氧量條以被檢驗的水樣在20℃下,五天內的耗氧量為代表,稱其為五日生化需氧量,簡稱BOD5,對生活廢水來說,它約等於完全氧化分解耗氧量的70%。
我國規定,在工廠排出口,廢水的BOD;的最高容許濃度為60毫克/升,地面水的BOD不得超過4毫克/升。
二、化學需氧量COD
化學需氧量又稱化學耗氧量簡稱COD。是利用化學氧化劑(如高錳酸鉀)將水中可氧化物質(如有機物、亞硝酸鹽、亞鐵鹽、硫化物等)氧化分解,然後根據殘留的氧化劑的量計算出氧的消耗量。它和生化需養量(BOD)一樣,是表示水質污染度的重要指標。COD的單位為ppm或毫克/升,其值越小,說明水質污染程度越輕。
水中的還原性物質有各種有機物、亞硝酸鹽、硫化物、亞鐵鹽等。但主要的是有機物。因此,化學需氧量(COD)又往往作為衡量水中有機物質含量多少的指標。化學需氧量越大,說明水體受有機物的污染越嚴重。化學需氧量(COD)的測定,隨著測定水樣中還原性物質以及測定方法的不同,其測定值也有不同。目前應用最普遍的是酸性高錳酸鉀氧化法與重鉻酸鉀氧化法。高錳酸鉀(KMnO4)法,氧化率較低,但比較簡便,在測定水樣中有機物含量的相對比較值及清潔地表水和地下水水樣時,可以採用。
三、重鉻酸鉀(K2Cr2O7)法,氧化率高,再現性好,適用於廢水監測中測定水樣中有機物的總量。有機物對工業水系統的危害很大。含有大量的有機物的水在通過除鹽系統時會污染離子交換樹脂,特別容易污染陰離子交換樹脂,使樹脂交換能力降低。有機物在經過預處理時(混凝、澄清和過濾),約可減少50%,但在除鹽系統中無法除去,故常通過補給水帶入鍋爐,使爐水pH值降低。有時有機物還可能帶入蒸汽系統和凝結水中,使pH降低,造成系統腐蝕。在循環水系統中有機物含量高會促進微生物繁殖。因此,不管對除鹽、爐水或循環水系統,COD都是越低越好,但並沒有統一的限制指標。在循環冷卻水系統中COD(KMnO4法)>5mg/L時,水質已開始變差。

閱讀全文

與測廢水的水溫的方法相關的資料

熱點內容
磷脂油廢水 瀏覽:452
21款CT6空調濾芯怎麼換 瀏覽:172
濾芯收塵器多少錢一台 瀏覽:746
耐水煮玻璃漆樹脂 瀏覽:80
廢水暖零件是水箱么 瀏覽:812
電瓶車電瓶加蒸餾水後能馬上充電嗎 瀏覽:994
國內做RO膜招聘 瀏覽:524
安裝前置過濾器需要加什麼 瀏覽:879
污廢水管道 瀏覽:256
凈空氣凈化器多少錢 瀏覽:607
廢水處理工作防護 瀏覽:743
如何把污水處理廠經營好 瀏覽:111
十渡污水 瀏覽:971
土壤陽離子交換量都多大 瀏覽:317
為什麼要求雨污水分離 瀏覽:469
斯麥恩凈水器濾芯怎麼換視頻 瀏覽:618
利用沼氣池做污水處理 瀏覽:815
樹脂能用多長時間 瀏覽:225
幾十度熱水才有水垢 瀏覽:363
漢斯頓凈水器羅山縣哪裡有賣 瀏覽:310