1. 工業廢水中氨、氟和鋅的排放標准各是多少
找到一個鋅的
http://iask.sina.com.cn/b/9510323.html
但是你也沒說清楚是哪一類別的,版石油工業還是?權
2. 《污水綜合排放標准》規定的排放標準是怎樣分級的
1,執行一級標準的:排入GB3838Ⅲ類水域(劃定的保護區和游泳區除外)和排入GB3097中二類海域的污水。排入GB3838Ⅲ類水域(劃定的保護區和游泳區除外)。
2,執行二級標準的:排入GB 3838中Ⅳ、Ⅴ類水域和排入GB3097中三類海域的污水。排入GB3838Ⅵ、Ⅴ類水域執行二級標准。
3,執行三級標準的:排入設置二級污水處理廠的城鎮排水系統的污水。排入設置二級污水處理廠的城鎮排水系統的污水。
(2)2008污水排放標准鋅擴展閱讀:
現行狀態:現行(查國家標准改革委員會官網,國家標准文獻服務平台,工標網等是現行)
替代標准:GB18466-2005部分代替GB 8978-1996、GB 20426-2006 部分代替GB 8978-1996、GB 20425-2006 部分代替GB 8978—1996
國家環境保護總局公告 2005年 第35號(摘)
GB18466-2005 醫療機構水污染物排放標准
本標准自實施之日起,代替《污水綜合排放標准》(GB8978-1996)中有關醫療機構水污染物排放標准部分,並取代《醫療機構污水排放要求》(GB18466-2001)。上述標准為強制性標准,由中國環境科學出版社出版,自2006年1月1日起實施。
3. Zn在污水排放標准中限制的最大濃度是多少
《污水綜合排放標准》總鋅一級排放標准2mg/L,二級5mg/L
4. 關於電鍍含鎳廢水處理
電鍍廢水的處理與回用對節約水資源以及保護環境起著至關重要的作用。本文綜述了各種電鍍廢水處理技術的優缺點,以及一些新材料在電鍍廢水處理上的應用。
01 化學沉澱法
化學沉澱法是通過向廢水中投入葯劑,使溶解態的重金屬轉化成不溶於水的化合物沉澱,再將其從水中分離出來,從而達到去除重金屬的目的。
化學沉澱法因為操作簡單,技術成熟,成本低,可以同時去除廢水中的多種重金屬等優點,在電鍍廢水處理中得到廣泛應用。
1.鹼性沉澱法
鹼性沉澱法是向廢水中投加NaOH、石灰、碳酸鈉等鹼性物質,使重金屬形成溶解度較小的氫氧化物或碳酸鹽沉澱而被去除。該法具有成本低、操作簡單等優點,目前被廣泛使用。
但是鹼性沉澱法的污泥產量大,會產生二次污染,而且出水pH偏高,需要回調pH。NaOH由於產生污泥量相對較少且易回收利用,在工程上得到廣泛應用。
2.硫化物沉澱法
硫化物沉澱法是通過投加硫化物(如Na2S、NariS等)使廢水中的重金屬形成溶度積比氫氧化物更小的沉澱,出水pH在7~9,無需回調pH即可排放。
但是硫化物沉澱顆粒細小,需要添加絮凝劑輔助沉澱,使處理費用增大。硫化物在酸性溶液中還會產生有毒的HS氣體,實際操作起來存在局限性。
3.鐵氧體法
鐵氧體法是根據生產鐵氧體的原理發展起來的,令廢水中的各種重金屬離子形成鐵氧體晶體一起沉澱析出,從而凈化廢水。該法主要是通過向廢水中投加硫酸亞鐵,經過還原、沉澱絮凝,最終生成鐵氧體,因其設備簡單、成本低、沉降快、處理效果好等特點而被廣泛應用。
pH和硫酸亞鐵投加量對鐵氧體法去除重金屬離子的影響,確定鎳、鋅、銅離子的最佳絮凝pH分別為8.00~9.80、8.00~10.50和10.00,投加的亞鐵離子與它們摩爾比均為2~8,而六價鉻的最佳還原pH為4.00~5.50,最佳絮凝pH則為8.00~10.50,最佳投料比為20。出水的鎳含量小於0.5mg/L,總鉻含量小於1.0mg/L,鋅含量小於1.0mg/L,銅含量小於0.5mg/L,達到《電鍍污染物排放標准》(GB21900—2008)中「表2」的要求。
化學沉澱法的局限性
隨著污水排放標準的提高,傳統單一的化學沉澱法很難經濟有效地處理電鍍廢水,常常與其他工藝組合使用。
採用鐵氧體-CARBONITE(一種具有物理吸附與離子交換功能的材料)聯合工藝處理Ni含量約為4000mg/L的高濃度含鎳電鍍廢水:先以鐵氧體法控制pH為11.0,在Fe/Fe。摩爾比O.55,FeSO4·7H2O/Ni質量比21,反應溫度35℃的條件下攪拌反應15min,出水Ni平均濃度從4212.5mg/L降至6.8mg/L,去除率達99.84%;然後採用CARBONITE處理,在CARBONITE投加量1.5g/L,pH=6.5,溫度35℃的條件下反應6h,Ni去除率可達96.48%,出水Ni濃度為0.24mg/L,達到GB21900-2008中的「表2」標准。
採用高級Fenton一化學沉澱法處理含螯合重金屬的廢水,使用零價鐵和過氧化氫降解螯合物,然後加鹼沉澱重金屬離子,不僅可以去除鎳離子(去除率最高達98.4%),而且可以降低COD化學需氧量。
02 氧化還原法
1.化學氧化法
化學氧化法在處理含氰電鍍廢水上的效果尤為明顯。該方法把廢水中的氰根離子(CN一)氧化成氰酸鹽(CNO-),再將氰酸鹽(CNO-)氧化成二氧化碳和氮氣,可以徹底解決氰化物污染問題。
常用的氧化劑包括氯系氧化劑、氧氣、臭氧、過氧化氫等,其中鹼性氯化法應用最廣。採用Fenton法處理初始總氰濃度為2.0mg/L的低濃度含氰電鍍廢水,在反應初始pH為3.5,H202/FeSO4摩爾比為3.5:1,H202投加量5.0g/L,反應時間60min的最佳條件下,氰化物的去除率可達93%,總氰濃度可降至0_3mg/L。
2.化學還原法
化學還原法在電鍍廢水處理中主要針對含六價鉻廢水。該方法是在廢水中加入還原劑(如FeSO、NaHSO3、Na2SO3、SO2、鐵粉等)把六價鉻還原為三價鉻,再加入石灰或氫氧化鈉進行沉澱分離。上述鐵氧體法也可歸為化學還原法。
該方法的主要優點是技術成熟,操作簡單,處理量大,投資少,在工程應用中有良好的效果,但是污泥量大,會產生二次污染。採用硫酸亞鐵作為還原劑,處理80t/d的含總鉻7O~80mg/L的電鍍廢水,出水總鉻小於1.5mg/L,處理費用為3.1元/t,具有很高的經濟效益。
以焦亞硫酸鈉為還原劑處理含80mg/L六價鉻、pH為6~7的電鍍廢水,出水六價鉻濃度小於0.2mg/L。
03 電化學法
電化學法是指在電流的作用下,廢水中的重金屬離子和有機污染物經過氧化還原、分解、沉澱、氣浮等一系列反應而得到去除。
該方法的主要優點是去除速率快,可以完全打斷配合態金屬鏈接,易於回收利用重金屬,佔地面積小,污泥量少,但是其極板消耗快,耗電量大,對低濃度電鍍廢水的去除效果不佳,只適合中小規模的電鍍廢水處理。
電化學法主要有電凝聚法、磁電解法、內電解法等。
電凝聚法是通過鐵板或者鋁板作為陽極,電解時產生Fe2+、Fe或Al,隨著電解的進行,溶液鹼性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通過絮凝沉澱去除污染物。
由於傳統的電凝聚法經過長時間的操作,會使電極板發生鈍化,近年來高壓脈沖電凝聚法逐漸替代傳統的電混凝法,它不僅克服了極板鈍化的問題,而且電流效率提高20%~30%,電解時間縮短30%~40%,節省電能30%~40%,污泥產生量少,對重金屬的去除率可達96%~99%。
採用高壓脈沖電絮凝技術處理某電鍍廠的電鍍廢水,Cu2十、Ni2、CN一和COD的去除率分別達到99.80%、99.70%、99.68%和67.45%。
電混凝法通常也與其他方法結合使用,利用電凝聚法和臭氧氧化法聯合處理電鍍廢水,以鐵和鋁做極板,出水六價鉻、鐵、鎳、銅、鋅、鉛、TOC(總有機碳)、COD的去除率分別為99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年來內電解法受到廣泛關注。內電解法利用了原電池原理,一般向廢水中投加鐵粉和炭粒,以廢水作為電解質媒介,通過氧化還原、置換、絮凝、吸附、共沉澱等多種反應的綜合作用,可以一次性去除多種重金屬離子。
該方法不需要電能,處理成本低,污泥量少。通過靜態試驗研究了鐵碳微電解法對模擬電鍍廢水的COD及銅離子的去除效果,去除率分別達到了59.01%和95.49%。然而,採用微電解反應柱研究連續流的運行結果顯示,14d後微電解出水的COD去除率僅為10%~15%,銅的去除率降低至45%~50%之間,可見需要定期更換填料或對填料進行再生。
04 膜分離技術
膜分離技術主要包括微濾(MF)、超濾(UF)、納濾(NF)、反滲透(RO)、電滲析(ED)、液膜(Lv)等,利用膜的選擇透過性來對污染物進行分離去除。
該方法去除效果好,可實現重金屬回收利用和出水回用,佔地面積小,無二次污染,是一種很有發展前景的技術,但是膜的造價高,易受污染。
對膜技術在電鍍廢水處理中的應用和效果進行了分析,結果表明:結合常規廢水處理工藝與膜生物反應器(MBR)組合工藝,電鍍廢水被處理後的水質達到排放標准;電鍍綜合廢水經UF凈化、RO和NF兩段脫鹽膜的集成工藝處理後,水質達到回用水標准,RO和NF產水的電導率分別低於100gS/cm和1000gS/cm,COD分別約為5mg/L和10mg/L;鍍鎳漂洗廢水通過RO膜後,鎳的濃縮高達25倍以上,實現了鎳的回收,RO產水水質達到回用標准。
投資與運行費用分析表明:工程運行1年多即可收回RO濃縮鎳的設備費用。
液膜法並不是採用傳統的固相膜,而是懸浮於液體中很薄的一層乳液顆粒,是一種類似溶劑萃取的新型分離技術,包括制膜、分離、凈化及破乳過程。
美籍華人黎念之(NormanN.Li)博士發明了乳狀液膜分離技術,該技術同時具有萃取和滲透的優點,把萃取和反萃取兩個步驟結合在一起。乳化液膜法還具有傳質效率高、選擇性好、二次污染小、節約能源和基建投資少的特點,對電鍍廢水中重金屬的處理及回收利用有著良好的效果。
05 離子交換法
離子交換法是利用離子交換劑對廢水中的有害物質進行交換分離,常用的離子交換劑有腐殖酸物質、沸石、離子交換樹脂、離子交換纖維等。離子交換的運行操作包括交換、反洗、再生、清洗四個步驟。
此方法具有操作簡單、可回收利用重金屬、二次污染小等特點,但離子交換劑成本高,再生劑耗量大。
研究強酸性離子交換樹脂對含鎳廢水的處理工藝條件及鎳回收方法。結果表明:pH為6~7有利於強酸性陽離子交換樹脂對鎳離子的去除。離子交換除鎳的適宜溫度為30℃,適宜流速為15BV/h(即每小時l5倍樹脂床體積)。適宜的脫附劑為10%鹽酸,脫附液流速為2BV/h。前4.6BV脫附液可回用於配製電鍍槽液,平均鎳離子質量濃度達18.8g/L。
Mei.1ingKong等研究了CHS—l樹脂對cr(VI)的吸附能力,發現Cr(VI)在低濃度時,樹脂的交換吸附率是由液膜擴散和化學反應控制的。CHS一1樹脂對Cr(VI)的最佳吸附pH為2~3,在298K下其飽和吸附能力為347.22mg/g。CHS一1樹脂可以用5%的氫氧化鈉溶液和5%氯化鈉溶液來洗脫,再生後吸附能力沒有明顯的下降。
使用鈦酸酯偶聯劑將1一Fe203與丙烯酸甲酯共聚,在鹼性條件下進行水解,制備出磁性弱酸陽離子交換樹脂NDMC一1。
通過對重金屬Cu的吸附研究發現,NDMC—l樹脂粒徑較小、外表面積大,因而具有較快的動力學性能。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。
06 蒸發濃縮法
蒸發濃縮法是通過加熱對電鍍廢水進行蒸發,使液體濃縮達到回用的效果。一般適用於處理含鉻、銅、銀、鎳等重金屬濃度高的廢水,用其處理濃度低的重金屬廢水時耗能大,不經濟。
在處理電鍍廢水中,蒸發濃縮法常常與其他方法一起使用,可實現閉路循環,效果不錯,比如常壓蒸發器與逆流漂洗系統聯合使用。蒸發濃縮法操作簡單,技術成熟,可實現循環利用,但是濃縮後的干固體處置費用大,制約了它的應用,目前一般只作為輔助處理手段。
07 生物處理技術
生物處理法是利用微生物或者植物對污染物進行凈化,該方法運行成本低,污泥量少,無二次污染,對於水量大的低濃度電鍍廢水來說是不二之選。生物法主要包括生物絮凝法、生物吸附法、生物化學法和植物修復法。
1.生物絮凝法
生物絮凝法是一種利用微生物或微生物產生的代謝物進行絮凝沉澱來凈化水質的方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外、具有絮凝活性的代謝物,能使水中膠體懸浮物相互凝聚、沉澱。
生物絮凝劑與無機絮凝劑和合成有機絮凝劑相比,具有處理廢水安全無毒、絮凝效果好、不產生二次污染等優點,但其存在活體生物絮凝劑不易保存,生產成本高等問題,限制了它的實際應用。目前大部分生物絮凝劑還處在探索研究階段。
生物絮凝劑可以分為以下三類:
(1) 直接利用微生物細胞作為絮凝劑,如一些細菌、放線菌、真菌、酵母等。
(2) 利用微生物細胞壁提取物作為絮凝劑。微生物產生的絮凝物質為糖蛋白、黏多糖、蛋白質等高分子物質,如酵母細胞壁的葡聚糖、Ⅳ-乙醯葡萄糖胺、絲狀真菌細胞壁多糖等都可作為良好的生物絮凝劑。
(3) 利用微生物細胞代謝產物的絮凝劑。代謝產物主要有多糖、蛋白質、脂類及其復合物等。
近年來報道的生物絮凝劑主要為多糖類和蛋白質類,前者有ZS一7、ZL—P、H12、DP。152等,後者有MBF—W6、NOC—l等。陶穎等]利用假單胞菌Gx4—1胞外高聚物製得的絮凝劑對cr(Ⅳ)進行了絮凝吸附研究。
其研究結果表明,在適宜條件下Or(Ⅳ)的去除率可達51%。研究枯草芽孢桿菌NX一2制備的生物絮凝劑v一聚谷氨酸(T-PGA)對電鍍廢水的處理效果,實驗證明,T-PGA能有效地去除Cr3+、Ni等重金屬離子。
2.生物吸附法
生物吸附法是利用生物體自身的化學結構或成分特性來吸附水中的重金屬,然後通過固液分離,從水中分離出重金屬。
可以從溶液中分離出重金屬的生物體及其衍生物都叫做生物吸附劑。生物吸附劑主要有生物質、細菌、酵母、黴菌、藻類等。該方法成本低,吸附和解析速率快,易於回收重金屬,具有選擇性,前景廣闊。
研究各種因素對枯草芽胞桿菌吸附電鍍廢水中Cd效果的影響,結果表明:pH為8、吸附劑用量為10g/L(濕重)、攪拌轉數為800r/min、吸附時間為10min的條件下,廢水中鎘的去除率達93%以上。
吸附鎘後的枯草芽胞桿菌細胞膨大,色澤變亮,細胞之間相互粘連。Cd2+與細胞表面的鈉進行了離子交換吸附。
殼聚糖是一種鹼性天然高分子多糖,由海洋生物中甲殼動物提取的甲殼素經過脫乙醯基處理而得到,可以有效地去除電鍍廢水中的重金屬離子。
通過乳化交聯法制備了磁性二氧化硅納米顆粒組成的殼聚糖微球,然後用乙二胺和縮水甘油基三甲基氯化反應的季銨基團改性,所得生物吸附劑具有很高的耐酸性和磁響應。
用它來去除酸性廢水中的cr(VI),在pH為2.5、溫度為25℃的條件下,最大吸附能力為233.1mg/g,平衡時間為40~120min[取決於初始Cr(VI)的濃度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液進行吸附劑再生,解吸率達到95.6%,因此該生物吸附劑具有很高的重復使用性。
3.生物化學法
生物化學法是指微生物直接與廢水中的重金屬進行化學反應,使重金屬離子轉化為不溶性的物質而被去除。
從電鍍廢水中篩選分離出3株可以高效降解自由氰根的菌種,在最佳條件下可以將80mg/L的CN一去除到0.22mg/L。研究發現,有許多可以將cr(VI)還原成低毒cr(III)的微生物,如無色桿菌、土壤細菌、芽孢桿菌、脫硫弧菌、腸桿菌、微球菌、硫桿菌、假單胞菌等,其中除了大腸桿菌、芽孢桿菌、硫桿菌、假單胞菌等可以在好氧條件下還原Cr(VI),其餘大部分菌種只能在厭氧條件下還原cr(VI)。
R.S.Laxman等發現灰色鏈黴菌能在24~48h內把cr(VI)還原成cr(III),並能夠將cr(III)顯著地吸收去除。中科院成都生物研究所的李福、吳乾菁等從電鍍污泥、廢水及下水道鐵管內分離篩選出35株菌種,並獲得了SR系列復合功能菌,該功能菌具有高效去除Cr(VI)和其他重金屬的功效,並在此基礎上進行了工程應用,取得較好的效果。
4.植物修復法
植物修復法是利用植物的吸收、沉澱、富集等作用來處理電鍍廢水中的重金屬和有機物,達到治理污水、修復生態的目的。
該方法對環境的擾動較少,有利於環境的改善,而且處理成本低。人工濕地在這方面起著重要的作用,是一種發展前景廣闊的處理方法。
李氏禾是一種可富集金屬的水生植物,在去除水中重金屬方面具有很大的潛力。在人工濕地種植了李氏禾,用以處理含鉻、銅、鎳的電鍍廢水,使它們的含量分別降低了84.4%、97.1%和94_3%。當水力負荷小於0.3m/(m2·d1時,出水中的重金屬濃度符合電鍍污染物排放標準的要求;當進水鉻、銅和鎳的濃度為5、10和8mg/L時,仍能達標排放。
可見用李氏禾處理中低濃度的電鍍廢水是可行的。質量平衡表明,鉻、銅和鎳大部分保留在人工濕地系統的沉積物中。
08 吸附法
吸附法是利用比表面積大的多孔性材料來吸附電鍍廢水中的重金屬和有機污染物,從而達到污水處理的效果。
活性炭是使用最早、最廣的吸附劑,可以吸附多種重金屬,吸附容量大,但是活性炭價格昂貴,使用壽命短,需要再生且再生費用不低。一些天然廉價材料,如沸石、橄欖石、高嶺土、硅藻土等,也具有較好的吸附能力,但由於各種原因,幾乎沒有得到工程應用。
以沸石作為吸附劑處理電鍍廢水,發現在靜態條件下,沸石對鎳、銅和鋅的吸附容量分別達到5.9、4.8和2.7mg/g.先以磁性生物炭去除電鍍廢水中的Cr(vI),
然後通過外部磁場分離,使得cr(VI)的去除率達到97.11%。而在10rain的磁選後,濁度由4075NTU降至21.8NTU。其研究還證實了吸附過程後,磁性生物炭仍保留原來的磁分離性能。近年來又研製開發了一些新型吸附材料,如文中提到的生物吸附劑以及納米材料吸附劑。
納米技術是指在1~100nm尺度上研究和應用原子、分子現象,由此發展起來的多學科交叉、基礎研究與應用緊密聯系的科學技術。納米顆粒由於具有常規顆粒所不具備的納米效應,因而具有更高的催化活性。
納米材料的表面效應使其具有高的表面活性、高表面能和高的比表面積,所以納米材料在制備高性能吸附劑方面表現出巨大的潛力。雷立等l採用溫和水熱法一步快速合成了鈦酸鹽納米管(TNTs),並應用於對水中重金屬離子Pb(II)、cd(II)和Cr(III)的吸附。
結果表明:pH=5時,初始濃度分別為200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分別為513.04、212.46和66.35mg/L,吸附性能優於傳統吸附材料。納米技術作為一種高效、節能環保的新型處理技術,得到人們的廣泛認同,具有很大的發展潛力。
09 光催化技術
光催化處理技術具有選擇性小、處理效率高、降解產物徹底、無二次污染等特點。
光催化的核心是光催化劑,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化學穩定性好、無毒、兼具氧化和還原作用等諸多特點。TiO:在受到一定能量的光照時會發生電子躍遷,產生電子一空穴對。
光生電子可以直接還原電鍍廢水中的金屬離子,而空穴能將水分子氧化成具有強氧化性的OH自由基,從而把很多難降解的有機物氧化成為COz、H:0等無機物,被認為是最有前途、最有效的水處理方法之一。
以懸浮態的TiO2為催化劑,在紫外光的作用下對絡合銅廢水進行光催化反應。結果表明:當TiO2投加量為2g/L,廢水pH=4時,在300W高壓汞燈照射下,載入60mL/min的空氣反應40rain,對120mg/LEDTA絡合銅廢水中Cu(II)與COD的去除率分別達到96.56%和57.67%。實施了「物化一光催化一膜」處理電鍍廢水的工程實例,出水COD去除率達到70%以上,同時TiO2光催化劑可重復使用。
膜法的引入可大大提高水質,使處理後水質達到中水回用標准,提高了電鍍廢水的資源化利用率,回用率達到85%以上,大大節約了成本。然而光催化技術在實際應用中受到了很多的限制,如重金屬離子在光催化劑表面的吸附率低,催化劑的載體不成熟,遇到色度大的廢水時處理效果大幅下降,等等。不過光催化技術作為高效、節能、清潔的處理技術,將會有很大的應用前景。
10 重金屬捕集劑
重金屬捕集劑又叫重金屬螯合劑,它能與廢水中的絕大部分重金屬離子產生強烈的螯合作用,生成的高分子螯合鹽不溶於水,通過分離就可以去除廢水中的重金屬離子。
重金屬捕集劑處理後的重金屬廢水中剩餘的重金屬離子濃度大部分都能達到國家排放標准。以二硫代氨基甲酸鹽重金屬離子捕集劑XMT探討了不同因素對Cu的捕集效果,對Cu去除率在99%以上,出水Cu濃度小於0.05mg/L,出水遠低於GB21900-2008的「表3」標准。
選取3種市售重金屬捕集劑對實際電鍍廢水中的Cu2+、Zn2+、Ni進行同步深度處理,發現三聚硫氰酸三鈉(簡稱TMT)對Cu的去除效果最為顯著,投加量少且效果穩定,但對Ni的去除效果較差。甲基取代的二硫代氨基甲酸鈉(以Me2DTC表示)的適用性最強,對3種重金屬離子均具有良好的去除效果,可達到GB21900-2008中的「表3」排放標准,且在DH=9.70時處理效果最佳。至於乙基取代的二硫代氨基甲酸鈉(Et2DTC),對Ni的去除效果不佳。
重金屬捕集劑因高效、低能、處理費用相對較低等特點而有很大的實用性。
結語
電鍍廢水成分復雜,應盡量分工段處理。在選擇處理方法時,應充分考慮各種方法的優缺點,加強各種水處理技術的綜合應用,形成組合工藝,揚長避短。
重金屬具有很大的回收價值且毒性大,在電鍍廢水處理過程中應多使用重金屬回收利用的工藝,盡可能地減少排放。
基於化學沉澱法污泥產量大,電化學法能耗高,膜分離技術的膜組件造價高且易受污染等諸多問題,就現有電鍍廢水處理技術而言,應向著節能、高效、無二次污染的方向改進。
同時可與計算機技術相結合,實現智能化控制。還可結合材料學、生物學等學科,開發出更適合處理電鍍廢水的新型材料。
5. 綜合污水排放標准
污水綜合排放標准(GB8978—2002》我國城市污水處理廠的建設處於起步階段,處理技術還在發展階段,因此,國家對城市污水的針對性不強。相當一部分標准值偏寬,而個別指標在技術經濟上達標又有一定難度。
對城鎮污水處理廠出水而言,重金屬、微污染有機物、石油類、動植物油、LAS等指標標准值偏寬;而總磷偏嚴,常規二級處理和強化二級處理工藝難以達到0.5 mg/L和1 mg/L的現行綜合標准。
標准明確規定為:專門針對城鎮污水處理廠污水、廢氣、污泥污染物排放制定的國家專業污染物排放標准,適用於城鎮污水處理廠污水排放、廢氣的排放和污泥處置的排放與控制管理。
根據國家綜合排放標准與國家專業排放標准不交叉執行的原則,本標准實施後,城鎮污水處理廠污水、廢氣和污泥的排放不再執行《污水綜合排放標准》,污水處理廠噪音控制仍執行國家或地方的噪音控制標准。
(5)2008污水排放標准鋅擴展閱讀
國家污水綜合排放標准(GB8978-2002)排放值:A標准 B標准
1、化學需氧量(COD)(mg/L) 50/60 60/60 100/120 120
2、生化需氧量(BOD)(mg/L) 10/20 20/20 30/30 60
3、懸浮物(SS)(mg/L) 10/20 20/20 30/30 50
4、動植物油(mg/L) 1/20 3/20 5/20 20
5、石油類(mg/L) 1/10 3/10 5/10 15
6、陰離子表面活性劑(mg/L) 0.5/5 1/5 2/5 5
7、總氮(以N計)(mg/L) 15/- 20/- - -
8、氨氮(以N計) (mg/L) 5(8)/15 8(15)/15 25(30)/25 -
9、總磷(以P計)(mg/L) 1/0.5 1.5/0.5 3/1 5
10、色度/稀釋倍數 30/50 30/50 40/80 50
11、pH 6~9/6~9 6~9/6~9 6~9/6~9 6~9
12、糞大腸菌群數(個/L) 103/- 104/- 104/- -
6. 鋅及其化合物污染排放按什麼標准
行業標准或者國家標准,國家有污水綜合排放標准,可能還要看是什麼行業的廢水,生活污水又是不一樣的
7. 污水綜合排放標準的數據
表1 第一類污染物最高允許排放最高濃度
單位:mg/l 序號 污染物 最高允許排放濃度 1 總汞 0.05 2 烷基汞 不得檢出 3 總鎘 0.1 4 總鉻 1.5 5 六價鉻 0.5 6 總砷 0.5 7 總鉛 1.0 8 總鎳 1.0 9 苯並(a)芘 0.00003 10 總鈹 0.005 11 總銀 0.5 12 總α放射性 1Bq/L 13 總β放射性 10Bq/L 表2 第二類污染物最高允許排放最高濃度
(1997年12月31日之前建設的單位) 單位:mg/L 序號 污染物 適用范圍 一級標准 二級標准 三級標准 1 pH 一切排污單位 6~9 6~9 6~9 2 色度(稀釋倍數) 染料工業 50 180 - - - 其他排污單位 50 80 - 3 懸浮物(SS) 采礦、選礦、選煤工業 100 300 - - - 脈金選礦 100 500 - - - 邊遠地區砂金選礦 100 800 -- - 城鎮二級污水處理廠 20 30 - - - 其他排污單位 70 200 400 4 五日生化需氧量(BOD5) 甘蔗製糖、薴麻脫膠、濕法纖維板工業 30 100 600 - - 甜菜製糖、酒精、味精、皮革、化纖漿粕工業 30 150 600 - - 城鎮二級污水處理廠 20 30 - - - 其他排污單位 30 60 300 續表(2) (1997年12月31日之前建設的單位)
單位:mg/L 序號 污染物 適用范圍 一級標准 二級標准 三級標准 5 化學需氧量(COD) 甜菜製糖、焦化、合成脂肪酸、濕法纖維板、染料、洗毛、有機磷農葯工業 100 200 1000 - - 味精、酒精、醫葯原料葯、生物制葯、薴麻脫膠、皮革、化纖漿粕工業 100 300 1000 - - 石油化工工業(包括石油煉制) 100 150 500 - - 城鎮二級污水處理廠 60 120 - - - 其他排污單位 100 150 500 6 石油類 一切排污單位 10 10 30 7 動植物油 一切排污單位 20 20 100 8 揮發酚 一切排污單位 0.5 0.5 2.0 9 總氰化合物電影洗片(鐵氰化合物) 0.5 5.0 5.0 - - 其他排污單位 0.5 0.5 1.0 10 硫化物 一切排污單位 1.0 1.0 2.0 11 氨氮 醫葯原料葯、染料、石油化工工業 15 50 - - - 其他排污單位 15 25 - 12 氟化物 黃磷工業 10 20 20 - - 低氟地區(水體含氟量<0.5mg/L) 10 20 30 --其他排污單位10102013 磷酸鹽(以P計) 一切排污單位 0.5 1.0 - 14 甲醛 一切排污單位 1.0 2.0 5.0 15 苯胺類 一切排污單位 1.0 2.0 5.0 16 硝基苯類 一切排污單位 2.0 3.0 5.0 17 陰離子表面活性劑(LAS) 合成洗滌劑工業 5.0 15 20 - - 其他排污單位 5.0 10 20 18 總銅 一切排污單位 0.5 1.0 2.0 19 總鋅 一切排污單位 2.0 5.0 5.0 20 總錳 合成脂肪酸工業 2.0 5.0 5.0 - - 其他排污單位 2.0 2.0 5.0 21 彩色顯影劑 電影洗片 2.0 3.0 5.0 續表(2) (1997年12月31日之前建設的單位) 單位:mg/L 序號 污染物 適用范圍 一級標准 二級標准 三級標准 22 顯影劑及氧化物總量 電影洗片 3.0 6.0 6.0 23 元素磷 一切排污單位 0.1 0.3 0.3 24 有機磷農葯(以P計) 一切排污單位 不得檢出 0.5 0.5 25 糞大腸菌群數 醫院*、獸醫院及醫療機構含病原體污水 500個/L 1000個/L 5000個/L 傳染病、結核病醫院污水 100個/L 500個/L 1000個/L 26 總余氯(採用氯化消毒的醫院污水) 醫院*、獸醫院及醫療機構含病原體污水 <0.5** >3(接觸時間≥1h) >2(接觸時間≥1h) - - 傳染病、結核病醫院污水 <0.5** >6.5(接觸時間≥1.5h >5(接觸時間≥1.5h) 註:* 指50個床位以上的醫院。
** 加氯消毒後須進行脫氯處理,達到本標准
表3部分行業最高允許排水量
(1997年12月31日之前建設的單位)
序號 行業類別最高允許排水量或
最低允許水重復利用率
1 礦山 工業 有色金屬系統選礦水重復利用率75%
其他礦山工業采礦、選礦、選煤等水重復利用率90%(選煤)
脈
金
選
礦重選 16.0m³/t(礦石)
浮選9.0m³/t(礦石)
氰化8.0m³/t(礦石)
碳漿8.0m³/t(礦石)
2 焦化企業(煤氣廠) 1.2m³/t(焦炭)
3 有色金屬冶煉及金屬加工水重復利用率80%
4石油煉制工業(不包括直排水煉油廠)
加工深度分類:
A. 燃料型煉油;
B. 燃料+潤滑油型煉油廠;
C. 燃料+潤滑油型+煉油化工型煉油廠; (包括加工高含硫原油頁岸油和石油添加劑生產基地的煉油廠), A >500萬t,1.0m³/t(原油)
250~500萬t,1.2m³/t(原油)
<250萬t,1.5m³/t(原油)
B >500萬t,1.5m³/t(原油)
250~500萬t,2.0m³/t(原油)
<250萬t,2.0m³/t(原油),
C >500萬t,2.0m³/t(原油)
250~500萬t,2.5m³/t(原油)
<250萬t,2.5m³/t(原油)
5 合成洗滌劑工業氯化法生產烷基苯 200.0m³/t(烷基苯)
裂解法生產烷基苯70.0m³/t(烷基苯)
烷基苯生產合成洗滌劑10.0m³/t(產品)
6 合成脂肪酸工業200.0m³/t(產品)
7 濕法生產纖維板工業30.0m³/t(板)
8 製糖工業某蔗製糖 10.0m³/t(甘蔗)
甜菜製糖4.0m³/t(甜菜)
9 皮革工業豬鹽濕皮 60.0m³/t(原皮)
牛干皮100.0m³/t(原皮)
羊干皮150.0m³/t(原皮)
10發酵釀造工業酒精工業 以玉米為原料150.0m³/t(酒精)
以薯類為原料100m³/t(酒精)
以糖蜜為原料80.0m³/t(酒)
味精工業600.0m³/t(味精)
啤酒工業(排水量不包括麥芽水部分) 16.0m³/t(啤酒)
11 鉻鹽工業5.0m³/t(產品)
12硫酸工業(水洗法) 15.0m³/t(硫酸)
13 薴麻脫膠工業500m³/t(原麻)或750m³/t(精幹麻)
14 化纖漿粕本色: 150m³/t(漿)漂白: 240m³/t(漿)
15 粘膠纖維工業(單純纖維) 短纖維
(棉型中長纖維、毛型中長纖維) 300m³/t(纖維)
長纖維800m³/t(纖維)
16 鐵路貨車洗刷5.0m³/輛
17 電影洗片5m³/1000m(35mm的膠片)
18 石油瀝青工業冷卻池的水循環利用率95%
表4 第二類污染物最高允許排放最高濃度
(1998年1月1日後建設的單位) 單位: mg/L 序號 污染物 適用范圍 一級標准 二級標准 三級標准 1 pH 一切排污單位 6 ~ 9 6 ~ 9 6 ~ 9 2 色度(稀釋倍數) 一切排污單位 50 80 - 采礦、選礦、選煤工業 70 300 - 脈金選礦 70 400 - 3 懸浮物 邊遠地區砂金選礦 70 800 - (SS) 城鎮二級污水處理廠 20 30 - 其他排污單位 70 150 400 甘蔗製糖、薴麻脫膠、濕法纖維板、染料、洗毛工業 20 60 600 4 五日生化需氧量 (BOD5) 甜菜製糖、酒精、味精、皮革、化纖漿粕工業 20 100 600 城鎮二級污水處理廠 20 30 - 其他排污單位 20 30 300 甜菜製糖、合成脂肪酸、濕法纖維板、染料、洗毛、有機磷農葯工業 100 200 1000 5 化學需氧量 (COD) 味精、酒精、醫葯原料葯、生物制葯、薴麻脫膠、皮革、化纖漿粕工業 100 300 1000 石油化工工業 ( 包括石油煉制 ) 60 120 - 城鎮二級污水處理廠 60 120 500 其他排污單位 100 150 500 6 石油類 一切排污單位 5 10 20 7 動植物油 一切排污單位 10 15 100 8 揮發酚 一切排污單位 0.5 0.5 2.0 9 總氰化合物 一切排污單位 0.5 0.5 1.0 10 硫化物 一切排污單位 1.0 1.0 1.0 11 氨氮 醫葯原料葯、染料、石油化工工業 15 50 - 其它排污單位 15 25 - 黃磷工業 10 15 20 12 氟化物 低氟地區 ( 水體含氟量 <0.5mg/L) 10 20 30 其它排污單位 10 10 20 13 磷酸鹽(以 P 計) 一切排污單位 0.5 1.0 - 14 甲醛 一切排污單位 1.0 2.0 5.0 15 苯胺類 一切排污單位 1.0 2.0 5.0 16 硝基苯類 一切排污單位 2.0 3.0 5.0 17 陰離子表面活性劑 (LAS) 一切排污單位 5.0 10 20 18 總銅 一切排污單位 0.5 1.0 2.0 19 總鋅 一切排污單位 2.0 5.0 5.0 20 總錳 合成脂肪酸工業 2.0 5.0 5.0 其他排污單位 2.0 2.0 5.0 21 彩色顯影劑 電影洗片 1.0 2.0 3.0 22 顯影劑及氧化物總量 電影洗片 3.0 3.0 6.0 23 元素磷 一切排污單位 0.1 0.1 0.3 24 有機磷農葯(以P計) 一切排污單位 不得檢出 0.5 0.5 25 樂果 一切排污單位 不得檢出 1.0 2.0 26 對硫磷 一切排污單位 不得檢出 1.0 2.0 其他排污單位 20 30 300 27 甲基對硫磷 一切排污單位 不得檢出 1.0 2.0 28 馬拉硫磷 一切排污單位 不得檢出 5.0 10 29 五氯酚及五氯酚鈉 ( 以五氯酚計 ) 一切排污單位 5.0 8.0 10 30 可吸附有機鹵化物 (AOX)(以Cl計) 一切排污單位 1.0 5.0 8.0 31 三氯甲烷 一切排污單位 0.3 0.6 1.0 32 四氯化碳 一切排污單位 0.03 0.06 0.5 33 三氯乙烯 一切排污單位 0.3 0.6 1.0 34 四氯乙烯 一切排污單位 0.1 0.2 0.5 35 苯 一切排污單位 0.1 0.2 0.5 36 甲苯 一切排污單位 0.1 0.2 0.5 37 乙苯 一切排污單位 0.4 0.6 1.0 38 鄰 - 二甲苯 一切排污單位 0.4 0.6 1.0 39 對 - 二甲苯 一切排污單位 0.4 0.6 1.0 40 間 - 二甲苯 一切排污單位 0.4 0.6 1.0 41 氯苯 一切排污單位 0.2 0.4 1.0 42 鄰 - 二氯苯 一切排污單位 0.4 0.6 1.0 43 對 - 二氯苯 一切排污單位 0.4 0.6 1.0 44 對 - 硝基氯苯 一切排污單位 0.5 1.0 5.0 45 2,4- 二硝基氯苯 一切排污單位 0.5 1.0 5.0 46 苯酚 一切排污單位 0.3 0.4 1.0 47 間 - 甲酚 一切排污單位 0.1 0.2 0.5 48 2,4- 二氯酚 一切排污單位 0.6 0.8 1.0 49 2,4,6- 三氯酚 一切排污單位 0.6 0.8 1.0 50 鄰苯二甲酸二丁脂 一切排污單位 0.2 0.4 2.0 51 鄰苯二甲酸二辛脂 一切排污單位 0.3 0.6 2.0 52 丙烯腈 一切排污單位 2.0 5.0 5.0 53 總硒 一切排污單位 0.1 0.2 0.5 54 糞大腸菌群數 醫院 * 、獸醫院及醫療機構含病原體污水 500 個 /L 1000 個 /L 5000 個 /L 傳染病、結核病醫院污水 100 個 /L 500 個 /L 1000 個 /L 55總余氯(採用氯化消毒的醫院污水)醫院 * 、獸醫院及醫療機構含病原體污水 <0.5** >3( 接觸時間 ≥ 1h) >2( 接觸時間 ≥ 1h) 傳染病、結核病醫院污水 <0.5** >6.5(接觸時間≥ 1.5h) >5( 接觸時間≥ 1.5h) 56總有機碳合成脂肪酸工業 20 40 - (TOC) 薴麻脫膠工業 20 60 - 其他排污單位 20 30 - 註:其他排污單位:指除在該控制項目中所列行業以外的一切排污單位。
* 指 50 個床位以上的醫院。
** 加氯消毒後須進行脫氯處理,達到本標准。
註:其他排污單位:指除在該控制項目中所列行業以外的一切排污單位。
* 指50個床位以上的醫院。
** 加氯消毒後須進行脫氯處理,達到本標准。
表5部分行業最高允許排水量
(1998年1月1日後建設的單位)
序號
行業類別 最高允許排水量或最低允許排水重復利用率
1
礦山工業有色金屬系統選礦 水重復利用率75%
其他礦山工業采礦、選礦、選煤等水重復利用率90%(選煤)
脈
金
選
礦
重選 16.0m³/t(礦石)
浮選9.0m³/t(礦石)
氰化 8.0m³/t(礦石)
碳漿8.0m³/t(礦石)
2
焦化企業(煤氣廠) 1.2m³/t(焦炭)
3
有色金屬冶煉及金屬加工水重復利用率80%
4
石油煉制工業(不包括直排水煉油廠)
加工深度分類:
A。燃料型煉油廠
B。燃料+潤滑油型煉油廠
C。燃料+潤滑油型+煉油化工型煉油廠 (包括加工高含硫原油頁岩油和石油添加劑生產基地的煉油廠)A
>500萬t,1.0m³/t(原油)
250~500萬t,,1.2m³/t(原油)
<250萬t,,1.5m³/t(原油)
B
>500萬t,1.5m³/t(原油)
250~500萬t,,2.0m³/t(原油)
<250萬t,,2.0m³/t(原油)
C
>500萬t,2.0m³/t(原油)
250~500萬t,,2.5 m³/t(原油)
<250萬t,,2.5m³/t(原油)
5
合成洗滌劑工業
氯化法生產烷基苯200.0 m³/t (烷基苯)
裂解法生產烷基苯70.0 m³/t (烷基苯)
烷基苯生產合成洗滌劑10.0 m³/t(產品)
6
合成脂肪酸工業200.0m³/t(產品)
7
濕法生產纖維板工業 30.0 m³/t (板)
8 製糖工業甘蔗製糖 10.0 m³/t
甜菜製糖4.0 m³/t
9 皮革工業豬鹽濕皮 60.0 m³/t
牛干皮100.0 m³/t
羊干皮150.0 m³/t
10 發酵、釀造工業酒精工業
以玉米為原料 100.0 m³/t
以薯類為原料80.0 m³/t
以糖蜜為原料70.0 m³/t
味精工業600.0 m³/t
啤酒行業
(排水量不包括麥芽水部分) 16.0 m³/t
11
鉻鹽工業5.0 m³/t (產品)
12
硫酸工業(水洗法) 15.0 m³/t (硫酸)
13
薴麻脫膠工業500 m³/t (原麻)
750 m³/t (精幹麻)
14
粘膠纖維工業
單純纖維短纖維
(棉型中長纖維、毛型中長纖維) 300.0 m³/t (纖維)
長纖維800.0 m³/t(纖維)
15
化纖漿粕本色: 150 m³/t(漿);
漂白:240 m³/t(漿)
16 制葯工業醫葯原料葯
青黴素 4700m³/t(氰黴素)
鏈黴素1450m³/t(鏈黴素)
土黴素 1300m³/t(土黴素)
四環素1900m³/t(四環素)
潔黴素 9200m³/t(潔黴素)
金黴素3000m³/t(金黴素)
慶大黴素 20400m³/t(慶大黴素)
維生素C 1200m³/t(維生素C)
氯黴素2700m³/t(氯黴素)
新諾明 2000m³/t(新諾明)
維生素B1 3400m³/t(維生素B1)
安乃近180m³/t(安乃近)
非那西汀 750m³/t(非那西汀)
呋喃唑酮2400m³/t(呋喃唑酮)
咖啡因 1200m³/t(咖啡因)
17 有機磷農葯工業
樂果** 700m³/t(產品)
甲基對硫磷(水相法)** 300m³/t(產品)
對硫磷(P2S5法)** 500m³/t(產品)
對硫磷(PSCl3法)** 550m³/t(產品)
敵敵畏(敵百蟲鹼解法) 200m³/t(產品)
敵百蟲40m³/t(產品)
(不包括三氯乙醛生產廢水)
馬拉硫磷 700m³/t(產品)
18 除草劑工業除草醚 5m³/t(產品)
五氯酚鈉2m³/t(產品)
五氯酚 4m³/t(產品)
2甲4氯14m³/t(產品)
2,4-D 4m³/t(產品)
丁草胺4.5m³/t(產品)
綠麥隆(以Fe粉還原) 2m³/t(產品)
綠麥隆(以Na2S還原) 3m³/t(產品)
19 火力發電工業3.5m³(MW·h)
20 鐵路貨車洗刷5.0m³/輛
21 電影洗片5m³/1000m(35mm膠片)
22 石油瀝青工業冷卻池的水循環利用率95%
註:
* 產品按100%濃度計。
** 不包括P2S5、PSCl3、PC13原料生產廢水
申請注意:在實際申請過程中,根據筆者實際申請經驗,一般需要在當地政府,通過其環保局申請,其整個流程必須要事先准備充分,否則實際申請時很可能因為一星半點的問題而遭停沚。