① 列舉常見污水控制指標及相應檢測方法
PH、COD、SS、氨氮、石油類、BOD5。一般前5項,有的也監測B0D5,污水排入受納水體中是要分級別的。
1.首先確認排放單位類別、收納水體的級別,然後按照如果有行業標準的話,就按行標,沒有的話,按照GB3838-2002,如果還沒涉及到,可以參照國際同類法律。
2.以下是GB3838-2002中的標准:
4.1 標准分級:
4.1.1 排入GB3838皿類水域(劃定的保護區和游泳區除外)和排入GB3097中二類海域的污水,執行一級標准。
4.1.2 排入GB3838中Ⅳ、V類水域和排入GB3097中三類海域的污水,執行二級標准。
4.1.3 排入設置二級污水處理廠的城鎮排水系統的污水,執行三級標准。
4.1.4 排入未設置二級污水處理廠的城鎮排水系統的污水,必須根據排水系統出水受納水域的功能要求,分別執行4.1.1和4.1.2的規定。
4.1.5 GB3838中I、Ⅱ類水域和Ⅲ類水域中劃定的保護區,GB3097中一類海域,禁止新建排污口,現有排污口應按水體功能要求,實行污染物總量控制,以保證受納水體水質符合規定用途的水質標准。
4.2 標准值
4.2.1 本標准將排放的污染物按其性質及控制方式分為二類。
4.2.1.1 第一類污染物,不分行業和污水排放方式,也不分受納水體的功能類別,一律在車間或車間處理設施排放口采樣,其最高允許排放濃度必須達到本標准要求(采礦行業的尾礦壩出水口不得視為車間排放口)。
4.2.1.2 第二類污染物,在排污單位排放口采樣,其最高允許排放濃度必須達到本標准要求。
4.2.2 本標准按年限規定了第一類污染物和第二類污染物最高允許排放濃度及部分行業最高允許排水量,分別為:
4.2.2.1 1997年12月31日之前建設(包括改、擴建)的單位,水污染物的排放必須同時執行表1、表2、表3的規定。
4.2.2.2 1998年1月1日起建設(包括改、擴建)的單位,水污染物的排放必須同時執行表1、表4、表5的規定。
4.2.2.3 建設(包括改、擴建)單位的建設時間,以環境影響評價報告書(表)批准日期為准劃分。
② 污水處理cod的現場檢測方法
現場檢測? 你可以取樣嗎?我們學校用的是重鉻酸鉀法測定的,你可以網路下專這個方法,要是還是不懂屬給我說,我的畢業設計就是關於廢水處理的有要測定cod的這一項,希望能幫到你采不採納無所謂能幫到就行第一次回答問題給點鼓勵唄呵呵
③ 污水氨氮檢測方法
如果是測定污水中氨氮的含量的話,有快速測定的試紙可以用的,但是一內般測定的結果不夠容精確,現在一般情況下,企業都會選擇買氨氮測定儀,檢測起來也是十分的方便快捷的,但是價格上相對試紙來說就會高很多。
國外的品牌比較貴,國內的我們之前用過一款測COD的,是TR-108B的型號的,他們也有做氨氮,可以咨詢一下。
看你的實際需求吧,然後測定試紙或者是測定儀器都是可以得
④ 工業廢水檢測方法
工業廢水檢測主要是對企業工廠在生產工藝過程中排出的廢水、污水和水生物檢測的總稱。工藝廢水檢測包括生產廢水和生產廢水。按工業企業的產品和加工對象可分為造紙廢水、紡織廢水、製革廢水、農葯廢水、冶金廢水、煉油廢水等。
一、生化需氧量(BOD)
生化需氧量又稱生化耗氧量,縮寫BOD,懇表示水中有機物等需氧污染物質含量的一個綜合指標,它說明水中有機物出於微生物的生化作用進行氧化分解,使之無機化或氣體化時所消耗水中溶解氧的總數量,其單位以ppm成毫克/升表示。其值越高,說明水中有機污染物質越多,污染也就越嚴重。加以懸浮或溶解狀態存在於生活污水和製糖、食品、造紙、纖維等工業廢水中的碳氫化合物、蛋白質、油脂、木質素等均為有機污染物,可經好氣菌的生物化學作用而分解,由於在分解過程中消耗氧氣,故亦稱需氧污染物質。若這類污染物質排人水體過多,將造成水中溶解氧缺乏,同時,有機物又通過水中厭氧菌的分解引起腐敗現象,產生甲烷、硫化氫、硫醇和氨等惡具氣體,使水體變質發臭。
廢水中各種有機物得到完會氧化分解的時間,總共約需一百天,為了縮短檢測時間,一般生化需氧量條以被檢驗的水樣在20℃下,五天內的耗氧量為代表,稱其為五日生化需氧量,簡稱BOD5,對生活廢水來說,它約等於完全氧化分解耗氧量的70%。
我國規定,在工廠排出口,廢水的BOD;的最高容許濃度為60毫克/升,地面水的BOD不得超過4毫克/升。
二、化學需氧量COD
化學需氧量又稱化學耗氧量簡稱COD。是利用化學氧化劑(如高錳酸鉀)將水中可氧化物質(如有機物、亞硝酸鹽、亞鐵鹽、硫化物等)氧化分解,然後根據殘留的氧化劑的量計算出氧的消耗量。它和生化需養量(BOD)一樣,是表示水質污染度的重要指標。COD的單位為ppm或毫克/升,其值越小,說明水質污染程度越輕。
水中的還原性物質有各種有機物、亞硝酸鹽、硫化物、亞鐵鹽等。但主要的是有機物。因此,化學需氧量(COD)又往往作為衡量水中有機物質含量多少的指標。化學需氧量越大,說明水體受有機物的污染越嚴重。化學需氧量(COD)的測定,隨著測定水樣中還原性物質以及測定方法的不同,其測定值也有不同。目前應用最普遍的是酸性高錳酸鉀氧化法與重鉻酸鉀氧化法。高錳酸鉀(KMnO4)法,氧化率較低,但比較簡便,在測定水樣中有機物含量的相對比較值及清潔地表水和地下水水樣時,可以採用。
三、重鉻酸鉀(K2Cr2O7)法,氧化率高,再現性好,適用於廢水監測中測定水樣中有機物的總量。有機物對工業水系統的危害很大。含有大量的有機物的水在通過除鹽系統時會污染離子交換樹脂,特別容易污染陰離子交換樹脂,使樹脂交換能力降低。有機物在經過預處理時(混凝、澄清和過濾),約可減少50%,但在除鹽系統中無法除去,故常通過補給水帶入鍋爐,使爐水pH值降低。有時有機物還可能帶入蒸汽系統和凝結水中,使pH降低,造成系統腐蝕。在循環水系統中有機物含量高會促進微生物繁殖。因此,不管對除鹽、爐水或循環水系統,COD都是越低越好,但並沒有統一的限制指標。在循環冷卻水系統中COD(KMnO4法)>5mg/L時,水質已開始變差。
⑤ 常規污水水質檢測實驗方法
常規的污水水質監測要檢測的內容有:COD,BOD,PH,DO,濁度,以及各種需要檢測的污染物的量
⑥ 如何測污水的色度
理化檢驗-化學分冊(PARTB:CHEM.ANAL.)2008年 第44卷
① 工作簡報 污水色度的測定 姚 國,王建衛 (東莞市市區污水處理廠,東莞523080) 摘 要:作為對常規方法的改進,提出用分光光度法代替目視比色法作為污水色度的測試方法, 並採用重鉻酸鉀及硫酸鈷配製的稀硫酸溶液(酸度約0.02mol・L-1)作為測定色度的標准溶液。 以此標准溶液的吸收峰350nm作為測定波長測定標准及水樣的吸光度。製作了色度在10°~100°之間的標准曲線,對試液的溫度、濁度及酸度的影響作了試驗,此方法的檢出限為色度5°。 關鍵詞:分光光度法;目視比色法;色度;污水 中圖分類號:O657.31 文獻標識碼:A 文章編號:100124020(2008)0120061202 YAOGuo,WANGJian2wei (,Dongguan523080,China) Abstract:, ,ansingadil.H2SO4solution(ca.0.02mol・L-1).,.°to100°wasprepared.(i.e.temperature,)werestudied.°. Keywords:Spectrophotometry;Visualcolorimetry;Colority;Sewagewater 色度是城鎮污水處理廠水質監測的一項基本控制項目。水中色度的測定方法有兩種,測定較清潔的天然水和飲用水的色度用鉑鈷標准比色法或鉻鈷標准比色法[1],測定工業污水和受工業污水污染的地表水及生活污水用稀釋倍數法。新鮮的生活污水中含大量的有機物、無機鹽、懸浮物和膠態物質,使水體混濁,呈淺灰褐色。生活污水經污水處理廠處理後或用0.45μm濾膜過濾後,水樣較清,色度很低,微黃色,可以採用上述兩種方法測定。 稀釋倍數法需將水樣稀釋成不同的稀釋倍數,然後與光學純水比較最後確定出水樣的稀釋倍數,對未受工業廢水污染的生活污水及污水處理廠處理後的出水,在稀釋5~20倍之間色度差異不大,
很難 收稿日期:2006206213 作者簡介:姚國(1965-),女,廣州市人,工程師,主要從事化 學分析工作。 用眼睛分辨。標准比色法通過配製一系列色度標准 溶液,然後與水樣進行目視比色,最後確定出水樣的色度。這兩種方法的共同缺點是受比色管顏色、刻度、天氣和人為影響因素大。試驗結果發現:鉻鈷標准溶液在350nm波長附近有最大吸收峰,且在10°~100°色度范圍內吸光度與色度符合朗伯比耳定律,本法改用重鉻酸鉀代替氯鉑酸鉀配製色度標准溶液,用分光光度計代替人眼進行定量測定。 1 試驗部分 1.1 儀器與試劑 Carry50紫外2可見分光光度計;Millipore純水 機,濾膜及抽濾裝置。 500°鉻鈷標准溶液[1]:准確稱取重鉻酸鉀0.0437g及硫酸鈷(CoSO4・7H2O)1.000g溶於少量水中,加入濃硫酸0.5mL,用水稀釋至500mL。此溶液的色度為500°。 ・ 16・
理化檢驗-化學分冊 姚國等:
污水色度的測定 1.2 標准曲線的繪制 分別取500°鉻鈷標准溶液0,1,2,…,10mL於50mL比色管中,用純化水稀至刻度,搖勻,各管的色度分別為10°,20°,40°,60°,80°,100°,於350nm波長處,以純水為空白,以1cm石英比色皿測定吸光度,繪制標准曲線,相關系數為0.9999,見圖1
。 圖1 用鉻(Ⅵ)2鈷(Ⅱ)標准溶液(色度范圍10°~100° )製作的色度標准曲線 Fig.1 Standardcurveofcolority(intherangeof10°-100° )preparedwithCr(Ⅵ )2Co(Ⅱ)standardsolution500°鉑鈷標准溶液與鉻鈷標准溶液顏色一致, 均呈黃色。稀釋後同一色度的標准溶液顏色也一 致,可用鉻鈷標准溶液代替鉑鈷標准溶液進行測定。 2 結果與討論 2.1 測定波長的選擇 (1)分別取10°~100°鉑鈷標准溶液,以純化水 為空白進行基線效正,用1cm石英比色皿在200~ 800nm波長范圍內掃描,在262nm波長處有最大吸收峰,且吸光度大於1,小於300nm波長處幾乎無吸收,故鉑鈷標准溶液在10°~100°范圍內不適合用於定量測定。掃描圖譜見圖2
。 圖2 色度為10°的鉑鈷標准溶液的吸收光譜 Fig.2 solutionequivalentto10°colority (2)分別取10°~100°鉻鈷標准溶液,以相同的 操作步驟在200~800nm波長范圍內掃描,鉻鈷標准溶液有兩個最大吸收峰,第一個在257nm附近,第二個在350nm附近,為重鉻酸鉀的兩個特徵吸 收峰,掃描圖譜見圖3
。 圖3 色度為10° (a),20°(b),40°(c),60°(d),80°(e)及100° (f)的鉻(Ⅵ)2鈷(Ⅱ)標准溶液的吸收光譜Fig.3 AbsorptionspectraofChromium(Ⅵ)2Cobalt(Ⅱ)° (a),20° (b),40°(c),60°(d),80°(e)and100°(f)(3)分別取污水處理廠的生活污水的原進水和 處理後的出水,以相同的操作步驟在200~800nm波長范圍內掃描;在257nm處的紫外區,由於水樣中含有機物和硝酸鹽干擾色度的測定,選取用靠近可見光區且無干擾的350nm作為測定波長,並製作色度在10°~100°之間的標准曲線。掃描圖譜見圖4
。 圖4 進水及出水樣的吸收光譜 Fig.4 2.2 溫度、濁度[1]、酸度[2]的影響 常溫下溫度對色度的影響很小,可以忽略。濁 度對色度的影響較大,可將水樣經0.45μm濾膜過濾後除去。在微酸性和中性條件下,酸度對色度的影響較小,可以忽略。2.3 檢出限[1] 分光光度法中以扣除空白值後的與0.01吸光度相對應的濃度為檢出限。本法檢出限為色度5°。2.4 水樣的測定 含懸浮物、混濁的水樣需經0.45μm濾膜過濾後進行測定。分取預處理過的水樣50mL於比色管中(或進行適當稀釋),按繪制標准曲線的步驟測定吸光度,根據標准曲線儀器自動算出水樣的色度。 (下轉第65頁) ・ 26・
理化檢驗-化學分冊 王永祥等:
大別山區野生黎豆中微量元素的測定與品質評價 表2 回收率和精密度試驗及與ICP2AES法 測定結果的比較(n=8) Tab.2 Testsforrecoveryandprecision,andanalyt. 元素 Element 測得量Am′toftheelementfound加標量Am′tofstdsaddedρ/(mg・L-1)測得總量Totalam′t ofthe element found 回收率 Recovery /% RSD /% ICP2AES法 測定值 ResultsobtainedbyICP2AESρ/(mg・L-1
) Mg0.180.200.40110.00.170.
19Ca0.350.400.7292.51.140.37Zn0.410.400.8097.50.480.38Cu0.330.300.65106.71.340.29Fe5.255.0010.495.81.865.10Mn 0.46 0.50 0.95 98.0 2.17 0.
44 表3 黎豆與黃豆、黑豆中6種微量元素含量的比較
Tab.3 ,
樣品 Sample 6種痕量元素的測定值 w/(μg・g-1)Mg CaZnCuFeMn黎豆2532177767.0920.86112.9041.02黃豆2270204770.4615.14117.5424.37黑豆 2098 2124 66.72 18.85 139.74 25.80 鎂、鐵等元素,從黎豆與黑豆、黃豆的測定結果比較 中可以看出,黎豆中鎂、錳、銅的含量均明顯高於其 他兩種同類作物,有較高的開發利用價值。參考文獻: [1] 劉萍,吳世德.原子吸收光譜法測竹香米和大米中銅 鋅錳鈉鎂含量[J].中國公共衛生雜志,2002,23(3): 5282528. [2] 李雯,杜秀月.原子吸收光譜法及其應用[J].鹽湖研 究雜志,2003,11(4):67271. [3] 燕冰,楊軍,周靖.火焰原子吸收光譜法測定冬葵葉 中幾種營養元素含量[J].哈爾濱師范大學:自然科學學報,2003,19(4):77280. [4] 王秀敏.原子吸收光譜法測定小麥品種子粒中鉀鈉鈣 鎂的含量[J].河北農業大學學報,2003,26(4):90293. [5] 王平,孫慧,張蘭傑.黑米、黑豆、黑芝麻中幾種微量元 素含量的測定[J].鞍山師范學院學報,2000,2(1):952 98. [6] UmemuraT,KitaguchiR,HaraguchiH.Counterion2 [J].AnalChem,1998,70(5):9362942. [7] DonerG,Ege
A.Evaluationofdigestionproceres rometry[J].AnalChimActa,2004,520(1/2):2172222. [8] BalasubramanianS,PugalenthiV.Determinationof nspectrometry[J].Talanta,1999,50(3):4572
467.
(上接第62頁) 分取污水處理廠的生活污水的原進水和處理後的出水,經預處理後,按文獻[1]中的標准比色法和本方法進行測定,結果見表1
。 表1 用目視比色法與分光光度法測得的色度結果的比較 Tab.1
byvisualcolorimetry andspectrophotometry 測定方法 Methodofdetermination 測得色度值 Valuesofcolorityfounddegree 20050403進水 20050403inletwater20050403出水 20050403 outletwater20050507進水 20050507 inletwater20050507 出水 20050507 outletwater目視比色法15°~20°10°左右10°~15°5°~10°分光光度法 18.9° 11.1° 10.8° 8.4° 由表1可知,鉻鈷標准比色法得到的結果是某 一范圍,本方法得到結果是一個確定的值,兩種方法得到結果一致。本方法的優點:預先建好標准曲線,每次測定時只需將水樣進行預處理,然後測定吸光度,儀器自動算出水樣的色度。操作簡單,結果准確,減少了人為誤差。參考文獻: [1] 國家環保局《水和廢水監測分析方法》編委會.水和廢 水監測分析方法[M].4版.北京:中國環境出版社, 2002. [2] GB11903-1989 水質色度的測定[S]. ・ 56・
⑦ 污水cod的檢測方法步驟
污水COD檢測方法步驟,所使用的COD檢測儀不同和檢測方法不同,測量步驟也不一樣;比如COD快速檢測儀和滴定法測污水COD,步驟完全不同;
兩者步驟具體可參考:污水COD檢測方法
⑧ 測污水中的氨氮有幾種檢測方法
氨氮的測復定方法,通制常有納氏比色法、苯酚-次氯酸鹽(或水楊酸-次氯酸鹽)比色法和電極法等。納氏試劑比色法具操作簡便、靈敏等特點,水中鈣、鎂和鐵等金屬離子、硫化物、醛和酮類、顏色,以及渾濁等干擾測定,需做相應的預處理,苯酚-次氯酸鹽比色法具靈敏、穩定等優點,干擾情況和消除方法同納氏試劑比色法。電極法通常不需要對水樣進行預處理和具測量范圍寬等優點。氨氮含量較高時,尚可採用蒸餾﹣酸滴定法。
⑨ 污水檢測用什麼儀器
污水檢測用水質測試儀。
水質測試儀就是用特殊的儀器來代理常規性的內水質測試。適用於大、中、容小型水廠及工礦企業、游泳池疾控中心、生活或工業用水的濃度檢測,以便控制水的濁度、色度、余氯、總氯、化合氯、二氧化氯、氨氮、鎳、懸浮物、銅、磷酸鹽、DPD余氯、溶解氧、亞硝酸鹽、鉻、鐵、錳、TDS、水溫。
本儀器可快速准確測定地表水、地下水、城市污水及工業廢水中多項指標,濃度直讀;廣泛用於自來水廠、生活污水處理廠、純凈水廠、飲料廠、食品廠、環保部門、工業用水、防疫部門、城市供水。
(9)污水快速檢測方法擴展閱讀:
水質測試儀儀器特點:
一、比色系統、消解系統、防護罩一體化設計,內置型9孔消解系統,消解孔上端附隔熱層有效保證消解溫度,儀器內置風冷裝置,消解完畢提高散熱速度,保證檢測精度。
二、消解系統採用微迴流快速消解方式,密閉消解防止有機物揮發及樣品逸出,一體化的全透明防護罩可確保消解過程的安全性,同時便於實時監測消解過程。
三、採用使用壽命長達10萬小時的冷光源,無需散熱系統,穩定性優秀;獨立多通道光路系統,各通道獨立控制,互不幹擾,有效消除機械誤差,提高檢測精度。
參考資料來源:網路—水質測試儀