A. 造紙污水處理系統脈沖布水器結構與工作原理(最好有圖紙)
就是廢水連續小流量流入一個中間儲水器,待液位上升至一定高度後由於虹吸作用儲水器內的水瞬間大流量進行脈沖布水,脈沖過程是周期間斷性完成.具體原理詳見附圖.
B. 污水處理溢流堰布水器的設計。
一般以堰負來荷考慮,源150~250CMD/m.d,擾動大選負荷小,反之亦同.
堰之水溝約60cm深,約15~40cm 寬,請以流速較核之.
堰體之高約40cm,突出水溝約17.5cm,堰之波谷與谷之距約30cm.
堰體與水溝間一有橡膠墊防水,以30~50cm距固定之.因堰之目的之一為均勻堰之輻射方向出水,故堰體打孔為長橢圓形,以利將來水平校正.
C. 如何進行污水處理廠的高程計算及平面、高程布置
污水處理廠
平面布置及高程布置
一、污水處理廠的平面布置
污水處理廠的平面布置應包括:
處理構築物的布置污水處理廠的主體是各種處理構築物。作平面布置時,要根據各構築物(及其附屬輔助建築物,如泵房、鼓風機房等)的功能要求和流程的水力要求,結合廠址地形、地質條件,確定它們在平面圖上的位置。在這一工作中,應使:聯系各構築物的管、渠簡單而便捷,避免遷回曲折,運行時工人的巡迴路線簡短和方便;在作高程布置時土方量能基本平衡;並使構築物避開劣質土壤。布置應盡量緊湊,縮短管線,以節約用地,但也必須有一定間距,這一間距主要考慮管、渠敷設的要求,施工時地基的相互影響,以及遠期發展的可能性。構築物之間如需布置管道時,其間距一般可取5-8m,某些有特殊要求的構築物(如消化池、消化氣罐等)的間距則按有關規定確定。
廠內管線的布置污水處理廠中有各種管線,最主要的是聯系各處理構築物的污水、污泥管、渠。管、渠的布置應使各處理構築物或各處理單元能獨立運行,當某一處理構築物或某處理單元因故停止運行時,也不致影響其他構築物的正常運行,若構築物分期施工,則管、渠在布置上也應滿足分期施工的要求;必須敷設接連人廠污水管和出流尾渠的超越管,在不得已情況下可通過此超越管將污水直接排人水體,但有毒廢水不得任意排放。廠內尚有給水管、輸電線、空氣管、消化氣管和蒸氣管等。所有管線的安排,既要有一定的施工位置,又要緊湊,並應盡可能平行布置和不穿越空地,以節約用地。這些管線都要易於檢查和維修。
污水處理廠內應有完善的雨水管道系統,以免積水而影響處理廠的運行。
輔助建築物的布置輔助建築物包括泵房、鼓風機房、辦公室、集中控制室、化驗室、變電所、機修、倉庫、食堂等。它們是污水處理廠設計不可缺少的組成部分。其建築面積大小應按具體情況與條件而定。有可能時,可設立試驗車間,以不斷研究與改進污水處理方法。輔助建築物的位置應根據方便、安全等原則確定。如鼓風機房應設於曝氣池附近以節省管道與動力;變電所宜設於耗電量大的構築物附近等。化驗室應遠離機器間和污泥干化場,以保證良好的工作條件。辦公室、化驗室等均應與處理構築物保持適當距離,並應位於處理構築物的夏季主風向的上風向處。操作工人的值班室應盡量布置在使工人能夠便於觀察各處理構築物運行情況的位置。
此外,處理廠內的道路應合理布置以方便運輸;並應大力植樹綠化以改善衛生條件。
應當指出:在工藝設計計算時,就應考慮它和平面布置的關系,而在進行平面布置時,也可根據情況調整構築物的數目,修改工藝設計。
總平面布置圖可根據污水廠的規模採用1∶200~1∶1000比例尺的地形圖繪制,常用的比例尺為l:500。
圖1為某甲市污水處理廠總平面布置圖、主要處理構築物有:機械除污物格柵井、曝氣沉砂池、初次沉澱池與二次沉澱池(均設斜板)、鼓風式深水中層曝氣池、消化池等及若干輔助建築物。
該廠平面布置特點為:流線清楚,布置緊湊。鼓風機房和迴流污泥泵房位於暖氣池和二次沉澱池一側,節約了管道與動力費用,便於操作管理。污泥消化系統構築物靠近四氯化碳製造廠(即在處理廠西側),使消化氣、蒸氣輸送管較短。節約了基建投資。辦公室。生活住房與處理構築物、鼓風機房、泵房、消化池等保持一定距離,衛生條件與工作條件均較好。在管線布置上,盡量一管多用,如超越管、處理水出廠管都借道雨水管泄入附近水體,而剩餘污泥、污泥水、各構築物放空管等,又都與廠內污水管合並流人泵房集水井。但因受用地限制(廠東西兩惻均為河浜),遠期發展餘地尚感不足。
圖2為乙市污水廠的平面布置圖,泵站設於廠外。主要構築物有:格柵、曝氣沉砂池、初次沉澱池、曝氣池、二次沉澱池及迴流污泥泵房等一些輔助建築物。濕污泥池設於廠外便於農民運輸之處。
該廠平面布置的特點是:布置整齊、緊湊。兩期工程各自成系統,對設計與運行相互干擾較少。辦公室等建築物均位於常年主風向的上風向,且與處理構築物有一定距離,衛生、工作條件較好。在污水流人初次沉澱池、曝氣池與二次沉澱池時,先後經三次計量,為分析構築物的運行情況創造了條件。利用構築物本身的管渠設立超越管線,既節省了管道,運行又較靈活。
第二期工程預留地設在一期工程與廠前區之間,若二期工程改用別的工藝流程或另選池型時,在平面布置上將受一定限制。泵站與濕污泥池均設於廠外,管理不甚方便。此外,三次計量增加了水頭損失。
二、污水處理廠的高程布置
污水處理廠高程布置的任務是:確定各處理構築物和泵房等的標高,選定各連接管渠的尺寸並決定其標高。計算決定各部分的水面標高,以使污水能按處理流程在處理構築物之間通暢地流動,保證污水處理廠的正常運行。
污水處理廠的水流常依靠重力流動,以減少運行費用。為此,必須精確計算其水頭損失(初步設計或擴初設計時,精度要求可較低)。水頭損失包括:
(1)水流流過各處理構築物的水頭損失,包括從進池到出池的所有水頭損失在內;在作初步設計時可按表1估算。
表1 處理構築物的水頭水損失
構築物名稱 水頭損失(cm) 構築物名稱 水頭損失(cm)
格柵 10~25 生物濾池(工作高度為2m時):
沉砂池 10~25
沉澱池: 平流
豎流
輻流 20~40 1)裝有旋轉式布水器 270~280
40~50 2)裝有固定噴灑布水器 450~475
50~60 混合池或接觸池 10~30
雙層沉澱池 10~20 污泥干化場 200~350
曝氣池:污水潛流入池 25~50
污水跌水入池 50~150
(2)水流流過連接前後兩構築物的管道(包括配水設備)的水頭損失,包括沿程與局部水頭損失。
(3)水流流過量水設備的水頭損失。
水力計算時,應選擇一條距離最長、水頭損失最大的流程進行計算,並應適當留有餘地;以使實際運行時能有一定的靈活性。
計算水頭損失時,一般應以近期最大流量(或泵的最大出水量)作為構築物和管渠的設計流量,計算涉及遠期流量的管渠和設備時,應以遠期最大流量為設計流量,並酌加擴建時的備用水頭。
設置終點泵站的污水處理廠,水力計算常以接受處理後污水水體的最高水位作為起點,逆污水處理流程向上倒推計算,以使處理後污水在洪水季節也能自流排出,而水泵需要的揚程則較小,運行費用也較低。但同時應考慮到構築物的挖土深度不宜過大,以免土建投資過大和增加施工上的困難。還應考慮到因維修等原因需將池水放空而在高程上提出的要求。
在作高程布置時還應注意污水流程與污泥流程的配合,盡量減少需抽升的污泥量。污泥干化場、污泥濃縮池(濕污泥池),消化池等構築物高程的決定,應注意它們的污泥水能自動排人污水人流干管或其他構築物的可能性。
在繪制總平面圖的同時,應繪制污水與污泥的縱斷面圖或工藝流程圖。繪制縱斷面圖時採用的比例尺:橫向與總平面圖同,縱向為1∶50-1∶100。
現以圖2所示的乙市污水處理廠為例說明高程計算過程。該廠初次沉澱池和二次沉澱池均為方形,周邊均勻出水,曝氣池為四座方形池,表面機械曝氣器充氧,完全混合型,也可按推流式吸附再生法運行。污水在入初沉池、曝氣池和二沉池之前;分別設立了薄壁計量堰(、為矩形堰,堰寬0.7m,為梯形堰,底寬0.5m)。該廠設計流量如下:
近期 =174L/s 遠期 =348L/s
=300L/s =600L/s
迴流污泥量以污水量的100%計算。
各構築物間連接管渠的水力計算見表2。
處理後的污水排人農田灌溉渠道以供農田灌溉,農田不需水時排人某江。由於某江水位遠低於渠道水位,故構築物高程受灌溉渠水位控制,計算時,以灌溉渠水位作為起點,逆流程向上推算各水面標高。考慮到二次沉澱池挖土太深時不利於施工,故排水總管的管底標高與灌溉渠中的設計水位平接(跌水0.8m)。
污水處理廠的設計地面高程為50.00m。
高程計算中,溝管的沿程水頭損失按表2所定的坡度計算,局部水頭損失按流速水頭的倍數計算。堰上水頭按有關堰流公式計算,沉澱池、曝氣池集水槽系底,且為均勻集水,自由跌水出流,故按下列公式計算:
B= (1)
=1.25B (2)
式中Q--集水槽設計流量,為確保安全,常對設計流量再乘以1.2~1.5的安全系數();
B--集水槽寬(m);
h0--集水槽起端水深(m)。
高程計算:
高程(m)
灌溉渠道(點8)水位 49.25
排水總管(點7)水位
跌水0.8m 50.05
窨井6後水位
沿程損失=0.001×390 50.44
窨井6前水位
管頂平接,兩端水位差0.05m 50.49
二次沉澱池出水井水位
沿程損失=0.0035×100=0.35m 50.84
二次沉澱池出水總渠起端水位
沿程損失=0.35-0.25=0.10m 50.94
二次沉澱池中水位
集水槽起端水深 =0.38m
自由跌落=0.10m
堰上水頭(計算或查表)=0.02m
合計 0.50m 51.44
堰F3後水位
沿程損失=0.002810=0.03m
局部損失==0.28m
合計 0.31m 51.75
堰F3前水位
堰上水頭=0.26m
自由跌落=0.15m
合計 0.41m 52.16
曝氣池出水總渠起端水位
沿程損失=0.64-0.42=0.22m 52.38
曝氣池中水位
集水槽中水位=0.26m 52.64
堰F2前水位
堰上水頭=0.38m
自由跌落=0.20m
合計 0.58m 53.22
點3水位
沿程損失=0.62-0.54=0.08m
局部損失=5.85×=0.14m
合計 0.22m 53.44
初次沉澱池出水井(點2)水位
沿程損失=0.0024×27=0.07m
局部損失=2.46×=0.15m
合計 0.22m 53.66
初次沉澱池中水位
出水總渠沿程損失=0.35-0.25=0.10m
集水槽起端水深 =0.44m
自由跌落 =0.10m
堰上水頭=0.03m
合計 0.67m 54.33
堰F1後水位
沿程損失=0.0028×11=0.04m
局部損失==0.28m
合計 0.32m 54.65
堰F1前水位
堰上水頭=0.30m
自由跌落=0.15m
合計 0.45m 55.10
沉砂池起端水位
沿程損失=0.48-0.46=0.02m
沉砂池出口局部損失=0.05m
沉砂池中水頭損失=0.20m
合計 0.27m 55.37
格柵前(A點)水位
過柵水頭損失0.15m 55.52m
總水頭損失 6.27m
上述計算中,沉澱池集水槽中的水頭損失由堰上水頭、自由跌落和槽起端水深三部分組成,見圖3。計算結果表明:終點泵站應將污水提升至標高55.52m處才能滿足流程的水力要求。根據計算結果繪制了流程圖,見圖4。
圖3 集水槽水頭損失計算示意
-堰上水頭;-自由跌落;-集水槽起端水深;-總渠起端水深
圖4 污水處理流程
污泥流程的高程計算以圖1所示的甲市污水處理廠為例。該廠污泥處理流程為:
二次沉澱池--污水泵站--初次沉澱池--污泥投配(預熱)池--污泥泵站--消化池--貯泥池--運泥船外運
高程計算順序與污水流程同,即從控制性標高點開始計算。
甲市處理廠設計地面標高為4.2m,初次沉澱池水面標高為6.7m。二次沉澱池剩餘活性污泥系利用廠內下水道排至污水泵站,計算從略。從初次沉澱池排出污泥的含水率為97%,污泥消化後經靜澄、撤去上清液,其含水率為96%。初次沉澱池至污泥投配池的管道用鑄鐵管,長150m,管徑300mm。設管內流速為15m/s,按式(3)
式中—輸泥管道沿程壓力損失(m)
L—輸泥管道長度(m)
D—輸泥管管徑(m)
v—污泥流速(m/s)
—海森-威廉(Haren-Williams)系數,其值決定於污泥濃度,見下表:
污泥濃度(%) 值
0.0 100
2.0 81
4.0 61
6.0 45
8.5 32
10.1 25
可求得其水頭損失為:
m
自由水頭1.5m,則管道中心標高為:
6.7-(1.20+1.50)=4.0m
流入污泥投配池的管底標高為:
4.0-0.15=3.85m
圖5 投配池及標高
污泥投配池的標高可據此確定,投配池及標高見圖5。
消化池至貯泥池的各點標高受河水位的影響(即受河中運泥船高程的影響),故以此向上推算。設要求貯泥池排泥管管中心標高至少應為3.0m才能向運泥船排盡池中污泥,貯泥池有效深2.0m。已知消化池至貯泥池的鑄鐵管管徑為200mm,管長70m,並設管內流速為1.5m/s,則根據式(1)可求得水頭損失為1.20m,自由水頭設為1.5m。又,消化池採用間歇式排泥運行方式,根據排泥量計算,一次排泥後池內泥面下降0.5m。則排泥結束時消化池內泥面標高至少應為:
3.0+2.0+0.1+1.2+1.5=7.8m
開始排泥時的泥面標高:
7.8+0.5=8.3m
式中0.1為管道半徑,即貯泥池中泥面與入流管管底平。
應當注意的是:當採用在消化池內撇去上清液的運行方式時,此標高是撇去上清液後的泥面標高,而不是消化池正常運行時的池內泥面標高。
當需排除消化池中下面的污泥時,需用排泥泵排除。
據此繪制的污泥高程圖見圖8-5。
D. 簡述生物膜的構造及其凈化廢水的原理。
生物膜法是利用附著生長於某些固體物表面的微生物(即生物膜)進行有機污水處理的方法。生物膜是由高度密集的好氧菌、厭氧菌、兼性菌、真菌、原生動物以及藻類等組成的生態系統,其附著的固體介質稱為濾料或載體。生物膜自濾料向外可分為慶氣層、好氣層、附著水層、運動水層。生物膜法的原理是,生物膜首先吸附附著水層有機物,由好氣層的好氣菌將其分解,再進入厭氣層進行厭氣分解,流動水層則將老化的生物膜沖掉以生長新的生物膜,如此往復以達到凈化污水的目的。
廢水中微生物沿固體(可稱載體)表面生長的生物處理方法的統稱。因微生物群體沿固體表面生長成粘膜狀,故名。廢水和生物膜接觸時,污染物從水中轉移到膜上,從而得到處理。其基本機理見水的生物處理法。
生物膜法的典型流程 流程(圖1)中的生物器可以是生物濾池、生物轉盤、曝氣生物濾池或厭氧生物濾池。前三種用於需氧生物處理過程,後一種用於厭氧過程。最早出現的生物膜法生物器是間歇砂濾池和接觸濾池(滿盛碎塊的水池)。它們的運行都是間歇的,過濾-休閑或充水-接觸-放水-休閑,構成一個工作周期。它們是污水灌溉的發展,是以土壤自凈現象為基礎的。接著就出現了連續運行的生物濾池。新型塑料問世後,又有了新的發展。
生物濾池
生物膜法中最常用的一種生物器。使用的生物載體是小塊料(如碎石塊、塑料填料)或塑料型塊,堆放或疊放成濾床,故常稱濾料。與水處理中的一般濾池不同,生物濾池的濾床暴露在空氣中,廢水灑到濾床上。布水器有多種形式,有固定式的,有移動式的。回轉式布水器使用最廣。它以兩根或多根對稱布置的水平穿孔管為主體,能繞池心旋轉。穿孔管貼近濾床表面,水從孔中流出。布水器的工作是連續的,但對局部床面的施水是間歇的,這承繼了污水灌溉間歇灌水的概念。濾床的下面有用磚或特製陶塊、混凝土塊鋪成的集水層。再下面是池底。集水層和池外相通,既排水又通風。工作時,廢水沿載體表面從上向下流過濾床,和生長在載體表面上的大量微生物和附著水密切接觸進行物質交換。污染物進入生物膜,代謝產物進入水流。出水並帶有剝落的生物膜碎屑,需用沉澱池分離。生物膜所需要的溶解氧直接或通過水流從空氣中取得。在普通生物濾池中,生物粘膜層較厚,貼近載體的部分常處在無氧狀態。生物膜法濾床的深度和濾率、濾料有關。碎石濾床的深度在一個相當長的時間內大多採用1.8~2米左右。深度如果提高,濾床表層容易堵塞積水。濾率在1~4米3/(米2·日)左右,如果提高,床面也容易積水。首先突破的是濾率的提高。水力負荷率(即濾率)提高到8~10米3/(米2·日)以上時,水流的沖刷作用使生物膜不致堵塞濾床,而且有機物(用BOD5衡量)負荷率,可從0.2公斤/(米3·日)左右提高到1公斤/(米3·日)以上。為了滿足水力負荷率的要求,來水常用迴流稀釋。為了穩定處理效率,可採用兩級串聯。這種流程革新、負荷率提高、構造不變的生物濾池稱高負荷率生物濾池。繼而發現,濾床深度從2米左右提高到8米以上時,通風改善,即使水力負荷率提高,濾床也不再堵塞,濾池工作良好,同時有機物負荷率也可以提高到1公斤/(米3·日)左右。因為這種濾池的平面直徑一般為池高的1/6~1/8左右,外形像塔,故稱塔式濾池。自塑料型塊問世後,通風、堵塞等不再成為問題,濾床深度和濾率可根據需要進行設計。
生物轉盤
是隨著塑料的普及而出現的。數十片、近百片塑料或玻璃鋼圓盤用軸貫串,平放在一個斷面呈半圓形的條形槽的槽面上。盤徑一般不超過4米,槽徑約大幾厘米。有電動機和減速裝置轉動盤軸,轉速1.5~3轉/分左右,決定於盤徑,盤的周邊線速度在15米/分左右。
廢水從槽的一端流向另一端。盤軸高出水面,盤面約40%浸在水中,約60%暴露在空氣中。盤軸轉動時,盤面交替與廢水和空氣接觸。盤面為微生物生長形成的膜狀物所覆蓋,生物膜交替地與廢水和空氣充分接觸,不斷地取得污染物和氧氣,凈化廢水。膜和盤面之間因轉動而產生切應力,隨著膜的厚度的增加而增大,到一定程度,膜從盤面脫落,隨水流走。
同生物濾池相比,生物轉盤法中廢水和生物膜的接觸時間比較長。而且有一定的可控性。水槽常分段,轉盤常分組,既可防止短流,又有助於負荷率和出水水質的提高,因負荷率是逐級下降的。生物轉盤如果產生臭味,可以加蓋。生物轉盤一般用於水量不大時。
曝氣生物濾池
設置了塑料型塊的曝氣池。按其過程也稱生物接觸氧化法。它的工作類似活性污泥法中的曝氣池,但是不要迴流污泥,曝氣方法也不能沿用,一般採用全池氣泡曝氣,池中生物量遠高於活性污泥法,故曝氣時間可以縮短。運行較穩定,不會出現污泥膨脹問題。也有採用粒料(如砂子、活性炭)的。這時水流向上,濾床膨脹、不會堵塞。因為表面積高,生物量多,接觸又充分,曝氣時間可縮短,處理效率可提高,尚處在研究階段。
厭氧生物濾池
構造和曝氣生物濾池雷同,只是不要曝氣系統。因生物量高,和污泥消化池相比,處理時間可以大大縮短(污泥消化池的停留時間一般在10天以上),處理城市污水等濃度較低的廢水時有可能採用。
E. 重力式濾池原理是什麼
污水處理廠經過強化二級生物處理,僅需要去除SS時,可設置過濾單元。應用於污水處理廠深度處理的過濾工藝有多種形式,包括活性砂濾池、高效纖維濾池、纖維轉盤濾池以及高效磁混凝工藝,下面對這四種工藝作介紹,以供參考。
1.活性砂濾池
1.1工藝概況
活性砂過濾器是一種集絮凝、澄清、過濾為一體的連續過濾設備,廣泛應用於飲用水、工業用水、污水深度處理及中水回用處理領域。系統採用升流式流動床過濾原理和單一均質濾料,過濾與洗砂同時進行,能夠24小時連續自動運行,巧妙的提砂和洗砂結構代替了傳統大功率反沖洗系統,能耗極低。
污水廠尾水通過進水管進入過濾器底部,經布水器均勻布水後自上而下通過濾料層。在此過程中,尾水被過濾,去除了水中的污染物。同時活性砂濾料中污染物的含量增加,並且下層濾料層的污染物程度比上層濾料要高。此時打開位於過濾器中央的空氣提升泵,將下層的石英砂濾料提至過濾器頂部的洗沙器中進行清洗。濾砂清洗後返回濾床,同時將清洗所產生的污染物外排。
活性砂濾料在提升泵的作用下呈自上而下的運動,對尾水起攪拌作用。過濾器內濾料能夠及時得到清潔,抗污染物負荷沖擊能力強。活性砂過濾器特殊的內部結構及其自身運行特點,使得混凝、澄清、過濾在同一個池體內可全部完成。
1.2活性砂過濾器的技術特點
(1)石英砂濾料層較厚,濾池較深,土建費用較高;
(2)過濾效率較高,過濾效果較好,無需停機反沖洗,運行費用低;
(3)水頭損失較高,一般需要設置二次提升泵房,增加了運行費用;
(4)活性砂過濾器可根據水量變化靈活增加或減少過濾器數量,主要適應於小規模的污水處理廠。
2.2.高效纖維濾池
2.1工藝概況
高效纖維濾池是一種全新的重力式濾池,它採用了一種新型的纖維束軟填料作為濾元,其濾料直徑可達幾十微米甚至幾微米,具有比表面積大,過濾阻力小等優點。微小的濾料直徑,極大地增加了濾料的比表面積和表面自由能,增加了水中雜質顆粒與濾料的接觸機會和濾料的吸附能力,從而提高了過濾效率和截污容量。
為充分發揮纖維濾料的特長,在濾池內從上至下依次設有反洗排水槽、纖維密度調節裝置、纖維束濾料、濾板、布氣裝置、布水裝置。設備運行時水流經纖維濾料層,軟性纖維濾料在水流阻力作用下被壓實,濾層孔隙度沿水流動方向逐漸縮小,纖維密度逐漸增大,實現了深層過濾。當濾層截污到一定程度需清洗再生時,在反洗水作用下纖維濾層被放鬆,使濾料恢復自由狀態,對濾料進行氣水混合反洗,可有效地恢復濾元的過濾性能。
2.2高效纖維濾池技術特點:
(1)過濾速度快,一般為20~30m/h;
(2)佔地相對較小;
(3)設備均國產化,有利於日後維護管理;
(4)設備費用較高;
(5)濾池水頭損失較大,運行費用較高;
3.3.纖維轉盤濾池
3.1工藝概況
纖維濾盤過濾器是目前世界上最先進的過濾器之一,主要用於廢水的深度處理與中水回用,目前在全世界已廣泛採用了該項技術。其主要特徵為處理效果好,出水水質高,出水穩定,連續運行,承受高水力及懸浮物負荷能力強,全自動運行,操作及保養簡便,運行費用低,土建費用低及佔地極小等。
纖維轉盤濾池用於污水的深度處理,設計水質:進水SS=20~50mg/L,出水SS≤5mg/L,濁度≤2NTU,實際運行出水更優質,一般出水濁度在1左右或更低。
3.2工藝運行原理
污水重力流或壓力流進入濾池,濾池中設有擋板消能設施。污水通過濾布過濾,重力流通過溢流槽排出濾池。過濾中部分污泥吸附於纖維濾布外側,逐漸形成污泥層。隨著纖維濾布上污泥的積聚,纖維濾布過濾阻力增加,濾池水位逐漸升高。通過測壓裝置可監測濾池與出水池之間的水位差。當該水位差到達反沖洗設定值時,PLC即可起動反沖洗泵,開始反沖洗過程。
3.3纖維轉盤濾池技術特點
(1)設計新穎。重力運行,根據水位差自動反沖洗。反沖洗期間連續過濾,過濾期間濾池維持靜態,濾盤僅於清洗旋轉。
(2)佔地面積小,濾盤垂直中空管設計,使小的佔地面積即可保證大的過濾面積。
(3)運行自動化程度高。
(4)水頭損失小,纖維轉盤濾池進出水水頭損失僅0.3m。
(5)採用水力反沖洗,反沖洗泵揚程高;
(6)需更換濾盤濾布,年更換率約5%。
F. 實驗室用UASB反應器有沒有必要設計布水器
這個你要看你的反應器的大小以及實驗的目的,要知道布水器作用是使污水充分與微生物物接觸,加快反應速率,提高效率。若是反應器小,污水能與其充分接觸,就不要設計布水器;若反應器大,實驗目的又不要求具體精確實驗數據,不專門研究,你也不需要設計布水器,若反應器大且實驗要求你用詳細數據求不同情況下反應效率,速率等,那就要設計一下
G. 生物濾池旋轉式布水器怎麼平穩運行
污水處理過程中,我國的主要河流和湖泊由於受磷污染,富營養化嚴重,國家環保局為控制磷污染,對磷排放制定了比較嚴格的標准。化學強化生物除磷污水處理工藝以除去污水中有機污染物和各種形態的磷為主,此污水處理工藝將化學除磷和生物除磷一體化,通過厭氧消化生物系統中活性污泥產生揮發性有機酸,作為聚磷菌生長的基質或稱之為營養物,使聚磷菌在活性污泥中選擇性增殖,並將其迴流到生物系統中,使生物污水處理系統工作在高效除磷狀態;同時污泥在厭氧條件下產生的磷釋放,通過化學除磷消除。這是一種高效市政污水處理工藝技術,滿足了我國現階段,為解決水體富營養化,需要在常規二級污水處理基礎上進一步除磷的要求。
循環間歇曝氣污水處理工藝
我國經濟發展水平各地相差較大,經濟發展滯後的城市還不能拿出很多資金用於污水治理,因此,怎樣利用有限的資金,降低環境污染,是很多城市政府面臨的問題。在污水處理方面,直到不久前,一些城市還採用一級或一級強化處理工藝技術,出水達不到國家二級排放標准對除去有機污染物的要求。循環間歇曝氣工藝充分發揮高負荷氧化溝處理效率高的優點,又充分利用序批式活性污泥污水處理工藝出水好的特點,保證了系統出水達到國家污水排放一級標准在除去有機污染物方面的要求。在投資和運行費用上比通常以除去有機污染物為主的二級生物污水處理系統降低30%左右,是適合我國現階段污水處理要求的工藝技術。
旋轉接觸氧化污水處理工藝
旋轉接觸氧化污水處理工藝技術是在生物轉盤技術基礎上,結合生物接觸氧化技術優點發展起來的新一代好氧生物膜處理技術。旋轉接觸氧化污水處理工藝技術和成套設備提供了一種簡單和可靠的污水處理方法。整個污水處理系統中的轉軸是唯一的轉動部分,一旦機器出了故障,一般機械人員都可以進行維修。系統生物量會根據有機負荷的變化而自動補償。附在轉盤上的微生物是有生命的,當污水中的有機物增加時,微生物隨之增加,相反,當污水中的有機物減少時,微生物隨之減少。所以這污水處理系統的工作效果不容易受到流量和負荷的突然變化和停電的影響。運行費用低,只有其他曝氣污水處理系統耗電的八分之一到三分之一。佔地面積僅相當常規活性污泥法一半。由於生物系統中生長的微生物種類多,能夠高效處理各種難降解工業污水。
連續循環曝氣系統工藝
連續循環曝氣系統工藝(Continuous Cycle Aeration System)是一種連續進水式SBR曝氣系統。污水處理工藝CCAS是在SBR(Sequencing Batch Reactor,序批式處理法)的基礎上改進而成。CCAS污水處理工藝對污水預處理要求不高,只設間隙15mm的機械格柵和沉砂池。生物處理核心是CCAS反應池,除磷、脫氮、降解有機物及懸浮物等功能均在該池內完成,出水可達標排放。 污水處理工藝CCAS上獨特的優勢: (1)曝氣時,CCAS污水處理的污水和污泥處於完全理想混合狀態,保證了BOD、COD的去除率,去除率高達95%。 (2)「好氧-缺氧」及「好氧-厭氧」的反復運行模式強化了磷的吸收和硝化-反硝化作用,使氮、磷去除率達80%以上,保證了出水指標合格。 (3)沉澱時,整個CCAS反應池處於完全理想沉澱狀態,使出水懸浮物極低,低的值也保證了磷的去除效果。 CCAS污水處理工藝的缺點是各池子同時間歇運行,人工控制幾乎不可能,全賴電腦控制,對處理廠的管理人員素質要求很高,對設計、培訓、安裝、調試等工作要求較嚴格。
希望滿意!
H. 畢業設計(污水處理廠設計)
7月16日 16:30 你可以參考一下: 建設污水處理廠是為了城市污水,凈化環境,達到排放標准,滿足環境保護的要求。
一 污水處理程度的確定
基本資料:某城市設計人口11.5萬,城市中共有5個工廠。資料如下:
名稱 流量(L/S) BOD5(mg/L) SS(mg/L)
化工廠 91 360 258
印染廠 87 480 300
棉紡廠 90 250 200
食品廠 129 420 160
屠宰場 84 680 380
生活污水 200 320 300
要求離排放口完全混合斷面自取水樣,BOD5不大於4mg/L 、SS不大於5 mg/L,河水流量按枯水季節最不利情況考慮。河水流量25m3/s、流速為3m/s。河水本底的BOD5=2 mg/L 、SS=3 mg/L經預處理及一級處理SS去除率為50%、BOD5去除率為30%考慮。根據以上資料設計污水廠。
(一):污水處理程度確定
1生活污水量(Qmax)===153L/S=0.153m3/s
式中: ns——120(L/人·d)
N——110000(人)
KZ——1.55
2總污水量(Q)=1.55·(153+91+87+90+129+84) =1008 L/S= 1.002m3/s
3混合後污水的BOD5
BOD5=
=406 mg/L
4蘇聯統計表(岸邊排水與完全混合斷面距離Km)
河水流量與廢水流量之比(Q/q) 河水流量Q(m3/s)
5 5~60 50~500 >500
5:1~25:1 4 5 6 8
25:1~125:1 10 12 15 20
125:1~600:1 25 30 35 50
>600:1 50 60 70 100
5河水流量與污水理的比值
==25:1
6查上表完全混合時離排放口的距離L=5(Km)
7處理程度確定
(1)C0/===4.02mg/L
式中:k1=0.1 t==0.02(天)
C===54.41mg/L
E=×100%==86.60%
8混合後SS的濃度
SS==262 mg/L
C===54.89mg/L E=×100%=×100%=79.05%
9工藝流程圖
(二)·格柵的設計
1柵條間隙數
設:柵前水深(h)為0.4m 過柵流速(v)為1.0m/s 柵條間隙(b)為0.021m 格柵傾角(α)為60°
n===56
2柵槽寬度(B)
設:s為0.01m
B=s(n-1)+bn=0.01×(56-1)+0.021×56=1.726(m)
3通過格柵的水頭損失(h1)
h0=£sinα=0.9×=0.04m
h1=k h0=3×0.04=0.12m
式中:k=3 β=2.42 £=β=0.9
4柵後槽總高度(H)
H=h+h1+h2=0.40+0.12+0.3=0.82m
式中:柵前渠道超高(h2)為0.3m
5進水渠道漸寬部分長度
設:進水渠道寬(B1)為1.5m 漸寬部分展開角度α1為20°
===0.31m
==0.155m
6柵槽總長度(L)
L=++1.0+0.5+=0.31+0.155+1.0+0.5+=2.37m
式中:H1=h+h2=0.7m tgα=1.732
7每日柵渣量
W===4.356(m3/日)
式中:W1=0.08(m3/103m3污水) KZ=1.55
(三)·平流式沉砂沉池
1長度
設:v= 0.25(m/s) t=40(s)
L= v× t=0.25×40=10(m)
2水流斷面面積
A===4.008(m2)
3池總寬度
設:n=8 每格寬b=0.6
B=n×b=8×0.6=4.8(m)
4有效水深
h2===0.835m
5沉砂斗所需容積
設:T=2(天) X=30m3/10m3污水
V===3.35m3
6每個沉泥斗所需容積
設:每一格有2個泥斗
V0= =0.21m3
7沉砂斗各斗各部分尺寸
設:泥斗底寬a1=0.5m 斗壁與水平面的傾角為斗高h3/=0.4m 沉砂鬥上口寬:
a=+ a1=1.0m
沉砂斗容積:
V0===0.23 m3
8沉砂室高度
採用重力排砂,設池底坡度為0.02,坡向砂斗
h3=h3/+0.022=0.4+0.02×3.9=0.478
式中L2=(10-2×1-0.2)/2=3.9
9池總高度
設:超高h1=0.3m
H=h1+h2+h3=0.3+0.835+0.478=1.613m
(四)·一級沉澱池(平流式沉澱池)
1池子總表面積
設:表面負荷q/=2.0(m3/m2·h)
A===1803.6(m2)
2沉澱部分有效水深h2
設:污水停留時間t=1.5h
h2=q/×t=2×1.5=3(m)
3沉澱部分有效容積
V/=Qmax×t×3600=1.002×1.5×3600=5410.8(m3)
4池長
設:水平流速v=5mm/s
L=v×t×3.6=5×1.5×3.6=27(m)
5池子總寬度
B===66.8(m)
6池子個數
設:每個池子寬b=6(m)
n===11
7校核長寬比
==4.5
8污泥部分需要的總容積
設:T=2天
V= =1463.36(m3)
9每格池污泥所需容積
V//===133.03(m3)
10污泥斗容積
h//4===4.76(m)
V1==×4.76×(36+0.25+3)=62.3(m3)
11污泥斗以上梯形部分污泥容積
h/4=(L+0.3-b)×0.02=(27+0.3-6)×0.02=0.426(m)
=L+0.3+0.5=27.8(m)
=6(m)
V2===43.2(m3)
12污泥斗和梯形部分污泥容積
V1+V2=62.3+43.2=105.5(m3)
13池子總高度
H=h1+h2+h3+h4=0.3+3+0.5+5.19=8.99(m)
(五)·生物濾池的設計
1
(1) 混合污水平均日流量
Q==55853.42m3/d=646.45L/s
(2) 混合污水BOD5的濃度
406×(1-30%)=284(mg/L)
(3) 因為>200 mg/L必須使用迴流水稀釋,迴流稀釋後混合污水BOD5濃度
取迴流比r=2 =54.41( mg/L)
===130.94 (mg/L)
(4) 迴流稀釋倍數n
n===2
(5) 濾池總面積A
設NA=2000Gbod5/m2d
A===10970.27(m2)
(6) 濾池濾料總體積V
取濾料層高為H=2m
V=H×A=2×10970.27=21940.54(m3)
(7) 每個濾池面積,採用8個濾池
A1===1371.28 (m2)
(8) 濾池的直徑
D=m
(9) 校核水力負荷
Nq=m3/m2d
2旋轉布水器的計算
(1) 最大設計流量Qmax
Qmax=1.002×24×3600=86572.8m3/d
(2) 每個濾池的最大設計流量
Q/==125.25L/s
(3) 布水橫管直徑D1與布水小孔直徑d
取D1=200mm d=15mm 每檯布水器設有4個布水橫管
(4) 布水器直徑D2
D2=D-200=41800-200=41600mm
(5) 每根布水橫管上的布水小孔數目
m=(個)
(6) 布水小孔與布水器中心距離
a·第一個布水小孔距離:
r1=
b. 第174布水小孔距離
r174=R
c第348布水小孔距離
r348= R
(7) 布水器水頭損失H
=3.98m
(8) 布水器轉速
n=(轉/min)
(六)·輻流式二沉池的設計
1沉澱部分水面面積
設:池數n=2 表面負荷q=2(m3/m2·h) Qmax=1.002×3600=3607.2m3/hr
F==(m2)
2池子直徑
D==m
3沉澱部分有效水深
設:沉澱時間t=1.5(h)
h2=q/×t=2×1.5=3(m)
4沉澱部分有效容積
m3
5污泥部分所需的容積
設:設計人口數N=110000 兩次清除污泥相隔時間T=2天
V=
=731.68(m3)
6污泥斗容積
設:污泥斗高度h5=1.73(m) 污泥鬥上部半徑r1=2(m) 污泥斗下部半徑r2=1(m)
=12.7m3
7污泥斗以上圓錐體部分污泥容積
設: 坡度為0.05
圓錐體高度h4=(R-r1)×0.05=0.75(m)
×=256.7(m3)
8沉澱池總高度
設:超高h1=0.3(m) 緩沖層高度h3=0.5(m)
H=h1+h2+h3+h4+h5=0.3+3+0.5+0.75+1.73=6.28(m)
9沉澱池池邊高度
H/= h1+ h2+h3=0.3+3+0.5=3.8(m)
10徑深比
(符合要求)
(七)·接觸消毒池
1接觸容積
(m3)
2表面積
取有效水深4(m)
(m2)
3 接觸池長
取池寬B=5m 則廊道長L=(m)
(m)
4長寬比
>8(符合要求)
5池總高
取超高h1=0.3m 池底坡度0.05
h3=0.05×15.03=0.75(m)
H=h1+h2+h3=0.3+4+0.75=5.05(m)
(八)·污泥濃縮池
1剩餘污泥量
△ X=a×Qmax×()-b×Xv×V=0.6×86572.8×(0.2842-0.05441)-0.08×4×0.75×731.68
=11760.54(kg/d)
式中:Qmax=0.99561×3600×24=86572.8(m3/d)
(mg/L)=0.2842(kg/ m3)
(mg/L)=0.05441(kg/ m3)
Qs==1306.73( m3/d)
2濃縮池有效水深
濃縮前污泥含水率99%,(由於初沉污泥含水率較低96%,因此僅對二沉池污泥進行濃縮)濃縮部分上升流速v=0.1(mm/s),濃縮時間T=14hr,採用4個豎流式重力濃縮池
h2=0.1×10-3×14×3600=5.04(m)
3中心管面積
設:中心管流速v0=0.03(m/s)
(m2)
4中心管直徑
(m)
5喇叭口直徑,高度
取(m)
高度(m)
6濃縮池有效面積
(m2)
7濃縮池直徑
(m)
8濃縮後剩餘泥量
( m3/d)
9濃縮池污泥斗容積
設:=50° 泥斗D1=0.6(m)
(m)
(m3)
10污泥的停留時間
(hr)在10~16之間,符合要求
11池子高度
設:緩沖層高h4=0.3(m) 超高h1=0.3(m)
中心管與反射板縫隙高度h3=0.3(m)
H=h1+h2+h3+h4+h5=0.3+5.04+0.3+0.3+3.81=9.75(m)
I. 請問;不銹鋼石英砂過濾器裡面的布水器是什麼結構,自己能做嗎
遼京製造石英砂過濾器使用范圍
石英砂過濾器運行可以實現自動控制,過濾效率高內,阻力小,處容理流量大,反沖次數少。廣泛應用於純水、食品飲料水、礦泉水和電子、印染、造紙、化工行業水質的預處理及工業污水二級處理後的過濾。也用於中水回用系統、游泳池循環水處理系統的深度過濾。對於工業廢水中的懸浮物也有很好的去除效果。
1、主要用於水處理除濁、軟化水、電滲析、反滲透的前級預處理,也可用於地表水、地下水等方面。可有效 地去除水中的懸浮物,有機物、膠體、泥沙等。
2、可廣泛應用於電子電力、石油化工、冶金電鍍、造紙紡織、制葯透析、食品飲料、生活飲用水、工廠企業用水、游泳池等。可滿足各行業液體過濾需要。
J. 做污水處理廠等構築物的結構用什麼軟體計算
步驟如下:1.按污水處理池子的深度設計層高,合理確定層數(池子特點);2.底按板回或者基礎計算答鋼筋;3.牆按剪力牆考慮鋼筋;4.頂按板布置鋼筋;5.其餘挖土方、回填同樓層;6.一些特殊部位在單構件輸入中處理。