導航:首頁 > 污水知識 > 煤化工廢水分鹽技術路線

煤化工廢水分鹽技術路線

發布時間:2021-10-27 23:27:45

『壹』 如何判斷煤化工廢水中鹽分以氯化鈉還是硫酸鈉為主

去樣本廢水,用中和反應去驗證

『貳』 為什麼說煤化工業很難實現廢水零排放

經濟方面存在的問題及對策
煤化工產業的發展是依賴於不同企業構成的工藝體系,高含鹽廢水處理系統能夠廣泛、長期、穩定地運行下去,除了考慮技術、環境等要素之外,最重要的是從經濟角度考慮成本問題。
對於膜分離技術而言,本身作為一類高科技材料產品需要大量的資金投入,如果縮短其使用壽命,必然會給企業造成沉重的經濟負擔,而採取熱濃縮工藝的設備單項投資規模很大。
在日後的運營維護中也需要大量的人力物力,如果企業產出無法滿足,必然無法長久的維持。因此,要解決經濟方面存在的問題,必須從兩個方面入手:其一,國家針對煤化工產業給予一定的政策和資金支持,第二,煤化工產業從自身入手,優化產業結構,提高生產效率,增強市場盈利能力。

『叄』 煤化工廢水處理技術研究及應用分析

背景

煤化工廢水近零排放:煤化工是指以煤為原料,經化學加工轉化為氣體、液體和固體燃料及化學品的過程,是針對我國「富煤、貧油、少氣」的能源特點發展起來的基礎產業。

近年來,受市場需求等因素的刺激,煤炭富集區煤化工產業呈現爆發式增長態勢,《「十二五」規劃綱要》明確提出,推動能源生產和利用方式變革,從生態環境保護滯後發展向生態環境保護和能源協調發展轉變。

我國水資源和煤炭資源逆向分布,煤炭資源豐富的地域,往往既缺水又無環境容量。煤化工廢水如果不加以達標處理直接排入受納水體會對周圍水環境造成較大的污染和破壞,造成可利用的水資源量更加緊缺。因此,我國煤化工廢水實施「近零排放」,實現廢水回用及資源化利用勢在必行。


何為近零排放

煤化工廢水近零排放是以解決我國煤化工水資源及廢水處理難題為目標,形成的煤化工廢水處理及資源化利用重大技術研究領域。目前,該領域已基本確立「預處理—生化處理—深度處理—高鹽水處理」實現「近零排放」的技術路線。但是,最終產生的結晶鹽仍然含有多種無機鹽和大量有機物。從加強環境保護的角度出發,煤化工高鹽水產生的雜鹽被暫定為危險廢物。

按目前的處理技術,一次脫鹽處理後僅有60%~70%的淡水能回用。如果真正的零排放還需要把剩餘的30%~40%濃鹽水濃縮再處理進行回用。

現代煤化工企業廢水按照含鹽量可分為兩類:

一是高濃度有機廢水。 主要來源於煤氣化工藝廢水等, 其特點是含鹽量低、污染物以COD為主;

二是含鹽廢水。主要來源於生產過程中煤氣洗滌廢水、循環水系統排水、除鹽水系統排水、回用系統濃水等,,其特點是含鹽量高。

煤化工廢水「零排放」處理技術主要包括煤氣化廢水的預處理、生化處理、深度處理及濃鹽水處理幾大部分。

預處理:由於煤氣化廢水中酚、氨和氟含量很高,而回收酚和氨不僅可以避免資源的浪費,而且大幅度降低了預處理後廢水的處理難度。通常情況下,煤氣化廢水的物化預處理過程有:脫酚,除氨,除氟等。

生化處理:預處理後,煤氣化廢水的COD含量仍然較高,氨氮含量為50~200mg/l,BOD5/COD范圍為0.25~0.35,因此多採用具有脫氮功能的生物組合技術。目前廣泛使用的生物脫氮工藝主要有:缺氧-好氧法(A/O工藝)、厭氧-缺氧-好氧法(A-A/O工藝)、SBR法、氧化溝、曝氣生物濾池法(BAF)等。

深度處理:多級生化工藝處理後出水COD仍在100~200mg/l,實現出水達標排放或回用都需進一步的深度處理。目前,國內外深度處理的方法主要有混凝沉澱法、高級氧化法、吸附法或膜處理技術。

濃鹽水處理: 針對含鹽量較高的氣化廢水等,TDS濃度一般在10000mg/L左右,除了先通過預處理和生化處理以外,通常後續採用超濾反滲透膜來除鹽,膜產水回用,濃水進入蒸發結晶設施,這也是實現污水零排放的重點和難點所在。

ZDP工藝解決煤化工廢水近零排放難題

海普創新開發了廢水近零排放ZDP工藝

煤化工行業近零排放項目現場

『肆』 煤化工廢水「零排放」存在哪些問題

高含鹽廢水處理技術主要針對於煤化工產業,就膜分離技術而言,在煤化工生產內活動中面臨的主要問題是污容染物堵塞,即污水中所含的鹽分、雜質、膏狀物、油類等物質相互融合反應,形成膠狀物體,在微生物的影響下不斷沉積、依附在滲透膜表面,時間異常,高鹽分物質在多種化學、物理作用下會對滲透膜產生腐蝕作用,縮短正常使用壽命。針對膜分離技術出現的問題,可以通過多種方式加以清理,如採用滅菌葯品、殺菌光線等進行長期維護,採用超聲波震盪技術來減少堵塞,也可以通過人工方式定期更換清理等。針對熱濃縮工藝而言,企業要一次性投入大量資金用於建設熱工設備,而在進行濃縮處理的過程中,水中高含量的氯離子、鈣離子等會在設備內部形成鹽垢,導致機械設備存在潛在風險;解決這一問題的常規手段是採取沖灰的方式,採用化學手段降低液體中離子濃度,加速處理過程。

『伍』 煤化工業很難實現廢水零排放嗎,這是為什麼

目前分廠由兩大部分組成,老污水和新污水。老污水裝置設計主要採用完全破氰工藝,專脫氟工藝,屬SBR生化處理工藝,多介質和活性炭過濾吸附工藝,處理全廠生活污水,地面及檢修沖洗水,上游裝置排污水等。老污水處理的水送至新污水或者直接送到循環水(下一分廠)新污水裝置包括低鹽,濃鹽,蒸發,結晶四部分。低鹽甲醇水走厭氧裝置,高油高COD水走氣浮裝置,與其他廢水進入生化調節池,經生化反應,MBR,臭氧氧化,曝氣生物濾池,活性炭濾池,合格後送到循環水(下一分廠)濃鹽採用雙級破氰和雙級除氟,與其他經過預處理的高鹽水混合進入生化反應池3,經MBR,兩級RO,NF裝置,產生的淡水送至循環水,濃水進入蒸發單元。脫硫廢水經兩級混凝沉澱後再經多介質過濾,與NF濃水混合進入蒸發單元。蒸發單元的原理略過,蒸發單元的產水送至循環水,蒸發的TSS和TDS排至結晶單元。結晶單元原理略過,結晶產水與蒸發產水混合送出,結晶產鹽外運。我們的產水只要合格基本循環水都能接收,產鹽外運填埋,污泥外運填埋。基本可以達到零排放。外運的就不要太計較了,都沒有你們一棟樓一天產的垃圾多。
建議問問港榮水務,做蒸發器的,設計生產經驗豐富,工程案例也多。

『陸』 煤化工含鹽廢水處理中存在哪些問題

濃水回收是個難題,基本上分離都是蒸發。晾曬,沒什麼好的技術除非是做零排放系統,但這不算是分離了

『柒』 國內大型環保企業如何處理煤化工廢水

我國近年來興起的煤化工產業大多分布子在西北地區,水資源少,而煤化工又是水資源消耗量和廢水產生量都相當大的產業,因此,廢
以下為大家分享神華包頭煤制烯烴、神華鄂爾多斯煤直接液化、陝煤化集團蒲城
項目名稱:雲天化集團呼倫貝爾金新化工有限公司煤化工水系統整體解決方案
關鍵詞:煤化工領域水系統整體解決方案典範
項目簡介
呼倫貝爾金新化工有限公司是雲天化集團下屬分公司。該項目位於呼倫貝爾大草原深處,當地政府要求此類化工項目的環保設施均需達到「零排放」的水準。同時此項目是亞洲首個採用BGL爐(BritishGas-Lurgi英國燃氣-魯奇爐)煤制氣生產合成氨、尿素的項目,生產過程中產生的廢水成分復雜、污染程度高、處理難度大。此項目也成為國內煤化工領域水系統整體解決方案的典範。
項目規模
煤氣水:80m3/h污水:100m3/h
回用水:500m3/h除鹽水:540m3/h
冷凝液:100m3/h
主要工藝
煤氣水:除油+水解酸化+SBR+混凝沉澱+BAF+機械攪拌澄清池+砂濾
污水:氣浮+A/O
除鹽水:原水換熱+UF+RO+混床
冷凝水:換熱+除鐵過濾器+混床
回用水:澄清器+多介質過濾+超濾+一級反滲透+濃水反滲透
博天環境集團
技術亮點
1、煤氣化廢水含大量油類,含量高達500mg/L,以重油、輕油、乳化油等形式存在,項目中設置隔油和氣浮單元去除油類,其中氣浮採用納米氣泡技術,納米級微小氣泡直徑30-500nm,與傳統溶氣氣浮相比,氣泡數量更多,停留時間更長,氣泡的利用率顯著提升,因此大大提高了除油效果和處理效率。
2、煤氣化廢水特性為高COD、高酚、高鹽類,B/C比值低,含大量難降解物質,採用水解酸化工藝,不產甲烷,利用水解酸化池中水解和產酸微生物,將污水在後續的生化處理單元比較少的能耗,在較短的停留時間內得到處理。
3、煤氣廢水高氨氮,設置SBR可同時實現脫氮除碳的目的。
4、雙膜法在除鹽水和回用水處理工藝上的成熟應用,可有效降低噸水酸鹼消耗量,且操作方便。運行三年以後,目前的系統脫鹽率仍可達到98%。
項目名稱:陝煤化集團蒲城清潔能源化工有限責任公司水處理裝置EPC項目
關鍵詞:新型煤化工領域合同額最大水處理EPC項目
項目簡介
該項目位於陝西省渭南市蒲城縣,採用的是德士古氣化爐和大連化物所的DMTO二代烯烴制甲醇技術。因此廢水主要以氣化廢水及DMTO裝置排水為主,具有高氨氮、高硬度的特點。博天環境承接了該公司年產180萬噸甲醇、70萬噸烯烴項目的污水裝置、回用水裝置和脫鹽水裝置,水處理EPC合同總額達到5億零900萬元。
項目規模
污水:1300m3/h回用水:2400m3/h
濃水處理系統:600m3/h
脫鹽水:一級脫鹽水1600m3/h
工藝凝液:600m3/h透平凝液:1200m3/h
主要工藝
污水:調節+混凝+沉澱+SBR
回用水:BAF+澄清+活性砂濾+雙膜系統+濃水RO
脫鹽水:UF+兩級RO+混床
濃水處理系統:異相催化氧化
工藝凝液:過濾+陽床+混床
透平凝液:過濾+混床
技術亮點
1、污水系統將多級串聯技術與SBR工藝相結合,將SBR反應工序以時間分隔為多次交替出現的缺氧、好氧轉換階段,這種環境下絲狀菌導致的污泥膨脹會被限制,污泥沉降率就會提高;同時,分隔出的各個反應段時長與微生物活性相契合,充分利用快速反硝化階段,創造良好的生物環境,促使硝化與反硝化反應徹底的進行,提高有機物去除效率,實現高氨氮污水污染物的達標處理。
2、濃水採用異相催化氧化處理技術,所用高活性異相催化填料與反應生成的Fe3+生成FeOOH異相結晶體,催化生成更多羥基自由基,具有極強的氧化能力,減少葯劑投加量和污泥生成量。

『捌』 煤化工行業中如何除去蒸氨廢水中的酚

煤化工生產中產生的廢水含有大量的酚類、烷烴類、芳香烴類、雜環類、氨氮和氰等有毒有害物質,煤化工廢水的處理不僅是制約我國煤化工產業發展的瓶頸,也是國內外面臨的一大難題。

哈工大推出的這項多級生化廢水處理技術的具體技術路線為,煤化工廢水經過萃取脫酚和蒸氨回收工藝後,首先將廢水送入厭氧系統內進行處理,在厭氧細菌作用下,實現廢水中有機氮的釋放、難生物降解有機物的分解和產生甲烷過程,提高了廢水的好氧生化性能並降低了後續工藝處理難度。

厭氧工藝的出水與生活污水混合均勻後流入生物增濃低氧氧化池,經過厭氧系統處理後的煤化工廢水可使生化性能得到大幅度提高,在低氧的狀態下,生物增濃低氧氧化池內的生物填料上固著了豐富的生物菌群,實現膜生物和懸浮微生物共存環境,池內污泥濃度較高,可以快速有效地降解廢水中的有機污染物和實現部分氨氮硝化過程。

生物增濃低氧氧化池出水流入生物脫氮工藝(包括A/O段和脫氨段),脫氨池內投加了特殊脫氮填料,有助於硝化細菌和反硝化細菌固著在填料上生長和繁殖,重點完成廢水中氨氮硝化和部分反硝化過程,並進一步降低廢水中污染物濃度。

生物脫氮工藝出水流入混凝沉澱池,通過投加化學葯劑去除煤化工廢水的色度和剩餘的難降解有機物;混凝沉澱池出水進入生物濾池後,填料層吸附和截留了廢水中部分難降解有機物,濾料上微生物對這些有機物進一步降解。

『玖』 煤化工高鹽廢水處理求助

煤化工企業排放廢水以高濃度煤氣洗滌廢水為主,含有大量酚、氰、油、氨氮等有毒、有害物質。綜合廢水中CODcr一般在5000mg/l左右、氨氮在200~500mg/l,廢水所含有機污染物包括酚類、多環芳香族化合物及含氮、氧、硫的雜環化合物等,是一種典型的含有難降解的有機化合物的工業廢水。廢水處理中的易降解有機物主要是酚類化合物和苯類化合物,砒咯、萘、呋喃、眯唑類屬於可降解類有機物,難降解的有機物主要有砒啶、咔唑、聯苯、三聯苯等。下面小編介紹下煤化工廢水處理的難點。
近年來,不斷有新的方法和技術用於處理煤化工廢水,但各有利弊。單純的生物氧化法出水中含有一定量的難降解有機物,COD值偏高,不能完全達到排放標准。吸附法雖能較好地除去CODcr,但存在吸附劑的再生和二次污染的問題。催化氧化法雖能降解難以生物降解的有機物,但實際的工業應用中存在運行費用高等問題。厭氧-好氧聯合處理煤化工廢水可以獲得理想的處理效果,運行管理和成本相對較低,該工藝是煤化工廢水的主要選用工藝。但當在來水濃度較高和含有較多難降解有機物時出水難以穩定達標,需要與催化氧化和混凝沉澱等工藝配合使用。利用多種方法聯合處理煤化工廢水是煤化工廢水處理技術的發展方向。

『拾』 煤化工廢水處理方法

1、物化預處理
預處理常用的方法:隔油、氣浮等。
因過多的油類會影響後續生化處理的內效果,氣浮法煤化工廢水預處理的作用是除去其中的油類並回收再利用,此外還起到預曝氣的作用。
2、生化處理
對於預處理後的煤化工廢水,國內外一般採用缺氧、好氧生物法處理(A/O工藝),但由於煤化工廢水中的多環和雜環類化合物,好氧生物法處理後出水中的COD指標難以穩定達標。
為了解決上述問題,近年來出現了一些新的處理方法,如PACT法、載體流動床生物膜(CBR)、厭氧生物法,厭氧-好氧生物法等
3、深度處理
煤化工廢水經生化處理後,出水的CODcr、氨氮等濃度雖有極大的下降,但由於難降解有機物的存在使得出水的COD、色度等指標仍未達到排放標准。因容此,生化處理後的出水仍需進一步的處理。深度處理的方法主要有混凝沉澱、固定化生物技術、吸附法催化氧化法及反滲透等膜處理技術。

閱讀全文

與煤化工廢水分鹽技術路線相關的資料

熱點內容
水泥廠廢水 瀏覽:715
浸沒式超濾介紹 瀏覽:13
懷回草怎麼用 瀏覽:215
什麼純凈水不是反滲透的 瀏覽:821
吹灰器提升閥內漏標准 瀏覽:623
美的飲水機熱水壺怎麼拿出來 瀏覽:165
真龍香煙過濾嘴帶笑臉 瀏覽:722
不規則水龍頭凈水器怎麼安裝視頻 瀏覽:319
海南生活廢水治理如何聯系 瀏覽:717
太陽雨凈水機如何換濾芯 瀏覽:981
超濾膜氣洗原理 瀏覽:524
反滲透純水機怎麼沖洗 瀏覽:630
高壓水清洗污水施工方案 瀏覽:681
西門子變頻器44轉矩提升 瀏覽:31
新疆飲料行業超濾設備 瀏覽:839
軟化水處理離子交換 瀏覽:686
如何減少污水投葯量 瀏覽:504
易語言音頻文件過濾器 瀏覽:790
凈水機超濾膜概念 瀏覽:266
怎麼下載污水管 瀏覽:758