① 請教各位前輩做有機硅高溫硅橡膠業務前景如何謝謝!
硅膠聚胺復合材料的合成及應用 范忠雷 劉大壯 (鄭州大學化工學院 鄭州 450002) 摘 要 在分析硅膠表面結構的基礎上,討論了硅膠聚胺復合材料的各種合成方法。與傳統的離子交換樹脂相比,用新工藝路線合成的硅膠聚胺復合材料性能優異,是一種具有廣闊工業應用價值的功能材料。關鍵詞 硅膠 合成 硅膠聚胺復合材料 應用 硅膠是一種硅酸凝膠,具有大的比表面,積優良的機械穩定性、熱穩定性和動力學特性,已廣泛用於高效液相色譜的剛性擔體、乾燥劑以及無機填料等領域[1,2]。但是,硅膠自身也存在著明顯的缺陷,如硅膠表面由於存在大量的硅醇基團,會造成色譜峰拖尾;在極限pH 溶液中,硅膠有明顯的溶解現象,性能不穩定。為此,對硅膠表面改性的研究一直是一個令人十分感興趣的課題。 硅膠聚胺復合材料就是利用特定的方法,使聚胺有機分子以共價鍵的方式負載在硅膠表面,形成具有特殊結構和功能的新型材料。用這種方法合成的硅膠聚胺復合材料與離子交換樹脂相比具有很多優點,如耐酸鹼性、使用周期長、成本低等[3]。本文的目的就是分別從硅膠表面結構、硅膠聚胺復合材料的合成方法以及應用等方面對這一領域進行簡要介紹。 1 硅膠表面結構在色譜和工業水處理領域中,無定形硅膠已得到了廣泛的應用,它具有多孔的無定形結構,不產生任何X 射線衍射[1,4]。硅膠的表面存在著硅醇基團(Si-OH)和暴露的硅氧烷鍵(Si-O-Si)。硅醇基團是強吸附的極性基團,而硅氧烷鍵是疏水基團。硅氧烷鍵上的δ鍵被dπ-pπ作用而加強,氧原子上的孤對電子參與π作用,不能參與給體與受體間的相互作用,不能形成氫鍵。Scott和Kucera證實硅氧烷基團幾乎不吸附極性溶劑分子。然而,由於硅氧烷鍵的疏水作用性,可以吸附某些非極性溶劑分子。對硅膠改性而言,硅醇基比硅氧烷基重要得多。硅醇基團可以孤立、成對(雙生)和締合(連位)等不同的方式存在於硅膠表面(見圖1)。最近研究表明,不僅兩個或兩個以上的締合硅醇基團可以形成鍵合對,甚至成對硅醇基團也可以形成鍵合對。 (見圖1 硅膠表面上硅醇基團類型) 硅膠表面的結構可以通過許多方法進行測定。一般情況下,隨著比表面積的增加,硅膠表面上硅醇基團的濃度略有降低。通常硅醇含量的測定方法有同位素交換法、滴定法、光譜法和烷基鋁法等。Nawrock[1]報道了用同位素交換法測定硅膠表面的硅醇基濃度是8.0±1.0μmol/m2,而且這個數值常常被視為硅膠的物理化學常數。硅醇基團具有明顯的酸性,測定的pKa值是7.1。通過對硅膠表面的結構分析,可知硅膠表面硅醇基的類型、濃度和表面分布都會影響所制備鍵合相的性能,而硅膠的預處理則可以改變表面硅醇類型的分布,提高表面的締合硅醇的含量,改善硅膠表面鍵合相的性能。 2 硅膠聚胺復合材料的合成方法 2.1 傳統的合成方法硅膠聚胺復合材料傳統的合成方法是,首先用含有螯合基團的有機分子與具有反應基團的硅烷反應,得到胺基硅烷中間體,再經水解得到含有硅醇的衍生物,隨後所得衍生物在氫鍵力的作用下與硅膠表面的硅醇基團鍵合,經脫水反應而形成共價鍵[5](圖2A和B)。在水解步驟中,水的存在(不管是加入到硅膠表面的,還是硅膠吸附大氣中的水)將促使胺基硅烷生成均聚物,增加分子的立體效應,使得此聚合物不是在硅膠表面生成均勻的單分子聚合層,而只是一種物理沉積。反應中很多硅醇沒有參加縮合反應,造成硅醇基團在硅膠表面大量殘留。文獻[5]報道了這種硅膠復合材料的有機氯硅烷覆蓋率一般低於50%。用這種方法合成的硅膠聚胺復合材料在再生操作時,硅膠表面殘留的硅醇基團將和鹼洗液發生反應,引起硅膠崩解,縮短了硅膠聚胺復合材料的使用壽命。 2.2 傳統方法的改進 (見圖2 Ramsden法(A)水合改進的Ramsden法(B)和WP-1材料C的合成路線簡圖) 由於傳統方法合成的硅膠聚胺復合材料的表面還殘存大量的硅醇基團,使得復合材料在應用中存在耐酸鹼性差,使用壽命短等問題。為了對上述缺點進行改進,人們進一步作了許多工作。主要工作有:(1)包覆技術:包覆技術[1,4,6]是藉助沉積、聚合和交聯方法,使聚合物共價或吸附在硅膠表面上,屏蔽硅膠表面殘留的硅醇基活性,擴大了流動相pH的應用范圍。Delacour等[6]用聚乙烯亞胺塗覆在硅膠的表面,然後再進行交聯制備硅膠聚胺復合材料。經塗敷和固化制備的固定相其,硅膠核穩定,pH應用范圍寬,收縮膨脹很小,殘留硅醇基活性被抑制。但是,塗覆的聚合層必須很薄,否則會影響傳質,這在技術上較難。另外,在特定條件下,聚合層也會溶解流失。(2)活性自由基聚合:Wirth 等[7]用活性聚合的方法把烯丙基胺接枝聚合在硅膠表面,制備了具有自組裝特性的有機膜,並且具有窄分子量分布的硅膠聚胺復合材料。盡管用這種方法制備的硅膠聚胺復合材料具有優良的耐酸鹼性能,但是反應過程中產生了大量的共聚物,接枝效率較低是其最大的缺點。(3)合成路線的改進:在傳統合成方法的基礎上,Fischer等[5]和Rosenberg等[8,9]提出了一種新的合成路線。首先用酸清洗硅膠表面,隨後濕潤硅膠,使硅膠表面覆蓋單分子水膜。然後在適量水存在下,用短鏈的錨定劑(Cl3Si(CH2)3Br)與硅膠表面作用。此有機硅烷(錨定劑)和水合硅膠相互作用可生成整齊、均勻的自組裝單分子聚合層(圖2C)。用這種方法合成的烷基化硅膠可使有機硅基團近乎完全地覆蓋硅膠表面,覆蓋率高達94%,硅醇基團很少暴露在表面上,能顯著地改善硅膠表面的穩定性。然後,再用胺基聚合物和這種具有高覆蓋度的有機硅錨定劑反應,製得硅膠聚胺復合材料。此種硅膠聚胺復合材料由於在硅膠表面引入了聚胺高分子,不但有效地增加材料表面與重金屬離子鍵合的配位數,而且也提供了一種容易調整聚合物的方法,適於特定金屬離子的萃取。尤其是硅膠表面近乎完全的有機覆蓋率,這極大地提高了復合材料的耐酸鹼穩定性和抗水解能力。與前兩種方法相比,這種方法收到了比較好的效果。 2.3 硅膠聚胺復合材料的化學修飾硅膠聚胺復合材料是一種新型功能材料。由於大量胺基的引入,使得硅膠聚胺復合材料的鍵合相更容易用化學的方法進行修飾。最近,美國蒙大拿大學和PSI公司共同開發了一種專利產品——硅膠聚胺復合材料,這種材料由線性和支化的水溶性聚胺以共價鍵的形式結合在硅膠載體表面上,可用於清除水中的過渡金屬離子。Fischer等[10]詳細報道了一種聚乙烯亞胺與多孔硅膠以共價鍵形式結合而形成的復合材料WP-1,聚乙烯亞胺的分子量為1200,其中伯、仲、叔胺的比例分別為1:2:1。WP-2和WP-3是在WP-1的基礎上通過化學修飾而形成的系列產品。WP-2是一種在伯胺和仲胺基團上鍵合有羧酸官能團的復合材料。WP-3是WP-1 上含有硫化物配位體的材料這種材料,可以有效地除去飲用水中濃度極低的有毒金屬離子,如:汞和鉛金屬離子。用這種方法合成的硅膠聚胺復合材料中的高分子在硅膠表面形成了類似魚網的結構,導致其在傳質動力學上也具有顯著優越性。Fukumoto等[11]討論了此類鍵合相的幾何選擇保留和分離機制,其結構可以減小傳質阻力,能克服傳統鍵合相所存在的問題。 3 硅膠聚胺復合材料的應用硅膠聚胺復合材料性能優異,在使用過程中性能穩定,已經在色譜柱技術、環境分析、催化劑等場合得到廣泛的應用。但是,這些領域由於用量等因素的限制,使硅膠聚胺復合材料不容易進行大規模的應用。隨著固相分離技術的發展和商業化,硅膠聚胺復合材料與離子交換樹脂相比具有明顯的優越性[1,2],如:(1)硅膠鍵合相具有更高的化學穩定性和熱穩定性;(2)由於功能基團的分散方式不同,硅膠復合材料比離子交換樹脂具有更快的離子交換速率;(3)硅膠復合材料在使用過程中可以提供恆定的機械特性。而有機樹脂功能基團的溶劑化作用,會引起有機樹脂在操作循環中不斷收縮和膨脹,導致樹脂體積不斷變化,造成操作條件異常;並且,有機樹脂重復的收縮和膨脹也將造成顆粒的破裂和粉碎。此外,硅膠聚胺復合材料還有使用周期長、產品成本低等特點。顯然,隨著對金屬離子回收的日益關注,使得硅膠聚胺復合材料的大規模生產和應用也成為了可能。 硅膠聚胺復合材料在污水處理方面具有廣闊的應用前景。與聚苯乙烯離子交換樹脂不同,具有剛性大孔結構的硅膠幾乎是固定床裝置的理想材料,其背壓比傳統包裝材料的背壓低的多,因此可具有更大的流速和操作流量。Rosenberg研究組[10]把硅膠聚胺復合材料(WP-1、WP-2 和WP-3)用於伯克利銅礦污水處理,可以把礦坑廢水中的銅、鋁、鋅等金屬離子的濃度降低到允許排出量以下,回收的銅、鋅溶液純度高達90%。Izatt 等[12]利用硅膠復合材料固相分離技術,成功地清除了核電站的酸性廢液中的90Sr2+和Pb2+離子。文獻顯示,在高濃度其它陽離子存在的情況下,用不同的SuperLig系統可以有效地清除酸性廢液中的90Sr2+和Pb2+離子,並且具有很高的選擇性。 硅膠聚胺復合材料也可以在飲用水方面進行應用。Fischer等[10]報道了用硅膠聚胺復合材料WP-3處理含有痕量有毒重金屬離子的飲用水,結果表明WP-3能夠有效地除去飲用水中痕量的鉛、汞等重金屬離子,可以使滲漏液中的鉛離子含量一直低於允許限15ppb以下。 硅膠聚胺復合材料在其它領域也得到了廣泛的應用。由於硅膠載體不易提供細菌的生長環境,操作系統更容易維持無菌條件,因此硅膠聚胺復合材料更適宜在食品等具有嚴格衛生要求的行業使用。硅膠聚胺復合材料也可用在核電站、核武器生產廠等具有輻射污染的特殊場合[13],用硅膠聚胺復合材料處理其循環冷卻水、廢水則顯示了相當優良的穩定性。此外,楊林等[14]報道了甲硅烷基化的SiO2表面作為基底,用含有氨基的有機分子在其表面上進行自組裝,反應生成均勻的氨端基單分子層。這種單分子層在非線性光學器件、粘結、仿生材料等方面有廣泛的應用。 總之,硅膠聚胺復合材料是一種新型的功能材料。根據特定目的,在硅膠聚胺復合材料表面固載特定的功能基團或螯合劑,賦予其更特殊的螯合功能,可用於污水處理、飲用水脫除痕量重金屬離子和選擇性回收貴重金屬等領域。尤其是,硅膠聚胺復合材料和固相吸附分離(SPS)技術相結合,使得其有可能大規模地應用於水處理等領域。因此硅膠聚胺復合材料是一種極具開發價值和大規模應用的新型材料。連接地址:
② 有人做過有機硅廢水嗎
主要成分是聚硅氧烷,化學結構以Si-O-Si為主,是有機硅烷的水解產物,可以用鹼水清洗。
③ 含礦物油的廢水,用什麼曝氣管比較好EPDM和硅橡膠的好像都不行,求高手支招!!
丁晴膠 應該可以。
④ 廢水污水處理絮凝劑絮凝效果差的原因是什麼
影響高分子絮凝劑使用的因素有如下幾點: ⑴水的pH值水的pH值對無機絮凝劑的使用效果影響很大,pH值的大小關繫到選用絮凝劑的種類、投加量和混凝沉澱效果。水中的H+和OH-參與絮凝劑的水解反應,因此,pH值強烈影響絮凝劑的水解速度、水解產物的存在形態和性能。以通過生成Al(OH)3帶電膠體實現混凝作用的鋁鹽為例,當pH值﹤4時,Al3+不能大量水解成Al(OH)3,主要以Al3+離子的形式存在,混凝效果極差。pH值在6.5~7.5之間時,Al3+水解聚合成聚合度很大的Al(OH)3中性膠體,混凝效果較好。pH值﹥8後,Al3+水解成AlO2-,混凝效果又變得很差。水的鹼度對pH值有緩沖作用,當鹼度不夠時,應添加石灰等葯劑予以補充。當水的pH值偏高時,則需要加酸調整pH值到中性。相比之下,高分子絮凝劑受pH值的影響較小。 ⑵水溫水溫影響絮凝劑的水解速度和礬花形成的速度及結構。混凝的水解多是吸熱反應,水溫較低時,水解速度慢且不完全。低溫情況下,水的粘度大,布朗運動減弱,絮凝劑膠體顆粒與水中雜質顆粒的碰撞次數減少,同時水的剪切力增大,阻礙混凝絮體的相互粘合;因此,盡管增加了絮凝劑的投加量,絮體的形成還是很緩慢,而且結構鬆散、顆粒細小,難以去除。低溫對高分子絮凝劑的影響較小。但要注意的是,使用有機高分子絮凝劑時,水溫不能過高,高溫容易使有機高分子絮凝劑老化甚至分解生成不溶性物質,從而降低混凝效果。 ⑶水中雜質成分水中雜質顆粒大小參差不齊對混凝有利,細小而均勻會導致混凝效果很差。雜質顆粒濃度過低往往對混凝不利,此時迴流沉澱物或投加助凝劑可提高混凝效果。水中雜質顆粒含有大量有機物時,混凝效果會變差,需要增加投葯量或投加氧化劑等起助凝作用的葯劑。水中的鈣鎂離子、硫化物、磷化物一般對混凝有利,而某些陰離子、表面活性物質對混凝有不利影響。 ⑷絮凝劑種類絮凝劑的選擇主要取決於水中膠體和懸浮物的性質及濃度。如果水中污染物主要呈膠體狀態,則應首選無機絮凝劑使其脫穩凝聚,如果絮體細小,則需要投加高分子絮凝劑或配合使用活化硅膠等助凝劑。很多情況下,將無機絮凝劑與高分子絮凝劑聯合使用,可明顯提高混凝效果,擴大應用范圍。對於高分子而言,鏈狀分子上所帶電荷量越大,電荷密度越高,鏈越能充分伸展,吸附架橋的作用范圍也就越大,混凝效果會越好。 ⑸絮凝劑投加量使用混凝法處理任何廢水,都存在最佳絮凝劑和最佳投葯量,通常都要通過試驗確定,投加量過大可能造成膠體的再穩定。一般普通鐵鹽、鋁鹽的投加范圍是10~100mg/L,聚合鹽為普通鹽投加量的1/2~1/3,有機高分子絮凝劑的投加范圍是1~5mg/L。 ⑹絮凝劑投加順序當使用多種絮凝劑時,需要通過試驗確定最佳投加順序。一般來說,當無機絮凝劑與有機絮凝劑並用時,應先投加無機絮凝劑,再投加有機絮凝劑。而處理雜質顆粒尺寸在50μm以上時,常先投加有機絮凝劑吸附架橋,再投加無機絮凝劑壓縮雙電層使膠體脫穩。 ⑺水力條件在混合階段,要求絮凝劑與水迅速均勻地混合,而到了反應階段,既要創造足夠的碰撞機會和良好的吸附條件讓絮體有足夠的成長機會,又要防止已生成的小絮體被打碎,因此攪拌強度要逐步減小,反應時間要足夠長。 使用高分子有機絮凝劑時,應注意的事項有:有機高分子絮凝劑屬於線團結構的長鏈大分子,在水中必然經歷一個溶漲過程,固體產品或高濃度液體產品在使用之前必須配製成水溶液再投加到待處理水中。配製水溶液的溶葯池必須安裝機械攪拌設備,溶葯連續攪拌時間要控制在30min以上。水溶液的濃度一般為0.1%左右,再高,溶液的粘度增大,投加困難,再低,需要的溶液池體積又會過大。溶葯使用的水中應盡量避免含有大量的懸浮物,以避免有機高分子絮凝劑與這些懸浮物進行絮凝反應形成礬花,影響投加後的使用效果。對固體有機高分子絮凝劑進行溶解時,固體顆粒的投加點一定要在水流紊動最強烈的地方,同時一定要以最小投加量向溶葯池中緩慢投入,使固體顆粒分散進入水中,以防固體投加量太快在水中分散不及而相互粘結形成團塊,團塊的結構是內部有固體顆粒、外部包圍部分水解物,這樣的團塊一旦形成,往往要花費很長時間才能再均勻地溶入水中,在連續溶葯池中甚至可以存在長達數天。固體顆粒的投加點一定要遠離機械攪拌器的攪拌軸,因為攪拌軸通常是溶葯池中水流紊動性最差的地方,溶解不充分的有機高分子絮凝劑經常會附著在軸上,日益積累,有時可以形成相當大的粘團,如果不及時認真地予以清理,粘團會越變越大,影響范圍也就越來越大。作為助凝劑時,一般要先在處理水中投加無機絮凝劑進行壓縮雙電層脫穩後,再投加有機高分子絮凝劑實現架橋作用。在無機絮凝劑投加充足的條件下,有機高分子絮凝劑的助凝效果不會因投加量的差異而有較大差別。因此,作為助凝劑時,有機高分子絮凝劑的投加量一般為0.1mg/L。
⑤ 石墨烯水凝膠是如何凈化廢水的
干凝膠和氣凝膠是一種物質。兩者沒有區別。 干凝膠又稱為氣凝版膠。當凝膠脫去大部分溶劑,權使凝膠中液體含量比固體含量少得多,或凝膠的空間網狀結構中充滿的介質是氣體,外表呈固體狀,這即為干凝膠,也稱為氣凝膠。如明膠、阿拉伯膠、硅膠、毛發
⑥ 如何處理半導體(LED)廢水
隨著單個LED光通亮和發光效率的提高,即將進入普通室內照明、台燈、筆記本電腦背光源、大尺寸LED顯示器背光源等市場廣闊。 LED生產過程中絕大部分廢水產生在原材料和晶元製造過程中,分為拉晶、切磨拋和晶元製造,主要含一般酸鹼廢水、含氟廢水、有機廢水、氨氮廢水等幾種水質,在黃綠光晶片製造過程中還會有含砷廢水排出。 2、LED晶元加工廢水特點:主要污染物為LED晶元生產過程中排放的大量有機廢水和酸鹼廢水,另有少量含氟廢水。有機廢水主要污染物為醇、乙醇、雙氧水;酸鹼廢水中主要污染物為無機酸、鹼等。 3、LED切磨拋廢水特點:主要污染物為大量清洗廢水,主要成分為硅膠、弱酸、硫酸、鹽酸、研磨砂等。 4、酸鹼廢水排放:主要包括工藝酸鹼廢水、廢氣洗滌塔廢水、純水站酸鹼再生廢水,採用化學中和法處理。 含砷廢水:主要來自背面減薄及劃片/分割工序,採用化學沉澱法處理。 一般廢水:排放方式均為連續排放,主要指純水站RO濃縮廢水主要污染物為無機鹽類,採用生化法去除。 含氟廢水:主要清洗廢水中含有HF,使用混凝沉澱去除。 高氨氮廢水:使用折點加氯法,將廢水中的氨氮氧化成N2。投加過量氯或次氯酸鈉,使廢水中氨完全氧化為N2的方法,稱為折點氯化法,其反應可表示為: NH4+十1.5HOCl→0.5N2十1.5H2O十2.5H+十1.5Cl-5、案例: 5.1、LED生產加工之藍寶石拉晶廢水 污水水質、水量: 水量:480t/d;20t/h(24小時連續)廢水水質:PH值5.0-10.0無量綱出水要求:達到國家廢水二級排放標准(<污水綜合排放標准(GB8978-1996)表4標准)的要求。具體指標為:處理工藝酸鹼廢水進入酸鹼廢水調節池後與投加的葯劑進行中和反應,達到工藝要求後進入有機廢水調節池。人工收集到含氟廢水收集池,加葯劑進行沉澱。上清液達標排放,污泥排入污泥濃縮池處理。 利用有機廢水調節池的池容增加生化處理功能,向池內投加厭氧性水解菌,池內配置穿孔水力攪拌系統以加強傳質,為後繼處理單元提供部分水解處理服務。 廢水經過調節後經泵提升進入進入厭氧水解池。 厭氧水解池採用上向流布水形式,利用循環管網系統加強池底部的混流強度,提高反應器內的傳質效果。利用微生物的水解酸化作用將廢水中難降解的大分子有機物轉化為易降解的小分子有機物,將復雜的有機物轉變成簡單的有機物,提高廢水的可生化性,有利於後續的好氧生化處理。出水自流進入接觸氧化池。接觸氧化池的混合液進入二沉池進行泥水沉澱分離。為保證COD排放達標的處理要求,將二沉池出水導入BAF進行處理。生物曝氣濾池的出水流入清水池,為生物曝氣濾池提供濾料的反沖洗水,其餘的清水達標排放。 5.2、LED生產加工之切磨拋廢水 污水水質、水量: 水量:432t/d;18t/h(24小時連續)廢水水質:1PH值5.0-10.0無量綱出水要求:達到國家廢水二級排放標准(<污水綜合排放標准(GB8978-1996)表4標准)的要求。具體指標為:處理工藝根據業主廢水的水質情況,在吸取以往同類廢水處理裝置設計的成功經驗和一些同類廢水處理裝置的實際運行經驗,設計污水處理主體工藝路線如下: 格柵池+清洗廢水調節池+反應池+物化沉澱池達標排放 污泥處理主體工藝採用工藝路線為: 污泥濃縮+污泥調理+板框壓濾泥餅外運 5.3、LED生產加工之晶元廢水 污水水質、水量: 有機廢水水量:19.4t/h(24小時連續)水質:PH值6.0-8.0無量綱 酸鹼廢水水量:70t/h(24小時連續)水質:PH值4.0-11.0無量綱 含氟廢水水量:4t/h(24小時連續)水質:PH值2.0-4.0無量綱 氟化物≤200mg/L處理工藝酸鹼廢水進入酸鹼廢水調節池後與投加的葯劑進行中和反應,達到工藝要求後達標排放。含氟廢水收集調節後與投加的葯劑反應生成不溶性氟化物沉澱,上清液達標排放。
⑦ 硅膠的用處是什麼
硅膠(mSiO2·nH2O)又名氧化硅膠和硅酸凝膠。它是透明或乳白色顆粒,吸濕量能達40%左右,能耐鹽酸、硫酸、硝酸的浸漬,有球形和不規則型兩種。通常使用的變色硅膠,是將硅酸凝膠用CoCl2溶液浸泡,然後經乾燥活化後製得的。因為無水COCl2為藍色,水合CoCl2·6H2O顯紅色。所以根據變色硅膠的顏色變化,可以判斷硅膠吸水的程度。變色硅膠常作為乾燥劑和吸附劑使用。
硅膠聚胺復合材料的應用
硅膠聚胺復合材料性能優異,在使用過程中性能穩定,已經在色譜柱技術、環境分析、催化劑等場合得到廣泛的應用。但是,這些領域由於用量等因素的限制,使硅膠聚胺復合材料不容易進行大規模的應用。隨著固相分離技術的發展和商業化,硅膠聚胺復合材料與離子交換樹脂相比具有明顯的優越性[1,2],如:(1)硅膠鍵合相具有更高的化學穩定性和熱穩定性;(2)由於功能基團的分散方式不同,硅膠復合材料比離子交換樹脂具有更快的離子交換速率;(3)硅膠復合材料在使用過程中可以提供恆定的機械特性。而有機樹脂功能基團的溶劑化作用,會引起有機樹脂在操作循環中不斷收縮和膨脹,導致樹脂體積不斷變化,造成操作條件異常;並且,有機樹脂重復的收縮和膨脹也將造成顆粒的破裂和粉碎。此外,硅膠聚胺復合材料還有使用周期長、產品成本低等特點。顯然,隨著對金屬離子回收的日益關注,使得硅膠聚胺復合材料的大規模生產和應用也成為了可能。
硅膠聚胺復合材料在污水處理方面具有廣闊的應用前景。與聚苯乙烯離子交換樹脂不同,具有剛性大孔結構的硅膠幾乎是固定床裝置的理想材料,其背壓比傳統包裝材料的背壓低的多,因此可具有更大的流速和操作流量。rosenberg研究組[10]把硅膠聚胺復合材料(wp-1、wp-2
和wp-3)用於伯克利銅礦污水處理,可以把礦坑廢水中的銅、鋁、鋅等金屬離子的濃度降低到允許排出量以下,回收的銅、鋅溶液純度高達90%。izatt
等[12]利用硅膠復合材料固相分離技術,成功地清除了核電站的酸性廢液中的90sr2+和pb2+離子。文獻顯示,在高濃度其它陽離子存在的情況下,用不同的superlig系統可以有效地清除酸性廢液中的90sr2+和pb2+離子,並且具有很高的選擇性。
硅膠聚胺復合材料也可以在飲用水方面進行應用。fischer等[10]報道了用硅膠聚胺復合材料wp-3處理含有痕量有毒重金屬離子的飲用水,結果表明wp-3能夠有效地除去飲用水中痕量的鉛、汞等重金屬離子,可以使滲漏液中的鉛離子含量一直低於允許限15ppb以下。
硅膠聚胺復合材料在其它領域也得到了廣泛的應用。由於硅膠載體不易提供細菌的生長環境,操作系統更容易維持無菌條件,因此硅膠聚胺復合材料更適宜在食品等具有嚴格衛生要求的行業使用。硅膠聚胺復合材料也可用在核電站、核武器生產廠等具有輻射污染的特殊場合[13],用硅膠聚胺復合材料處理其循環冷卻水、廢水則顯示了相當優良的穩定性。此外,楊林等[14]報道了甲硅烷基化的sio2表面作為基底,用含有氨基的有機分子在其表面上進行自組裝,反應生成均勻的氨端基單分子層。這種單分子層在非線性光學器件、粘結、仿生材料等方面有廣泛的應用。
總之,硅膠聚胺復合材料是一種新型的功能材料。根據特定目的,在硅膠聚胺復合材料表面固載特定的功能基團或螯合劑,賦予其更特殊的螯合功能,可用於污水處理、飲用水脫除痕量重金屬離子和選擇性回收貴重金屬等領域。尤其是,硅膠聚胺復合材料和固相吸附分離(sps)技術相結合,使得其有可能大規模地應用於水處理等領域。因此硅膠聚胺復合材料是一種極具開發價值和大規模應用的新型材料。
⑧ 怎樣製作硅橡膠它的材料要說明白
製作硅抄橡膠主要原料:沙子,鹼化鉀,襲暫時性催化劑[(CH3)4NOH、(n-C4H9)4POH]。
工業上主要採用鹼催化聚合法及酸催化聚合法生產硅橡膠。較多的採用KOH和暫時性催化劑[(CH3)4NOH、(n-C4H9)4POH]。
加工成型方法如圖所示。一次硫化的目的是進行高分子鏈的交聯反應;二次硫化的目的是進行補充交聯、驅除硫化劑分解產物和其他揮發性化合物以穩定硫化膠的各項性能。常用的設備有開放式煉膠機、捏合機及真空密煉機。
(8)硅膠廢水擴展閱讀:
硅橡膠的應用:
1.建築行業。用於玻璃和金屬幕牆的粘結,屋頂嵌封,門窗密封,各種水池、瓷磚的粘接密封。
2.電子行業。用於電子電氣部件的包封和灌注材料,可防潮、抗震和耐沖擊、耐溫度驟變和化學品的腐蝕。
3.模具。硅橡膠優異的模擬性和良好的脫模性能使其在軟模具行業得到廣泛應用。
4.汽車、船舶及航空。用作汽車就地成型墊圈、車窗密封、電子電器接插件防電暈等。
⑨ 研磨污水該怎麼處理
研磨廢水處理,以較為理想的可算是宜興恩越,其操作簡便,採用混凝的方法,達到了達標排放的標准,也用於循環回用,同時也可處理超聲波清洗後產生的廢水。
超聲波清洗廢水處理設備技術方案
一種生物技術與物化技術相結合的高效廢水處理設備。其技術核心起源是利用復合生化技術和催化氧化技術相結合。這種工藝不僅有效地達到了去除高濃度COD、氨氮、除鹽廢水的目的,而且具有污水二級處理傳統工藝不可比擬的優點與傳統的生化水處理技術相比,宜興恩越環保生產的超聲波清洗廢水處理設備(催化氧化--生物流化床)具有以下主要特點:處理效率高、出水水質好;設備緊湊、佔地面積小;易實現自動控制、運行管理簡單,關鍵工藝投資費用低,運行節省,操作方便和節能減耗等技術特點。
傳統的廢水處理方法主要有生物法、物理法和化學法。而生物法包括厭氧工藝處理時間長,且難以降低其毒性,造成許多毒性更大的產物。物理方法包括電凝法、吸附法、膜分離法以及絮凝法,這些物理方法往往適應性差。而化學法如光催化降解,臭氧氧化法,雖然不帶來二次污染,但處理時間比較長,成本較高。超聲波廢水處理技術近年來已成為廣大環境工作者關注的焦點之一,由於其快速、高效且無二次污染的優點而備受研究者們的青睞,超聲波的空化效應為降解水中有害有機物提供可能,從而使超聲波有機廢水處理目的的實現。在有機廢水處理過程中,超聲波的空化作用對有機物有很強的降解能力,且降解速度很快,超聲波空化泡的崩潰所產生的高能量足以斷裂化學鍵,空化泡崩潰產生氫氧基和氫基,同有機物發生氧化反應,宜興恩越環保能將水體中有害有機物轉變成無機離子或比原有機物毒性小易降解的有機物。所以在傳統有機廢水處理中生物降解難以處理的有機污染物,可以通過超聲波的空化作用實現降解,而超聲波清洗機清洗完產生的廢水還會含有許多雜質,油脂等物質,需要進一步處理。