1. 為什麼用硫化鈉作沉澱劑,除去廢水中的銅離子和汞離子
重金屬對固定化微生物處理電鍍廢水有機物能力的影響
近年來,國內外對電鍍廢水處理方法研究甚多,工藝各異,主要有化學法、電解法、離子交換法、電滲析法、生物法等。與傳統方法相比,生物法處理電鍍廢水不同程度的存在投資小、運行費用低、無二次污染等優點,得到較快的發展和廣泛的應用。微生物固定化技術可以大大提高微生物對有毒物質的承受能力,可用於高濃度污染物廢水的生化處理。聚氨酯泡沫體由於具有較好的親水性、孔結構、微生物親和性以及耐生物降解性而被廣泛作為固定化微生物載體(填料)用於廢水的生物處理。電鍍廢水成分復雜,其主要污染物是鉻、鎳、鋅等重金屬離子、氰化物和 COD。微量重金屬是微生物生命活動所需營養物質,但微生物對各種微量重金屬的需要量極少,過量反而會引起毒作用,容易造成出水水質的波動。2008 年國家環保部頒布了《電鍍污染物排放標准》(GB 21900-2008),其中對新建電鍍企業排放的 COD作出了嚴格規定,目前,針對電鍍廢水重金屬的處理及回收國內外已有大量研究,但對其有機污染物和氨氮的去除研究較少,尤其是廢水重金屬濃度對微生物處理電鍍廢水有機物的影響鮮有報道。本研究在電鍍廢水污泥中分離篩選的復合功能菌群GW,
對金屬耐受性強的特點。通過與改性聚氨酯泡沫體固定化後,研究了重金屬Cr,Zn濃度對其處理電鍍廢水有機物的影響,並通過逐步提高廢水金屬濃度,探討固定化微生物處理電鍍廢水對重金屬的耐受性,為提高廢水生物處理系統運行的穩定性提供理論基礎。
1 試驗材料與方法
1. 1 試驗材料
1.1.1 GW高效復合菌劑。從富含重金屬的污泥及廢水中分離的高效菌種8株,含多種酶制劑,微生物含量約1.0×10CFU/g,由廣州發酵工程技術研究中心生產提供。
1.1.2 聚氨酯泡沫體。市購聚氨酯泡沫體,干態密度為30kg/m,通過重鉻酸鉀及雙氧水浸泡改性,提高固定化微生物負載量。
1.1.3 試驗廢水。取自廣州某電鍍企業水解反應池出水,加入少量葡萄糖、尿素、蛋白腖、硫酸亞鐵、磷酸二氫鉀、硫酸銅等作為微生物生長基質,作為人工廢水用於菌種的固定及馴化。水質指標如表1示。 表1 電鍍廢水水質指標
1.2 試驗方法
1.2.1微生物的固定化和馴化
在總體積為10L反應器中,加入約30%反應器體積的改性聚氨酯載體、一定量的交聯劑和高效微生物菌群GW,通入30%反應器體積的人工廢水和70%體積的自來水,在曝氣條件下進行固定化反應。每天更換10%~15%反應器中的人工廢水,並補加適量高效微生物菌群及少量無機鹽類。同時,每7天測定微生物負載量。當微生物負載量達到35 mg/g干態載體,固定化馴化階段結束。
1.2.2 重金屬濃度對COD及氨氮去除的影響
重金屬鹽溶液的配製:分別以重鉻酸鉀、硫酸鋅配製含一定體積質量的Cr,Zn溶液。反應器內設有曝氣頭,均布於生化池底部,用AR-6500型充氧泵(低流量)曝氣,改性聚氨酯填料的載體比例為30%,氣水體積比控制在(6~15):1 ,測定其進、出水COD、NH-N濃度,試驗重復3次,以平均去除率反應處理效果。
1.2.3 重金屬耐受性試驗
採用循序漸增的方式逐漸提高原水中Cr,Zn金屬離子濃度,分別在第 1,7,14,20,29,42 天開始將原水中 Cu濃度提升至 0. 5,1,2,5,10,15 mg / L,研究固定化微生物重金屬耐受性對廢水有機物處理效果的影響。
關鍵詞: 電鍍廢水; 固定化微生物; 重金屬; 有機物去除; 耐受性
2. 處理電鍍廢水.含鎳廢水為什麼要在鹼性情況下處理
看你用什麼葯劑,如果你使用的是硫化物的話必須在鹼性狀態,酸性狀態會產生劇毒的硫化氫氣體
3. 含鎳廢水的來源
1、含鎳廢水的來源:電鍍廠、線路板廠的鍍鎳工藝
2、廢水中鎳的價態是正內2價,形態根據廢水種類可容以分為電鍍鎳和化學鎳,其中電鍍鎳是以離子態的形式存在,化學鎳是以絡合態的形式存在
3、含鎳廢水處理:對於離子態的鎳,直接加片鹼進行處理即可沉澱達標;而對於化學鎳。絡合態的鎳,需要加入高效除鎳劑HMC-M2後,加入PAC和PAM進行沉澱處理,能夠達到表三標准
市場上很多用硫化鈉或者棕紅色液體重捕劑DTCR處理的,效果一般,很難把鎳徹底做到0.1ppm
4. 廢水中含有鎳怎麼處理
工具/原料
高效除來鎳劑HMC-M2
H2SO4/HCl
PAC、PAM
1、測量自含鎳廢水中鎳離子的濃度,例如Cni=40ppm(mg/L)
5. 化學鎳廢水怎麼處理
電鍍生產中含鎳廢水主要來自鍍槽翻洗缸角退鍍液、化學液、廢鍍液等,鍍鎳槽液使用時間長後,鐵、銅、鋅等離子會積累,另外某些有機添加劑也會破壞而失掉,從而引起鍍層的各種質量題目。由於鎳資源比較寶貴,大多數電鍍廠都盡可能凈化回用。
針對含鎳廢水怎麼處理的問題,本文詳細介紹一種含鎳廢水的處理工藝—反滲透膜技術。
膜分離技術作為一門高新技術,因其分離高效、節能、無二次污染、操作方便、佔地面積少等優點,逐漸在電鍍廢水處理中得到廣泛應用。
1 工藝流程
該系統由兩部分組成,即原水預處理部分和反滲透部分。
1.1 預處理部分
預處理系統由原水池、提升泵、袋式濾器、除油過濾器及保安濾器組成。
廢水由原水池經過提升泵進入袋式濾器,運行壓力0.35nO.38MPa,濾器內置孔徑為5μm 的PP濾袋,可以去除大部分固體懸浮物、大分子膠體等。然後廢水經過除油過濾器,在0.3 1 —0.35MPa運行壓力下,可以吸附廢水中的有機物、油脂和殘余氯,也能去除水中的臭味、色度等。最後廢水進入保安濾器,運行壓力0.28—0.32MPa,保安濾器配有5μm的PP濾芯,對預處理起到最後保安作用,防止管路中微粒進入RO泵,以免損壞RO泵和膜組件。所有預處理工序都是為最大限度地防止和延緩污染物在RO膜面上的沉積,防止膠體物質及固體懸浮微粒的賭賽以及有機物、微生物、氧化性物質等對膜的破壞,以延緩RO膜的水解過程,從而使RO系統在良好狀態下工作。
1.2 一級Ro系統
廢水經過預處理後,由一級輸送泵送入一級RO裝置進行連續濃縮。一級濃縮系統的廢水處理量為1 m3/h,廢水鎳離子的濃度約為320—350 mg/L,pH5~7,還有光亮劑等少量有機物。設計運行壓力1.5MPa,膜組件通量800L/h。該系統採用杭州水處理技術研究中心自行生產的8英寸聚醯胺抗污染膜元件4隻,單支元件的有效膜面積為32m , 脫鹽率≥99%。經過該系統的處理,廢水中80%的水分被分離出來,產水電導率≤150μS/cm,直接回用到電鍍生產作漂洗用水。而絕大部分的金屬離子被膜截留在濃縮液中,進入二級濃縮系統,濃縮倍數達到5。
1.3 二級Ro系統
一級RO系統的濃縮液由二級輸送泵進入二級RO裝置進行循環濃縮。二級濃縮系統的廢水處理量為0.2 m3/h,廢水鎳離子的濃度約為16000—1800mg/L,pH 5~7。設計運行壓力2.5MPa, 通量200L/h。該系統採用4支進口的4英寸聚醯胺復合海水淡化膜元件,單支元件的有效膜面積為7m ,脫鹽率≥99.5%。經過該系統的處理,二級濃縮液再濃縮了lO倍以上,並送至蒸發系統,兩極RO產水均進入RO產水箱回用到生產線上,形成良性的清潔化生產的循環用水系統。濃縮液經蒸發後直接回到電鍍槽使用。
2 穩定運行
反滲透膜系統處理後的出水主要回用於鍍鎳漂洗水,由於鍍鎳液的工作溫度為55—60"C,在電鍍過程中有大量水分蒸發,故在RO裝置濃液排出的稀鍍鎳液(量少時)可順利加入鍍鎳槽中回用。整個系統從2005年4月運行至今,系統運行平穩,各項指標均基本達到設計要求,從實際運行結果來看,膜法鎳回收系統的鎳回收率達到99.96%,水回用率達到100%,達到設計要求。本方案對漂洗廢水不但對水資源進行了回收,而且回收了鎳資源。經膜系統濃縮5O倍後的濃縮液直接回用到電鍍槽,作為生產工藝的補充用水。本方案處理工藝簡單,維護簡單,無二次污染,較徹底地實現了鍍鎳廢水的零排放。
3 RO膜的清洗與維護
在正常操作過程中,RO元件內的膜面會受到無機鹽垢、微生物、膠體顆粒和不溶性有機物質的污染,從而引起膜通量下降,從而導致設備成本上升,產品質量下降等一系列問題。盡管本工藝的預處理系統比較完善,但經過較長時間運行,RO膜面仍不可避免地出現污染問題,這是膜分離技術在實際工程中普遍存在的問題。因此,在實際工程中,要特別注重對膜的維護一膜污染的控制與清洗。2005年lO月份,膜污染較為嚴重,通量下降約20%,採用加酸和鹼的方法進行化學清洗,膜通量恢復率基本能達到設計值的95%左右。
4 結論
採用兩級RO膜系統對含鎳250~350 mg/L的漂洗廢水進行處理,對鎳的截留率達99.9%以上,經兩年多運管行考察,系統運行平穩,各項指標基本達到設計要求,經濟效益較為明顯,年凈收益達43.34萬元,且出水可達到回用要求。總之該工程在技術上可行,而且還產生了良好的經濟效益、社會效益和環境效益,對電鍍行業的可持續發展具有重要意義。
6. 過氧化氫在電鍍含鎳廢水處理中有什麼作用 硫酸亞鐵在電鍍含鎳廢水處理中有什麼作用
焦亞硫酸鈉可以還原鍍鎳的鈍化工序的六價鉻;
漂白粉、漂白水可以氧化氰根、檸檬酸根等絡離子,氧化次亞磷酸根等還原劑;
氯化鈣提供鈣離子以去除磷酸根及部分硫酸根;
硫酸可以調節廢水的酸鹼度PH;
硫化鈉用來沉澱廢水中的重金屬離子;
石灰有兩個作用:提供鹼度和鈣離子;
片鹼提供鹼度使金屬離子生成氫氧化物沉澱。
7. 工廠的含鎳廢水怎麼處理
電鍍鎳廢水處理方法
1、對於電鍍鎳廢水,如果濃度不高,可以直接投加片鹼;把pH調節至鹼性條件11左右,氫氧根會與鎳離子結合生成氫氧化鎳沉澱,把鎳去除。
但是大多數電鍍鎳廢水,在加鹼條件下很難處理到0.1mg/L以下,主要有兩點原因,第一是廢水中混進了前處理廢水,前處理廢水中含有一部分絡合劑,絡合劑會與鎳離子結合生成小分子,從而阻止氫氧根與鎳離子結合生成沉澱;第二是如果鎳離子含量過高,氫氧根與鎳離子首先形成沉澱,但是沉澱過多會阻止廢水中剩餘的鎳離子與氫氧根結合反應。兩種情況下都會導致鎳離子超標。
2、對於加鹼情況下很難處理的電鍍鎳廢水,可以採用希潔重金屬捕捉劑進行沉澱處理。
對於前處理液導致鎳超標的電鍍鎳廢水,可以調節廢水pH至10,直接投加希潔重金屬捕捉劑進行處理,用量為鎳離子的5-7倍即可。如果鎳含量比較高導致難處理,可以考慮二次沉澱處理,先通過加鹼調節pH至11,沉澱出水,除去一部分鎳離子,再對出水投加希潔重金屬捕捉劑進行二次沉澱處理,既能節省成本,又能穩定達標。
化學鎳廢水處理方法
對於化學鍍鎳廢水,廢水中含有檸檬酸、酒石酸、蘋果酸、乳酸等絡合劑,絡合劑會與鎳離子結合生成小分子,絡合小分子在廢水中很穩定,使用氫氧化鈉、硫化鈉、一般的液體重捕劑或者固體重捕劑均不能破壞絡合劑與鎳離子的結合鍵,鎳離子難以去除。
我在這里提出使用高效重金屬捕捉劑SMET-1進行處理的辦法,含有大量的除鎳基團,除鎳基團在微觀條件下會極化變形,表面形成負電荷場,從而吸附鎳離子生成沉澱,去除化學鎳時的用量在鎳含量的10倍左右,能夠穩定達標在0.1mg/L以下。
而對於比較難處理的鎳,有時需要在前端進行次鈉氧化處理,次氯酸鈉在進行簡單破絡以後,絡合健的結合力會變弱,有利於重金屬捕捉劑進行螯合反應。
8. 化學鍍鎳廢水怎麼處理
常見的化學鎳廢液處理工藝有化學沉澱法、常規蒸發工藝。
ENS-DR化鎳廢液干化設備,採用高效布膜,特殊剝離的技術,將化鎳廢液直接干化,連續固體出料,並且不會產生結垢。
9. 含鎳廢水為什麼不好處理
鎳是一種常用的表面處理技術,通常用於氧化設備的著色和密封。現在面臨環境壓力,廢水預處理後需要達到0.1mg / L.許多工廠已放棄使用含鎳化學品。筆者個人認為,除了無鎳產品的高價格外,產品的化學性質可以通過無鎳化學品來確定,難度並不像含鎳廢水的處理那麼困難。所以在根據每個工廠的情況選擇使用葯物。
含鎳廢水的預處理不易達標:因為為了保證浴液的穩定性和使用壽命,除了在浴液中加入大量可溶性鎳鹽外。還需要大量的絡合劑,表面活性劑,穩定劑,增白劑和pH緩沖劑。氧化設備中使用的大多數絡合劑是有機酸,例如檸檬酸。酒石酸,氨基磺酸,乙醇酸,酚和乙酸。絡合劑含有多種與鎳離子結合的配體。氫氧化鎳的沉澱受到阻礙,因此只有在絡合劑被破壞後,才能獲得良好的化學沉澱效果。從各種品牌的添加劑中,添加不同的絡合劑會形成不同類型的配位離子,因此添加的絡合劑類型不同,含鎳廢水的處理也不盡相同。
目前,化學鍍鎳廢水主要通過化學沉澱處理。如果調節pH值,則使用石灰作為沉澱劑來延長處理含鎳廢水的反應時間,但效果不是很好。其他處理方法包括離子交換樹脂法,電滲析法,膜分離法和溶劑萃取法。由於含鎳廢水的成分復雜,現有方法的成本性能不高,並且出現其他問題。如普通化學沉澱法,處理效率差:離子交換法,樹脂處理能力有限,樹脂易被氧化和污染:電滲析的選擇性和耐久性差,滲透膜容易污染;膜分離技術運行,維護成本高;通過溶劑萃取有效地應用各種酸性廢液的萃取劑仍在進一步研究中。 (鹼性含鎳廢水提取劑相對成熟)
讓我們來看看為什麼普通化學沉澱法不能很好地處理含鎳廢水:這是因為,在溶液中,每個鎳離子都能弱結合到六個水分子上,當它們被羥基、羧基、氨基等官能團取代時,形成一個穩定的鎳配體。如果絡合劑中含有它們。多個官能團通過氧氮配位鍵形成閉環鎳配合物。鎳配合物的形成降低了游離鎳離子的濃度,只有游離鎳離子才能與氫氧離子沉澱。
總來說,還是在化學沉澱法進行深耕,跟據自身的含鎳廢水的特性,找出破壞絡合劑的葯劑,才能經濟和達標的處理好含鎳廢水。
10. 化學鎳廢水是怎麼構成的
化學鎳廢水構成化學鎳廢水主要來源是化學鎳電鍍液的清洗水,化學鎳電鍍液中存在絡合劑以及次磷酸鈉,因此化學鎳廢水的主要構成是次磷酸和絡合鎳,對應電鍍廢水處理指標中的鎳含量以及磷含量。