❶ 污水中總氮怎麼去除
1、 總氮元素主要氨氮、有機氮、硝態氮、亞硝態氮以及氮氧化合物組成,其中氨氮內主要來自容於氨水以及諸如氯化銨等無機物。如果濃度低情況,降解氨氮,總氮也會隨之降低。廢水中含有有機氮,有機氮大多通過微生物去除。在轉化中,主要包括氨化、硝化和反硝化三個階段。
2、 微生物法,例如活性污泥法、(甘度)反硝化菌等等。
3、厭氧池池或者缺氧池去除總氮:反硝化反應中迅速產生硝酸還原酶和亞硝酸還原酶將硝酸鹽和亞硝酸鹽還原成氮氣(N2)或一氧化二氮(N2O),達到凈化污水的目的。
總氮去除找甘度……
❷ 如何除去污水中總磷總氮
除氮一般採用活性污泥法,AO工藝,除磷的話可以採用活性污泥法,也可以採用化學除磷的方法進行去除
❸ 廢水中總氮該怎麼去除
首先,要先了解總氮的構成,總氮包括有機氮、氨氮、硝態氮,組內成成分不同,處理方式也容不同,總體分為物化法和生化法。
對於不同種類的廢水,通常會應用不同的物化法,例如氨氮廢水,通常會採用氨氮去除劑,折點加氯,將氨氮以氮氣的形式脫離出廢水;有機氮廢水,則需通過高級氧化法。但是,大多數物化方法是不能完全將總氮處理到較低的標准。
生化法多以活性污泥為主,適用性也較強,可以處理低濃度廢水。生物脫氮主要包括氨化、硝化和反硝化三個主要的生化過程。這種方法水力停留時間短,運行成本低。但是由於大部分使用此工藝的系統反硝化環節受限,導致出水氨氮雖然下降,硝氮卻提高了,最終總氮依舊超標。
如上所述,活性污泥法不能將廢水中的總氮完全去除,主要是因為廢水中硝態氮的超標,由於迴流比數值偏離、缺氧段溶解氧含量較高等因素導致。那麼在反硝化過程即可採用強化HDN高效脫氮設備,通過對填料、結構、布水的優化,提高了負荷,一步消耗硝態氮,同時還能降低COD,是出水水質達標,實現廢水中總氮的去除。
❹ 怎麼才能有效驅除廢水中氨氮和總氮
氨氮廢水的來源
鋼鐵、煉油、化肥、無機化工、鐵合金、玻璃製造、肉類加工和飼料生產等工業,均排放高濃度的氨氮廢水。 其中,某些工業自身會產生氨氮污染物,如鋼鐵工業及肉類加工業等。 而另一些工業將氨用作化學原料,如用氨等配成消光液以製造磨砂玻璃。此外,皮革、孵化、動物排泄物等新鮮廢水中氨氮初始含量並不高,但由於廢水中有機氮的脫氨基反應,在廢水積存過程中氨氮濃度會迅速增加。
過量氨氮排入水體將導致水體富營養化,降低水體觀賞價值,並且被氧化生成的硝酸鹽和亞硝酸鹽還會影響水生生物甚至人類的健康。因此,廢水脫氮處理受到人們的廣泛關注。目前,主要的脫氮方法有生物硝化反硝化、折點加氯、氣提吹脫和離子交換法等。消化污泥脫水液、垃圾滲濾液、催化劑生產廠廢水、肉類加工廢水和合成氨化工廢水等含有極高濃度的氨氮,以上方法會由於游離氨氮的生物抑製作用或者成本等原因而使其應用受到限制。高濃度氨氮廢水的處理方法可以分為物化法、生化聯合法和新型生物脫氮法。
不同種類的工業廢水中氨氮濃度干變萬化,即使同類工業不同工廠的廢水中其濃度也各不相同。以某化工廠香蘭素生產廢水為例,其氨氮濃度高達6~7×104mg/L。為了徹底治理污染,除對生產工藝進行必要的改造外,必須尋找合適的氨氮廢水處理技術,降低廢水處理的成本。
氨氮廢水處理技術研究與應用現狀
目前,氨氮廢水的處理技術可以分為兩大類:一類是物化處理技術,包括吹脫(或汽提)、沉澱、膜吸收、濕式氧化等,其中吹脫和膜吸收技術都需要氨氮盡可能以氨分子形態存在;另一類技術是生物脫氮技術。
物化處理技術
依據NH3的質量分數與pH的關系,如果氨氮的去除形態為氨氣,為達到較高的去除率,就必須調節溶液的pH在11以上。這類技術包括吹脫、汽提、膜吸收等。在處理氨氮廢水的過程中,需要消耗大量鹼,但可以回收部分氨。
吹脫(汽提)法吹脫法是將廢水pH值調節至鹼性,然後在填料塔中通入空氣或蒸汽,通過氣液接觸將廢水中的游離氨吹脫至大氣或蒸汽中。 採用蒸汽可以提高廢水溫度,從而提高一定pH值時被吹脫氨的比例。一般情況下,如果採用吹脫法去除98%以上的氨氮,需pH調節。例如採用汽提技術對對硝基苯胺廢水進行了處理,在pH 大於11的條件下,廢水中的氨氮由3150 mg/L下降為187 mg/L,去除率為93%。
低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。但是這種方法一般要採用NaOH調節廢水的pH值,葯劑和能源消耗比較大。 為了降低葯劑成本,採用Ca(OH)2調節pH,結果表明,吹脫速率和吹脫效率要遠小於NaOH,而且在汽提過程中容易結垢,使得操作運行困難。
這種技術的另一個關鍵在於保證填料塔內的氣液充分接觸,有效防止溝流、液泛等非正常操作。 因此,填料的選擇和填充至關重要。除較高的能耗與鹼耗外,利用吹脫技術處理氨氮的不足還在於使氨氮由液相轉移至氣相,如果沒有相應的回收技術,很容易導致大氣的二次污染。此技術主要用於高濃度氨氮廢水的預處理。
膜吸收技術
膜吸收過程是將膜分離和吸收相結合而出現的一種新型膜過程,它使用微孔膜將氣、液兩相分隔開來,利用膜孔提供氣、液兩相間傳質的場所。 膜吸收法處理含氨廢水的原理為:疏水性微孔膜(聚丙烯、聚四氟乙烯、偏聚氟乙烯)把含氨廢水和H2SO4吸收液分隔於膜兩側,通過調節廢水的pH值,使廢水中離子態的NH3轉變為分子態的揮發性NH3。 在膜兩側NH3的濃度差的推動下,廢水中的NH3在廢水一微孔膜界面汽化揮發。氣態的NH3沿膜微孔向膜的另一側擴散,在吸收液一微孑L膜界面上為H2SO4吸收,並反應生成不揮發的(NH3)2SO4而被回收。由於氨在廢水和吸收液中存在形式的不同,使得廢水中的氨能通過存在形式的轉換不斷向吸收液傳遞,直到吸收液中的H2SO4全部為氨中和為止,處理後廢水中的氨氮濃度理論上可達到零。與吹脫(汽提)技術和生化法等其他高氨氮廢水處理方法比較,膜吸收法的最大特點是,可以在常溫、常壓的條件下濃縮並回收廢水中的氨,無二次污染產生,實現含氨廢水的資源化。
現在,膜吸收工藝的難點在於防止膜的滲漏。為了保證較高的通量,一般的微孔膜的膜厚都比較薄,膜兩側的水相在壓差的作用下很容易發生滲漏。只有非常精確地調整膜兩側的壓力和流速,才能基本保證膜兩側的液量不發生變化。 即使在這樣的條件下,在進行氨吸收過程中,氨溶液一側的pH值還是有顯著的降低,經檢測,溶液中有大量硫酸根離子存在,最終導致氨溶液中的去除率僅在6O%左右。
因此,如何在保證氨氮傳質通量的情況下有效防止膜的滲漏是膜吸收工藝研究的重要內容。
沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。沸石一般被用於處理低濃度含氨廢水或含微量重金屬的廢水。然而,蔣建國等[4]探討了沸石吸附法去除垃圾滲濾液中氨氮的效果及可行性。小試研究結果表明,每克沸石具有吸附15.5 mg氨氮的極限潛力,當沸石粒徑為30~16目時,氨氮去除率達到了78.5%,且在吸附時間、投加量及沸石粒徑相同的情況下,進水氨氮濃度越大,吸附速率越大,沸石作為吸附劑去除滲濾液中的氨氮是可行的。
實驗表明用沸石離子交換法處理經厭氧消化過的豬肥廢水時發現Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加離子交換床的高度可以提高氨氮去除率,綜合考慮經濟原因和水力條件,床高18cm(H/D=4),相對流量小於7.8BV/h是比較適合的尺寸。離子交換法受懸浮物濃度的影響較大。
應用沸石脫氨法必須考慮沸石的再生問題,主要有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。通常採用再生液進行再生,再生液濃液再進行脫氨處理。
膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。蔣展鵬等[6]採用電滲析法和聚丙烯(PP)中空纖維膜法處理高濃度氨氮無機廢水可取得良好的效果。電滲析法處理氨氮廢水2000~3000 mg/L,去除率可在85%以上,同時可獲得8.9%的濃氨水。此法工藝流程簡單、不消耗葯劑、運行過程中消耗的電量與廢水中氨氮濃度成正比。PP中空纖維膜法脫氨效率>90%,回收的硫酸銨濃度在25%左右。運行中需加鹼,加鹼量與廢水中氨氮濃度成正比。
乳化液膜是種以乳液形式存在的液膜具有選擇透過性,可用於液-液分離。分離過程通常是以乳化液膜(例如煤油膜)為分離介質,在油膜兩側通過NH3的濃度差和擴散傳遞為推動力,使NH3進入膜內,從而達到分離的目的。用液膜法處理某濕法冶金廠總排放口廢水(1000~1200 mgNH4+-N/L,pH為6~9),當採用烷醇醯胺聚氧乙烯醚為表面活性劑用量為4%~6%,廢水pH調至10~11,乳水比在1:8~1:12,油內比在0.8~1.5。硫酸質量分數為10%,廢水中氨氮去除率一次處理可達到97%以上。
膜分離法應用的主要問題是投資成本及運行成本較高,操作復雜,難以控制。
MAP沉澱法
主要是利用以下化學反應:
Mg2 ++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。穆大綱等[8]採用向氨氮濃度較高的工業廢水中投加MgCl2•6H2O和Na2HP04•12H20生成磷酸銨鎂沉澱的方法,以去除其中的高濃度氨氮。結果表明,在pH為8.9l,Mg2+,NH4,P043-的摩爾比為1.25:1:1,反應溫度為25 ℃,反應時間為20 min,沉澱時間為20 min的條件下,氨氨質量濃度可由9500 mg/L降低到460 mg/L,去除率達到95%以上。由於在多數廢水中鎂鹽的含量相對於磷酸鹽和氨氮會較低,盡管生成的磷酸銨鎂可以做為農肥而抵消一部分成本,投加鎂鹽的費用仍成為限制這種方法推行的主要因素。海水取之不盡,並且其中含有大量的鎂鹽。以海水做為鎂離子源試驗研究了磷酸銨鎂結晶過程。鹽鹵是制鹽副產品,主要含MgCl2和其他無機化合物。Mg2+約為32 g/L為海水的27倍。Lee等[10]用MgCl2、海水、鹽鹵分別做為Mg2+源以磷酸銨鎂結晶法處理養豬場廢水,結果表明,pH是最重要的控制參數,當終點pH≈9.6時,反應在10 min內即可結束。由於廢水中的N/P不平衡,與其他兩種Mg2+源相比,鹽鹵的除磷效果相同而脫氮效果略差。
採用化學沉澱法的關鍵因素在於:
1)絮凝劑的用量;2)沉澱產物的去向。
一般情況下,採用磷酸銨鎂沉澱法處理氨氮廢水的氨氮濃度不大於1 500 mg/L。化學沉澱法的應用瓶頸同樣是運行成本較高,無法進行工程應用。
催化濕式氧化法
催化濕式氧化法是8O年代國際上發展起來的一種治理廢水的新技術。 在一定溫度、壓力下,在催化劑作用下,經空氣氧化,可使污水中的有機物和氨分別氧化分解成CO2、N2和H2O等無害物質,達到凈化的目的。具有凈化效率高(據報道,廢水經過凈化後可達到飲用水標准)、流程簡單、佔地面積少等特點。經多年應用與實踐,這一廢水處理方法的建設及運行費用僅為常規方法6O%左右,因而在技術上和經濟上均具有較強的競爭力。杜鴻章等對催化濕式氧化法作了一系列的研究,在270 ℃、9 MPa工藝條件下,研製的催化劑可使焦化污水氨氮的去除率達到99.6%,經處理後的污水水質優於國家環保排放標準的要求。濕式氧化法不足在於催化劑的流失和設備的腐蝕。
化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。在溴化物存在的情況下,臭氧與氨氮會發生如下類似折點加氯的反應:
Br-+O3+H+→HBrO+O2,
NH3+HBrO→NH2Br+H2O,
NH2Br+HBrO→NHBr2+H2O,
NH2Br+NHBr2→N2+3Br-+3H+。
用一個有效容積32 L的連續曝氣柱對合成廢水(氨氮600 mg/L)進行試驗研究,探討Br/N、pH以及初始氨氮濃度對反應的影響,以確定去除最多的氨氮並形成最少的NO3-的最佳反應條件。發現NFR(出水NO3--N與進水氨氮之比)在對數坐標中與Br-/N成線性相關關系,在Br-/N>0.4,氨氮負荷為3.6~4.0 kg/(m3•d)時,氨氮負荷降低則NFR降低。出水pH=6.0時,NFR和BrO--Br(有毒副產物)最少。BrO--Br可由Na2SO3定量分解,Na2SO3投加量可由ORP控制。
生化法
微生物去除氨氮過程需經過硝化和反硝化兩個階段過程。 傳統觀點認為:硝化過程為好氧過程,在此過程中,氨態氮在微生物的作用下轉化為硝基氮和亞硝基氮;而反硝化過程為厭氧過程,在此過程中,硝基氮和亞硝基氮轉化為氮氣。 因此,一般的生物脫氮過程為厭氧/好氧過程、或厭氧/缺氧/好氧過程。
近年來的研究表明,反硝化過程可以在有氧的條件下進行,即好氧反硝化過程。它為突破傳統生物脫氮技術限制,利用一個生物反應器在一種條件下完成脫氮反應提供了依據。SBR生物脫氮工藝的優點在於以時間序列代替空間序列,使好氧硝化過程和反硝化過程在同一容器中完成。採用SBR技術處理高氨氮廢水,在曝氣段實現高氨氮廢水的好氧硝化/反硝化處理。通過實驗研究,她們提出的反應序列為:一段缺氧一好氧曝氣一二段缺氧的SBR反應器,好氧段反硝化脫氮率要佔總脫氮率的70%以上。研究表明:好氧反硝化菌為異養菌,脫氮反應歷程與缺氧反硝化菌相同,並且最終產物主要為N2。
目前生物脫氮的濃度一般在400 mg/L以下,採用生物脫氮技術處理高濃度氨氮廢水就需要進行大倍數稀釋,這就使得生物處理設施的體積龐大,能耗會相應提高。 因此,在處理高氨氮廢水時,採用生物處理前,一般要首先進行物化處理。
物化方法在處理高濃度氨氮廢水時不會因為氨氮濃度過高而受到限制,但是不能將氨氮濃度降到足夠低(如100 mg/L以下)。而生物脫氮會因為高濃度游離氨或者亞硝酸鹽氮而受到抑制。實際應用中採用生化聯合的方法,在生物處理前先對含高濃度氨氮的廢水進行物化處理。目前,較先進的生化脫氨主要有以下幾類方法。
膜生物反應器技術
膜生物反應器(MBR)是一種由膜過濾取代傳統生化處理技術中二次沉澱池和沙濾池的水處理技術。MBR將分離工程中的膜技術應用於廢水處理系統,提高了泥水分離效率,並且由於曝氣池中活性污泥濃度的增大和污泥中特效菌(特別是優勢菌群)的出現,提高了生化反應速率。同時,通過降低F/M比減少剩餘污泥產生量(甚至為零),從而基本解決了傳統活性污泥法存在的突出問題。
硝化菌為自養菌,生長繁殖的世代周期長,常規的生物脫氮工藝中,為保持構築物中有足夠數量的硝化菌以完成生物硝化作用,在維持較長污泥齡的同時也相應增大了構築物的容積。此外,絮凝性較差的硝化菌常會被二沉池的出水帶出,硝化菌數量的減少影響硝化作用,進而降低了系統的脫氮效率。膜生物反應器能夠完全截留微生物,可以有效防止硝化菌的流失,是一種比較理想的硝化反應器。
在適宜的pH、DO條件下,容積負荷控制在2 kg/(m3•d)以下時,採用一體化膜生物反應器可以將濃度為2×103mg/L的氨氮轉化為硝酸鹽。
雖然採用膜生物反應器處理氨氮廢水會解決傳統活性污泥法存在的一些問題,但膜污染問題尚未見有較好的解決辦法
短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式。由於氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化(將氨氮氧化至亞硝酸鹽氮即進行反硝化),不僅可以節省氨氧化需氧量而且可以節省反硝化所需炭源。用合成廢水試驗確定實現亞硝酸鹽積累的最佳條件。要想實現亞硝酸鹽積累,pH不是一個關鍵的控制參數,因為pH在6.45~8.95時,全部硝化生成硝酸鹽,在pH<6.45或pH>8.95時發生硝化受抑,氨氮積累。當DO=0.7 mg/L時,可以實現65%的氨氮以亞硝酸鹽的形式積累並且氨氮轉化率在98%以上。DO<0.5 mg/L時發生氨氮積累,DO>1.7 mg/L時全部硝化生成硝酸鹽。對低碳氮比的高濃度氨氮廢水採用亞硝玻型和硝酸型脫氮的效果進行對比分析。試驗結果表明,亞硝酸型脫氮可明顯提高總氮去除效率,氨氮和硝態氮負荷可提高近1倍。此外,pH和氨氮濃度等因素對脫氮類型具有重要影響。
短程硝化反硝化處理焦化廢水的中試結果表明,進水COD、氨氮、TN 和酚的濃度分別為1201.6、510.4、540.1、110.4 mg/L時,出水COD、氨氮、TN和酚的平均濃度分別為197.1、14.2、181.5、0.4 mg/L,相應的去除率分別為83.6%、97.2%、66.4%、99.6%。與常規生物脫氮工藝相比,該工藝氨氮負荷高,在較低的C/N值條件下可使TN去除率提高。
厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。ANAMMOX的生化反應式為:
NH4++NO2-→N2↑+2H2O
ANAMMOX菌是專性厭氧自養菌,因而非常適合處理含NO2-、低C/N的氨氮廢水。與傳統工藝相比,基於厭氧氨氧化的脫氮方式工藝流程簡單,不需要外加有機炭源,防止二次污染,又很好的應用前景。厭氧氨氧化的應用主要有兩種:CANON工藝和與中溫亞硝化(SHARON)結合,構成SHARON-ANAMMOX聯合工藝。
CANON工藝是在限氧的條件下,利用完全自養性微生物將氨氮和亞硝酸鹽同時去除的一種方法,從反應形式上看,它是SHARON和ANAMMOX工藝的結合,在同一個反應器中進行。固體廢棄物填埋場滲濾液處理,溶解氧控制在1 mg/L左右,進水氨氮<800 mg/L,氨氮負荷<0.46 kgNH4+/(m3•d)的條件下,可以利用SBR反應器實現CANON工藝,氨氮的去除率>95%,總氮的去除率>90%。
ANAMMOX和CANON過程都可以在氣提式反應器中運轉良好,並且達到很高的氮轉化速率。控制溶解氧在0.5mg/L左右,在氣提式反應器中,ANAMMOX過程的脫氮速率達到8.9 kgN/(m3•d),而CANON過程可以達到1.5 kgN/(m3•d)。
好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
用序批式反應器處理氨氮廢水,試驗結果驗證了好氧反硝化的存在,好氧反硝化脫氮能力隨混合液溶解氧濃度的提高而降低,當溶解氧濃度為0.5 mg/L時,總氮去除率可達到66.0%。
連續動態試驗研究表明,對於高濃度氨氮滲濾液,普通活性污泥達的好氧反硝化工藝的總氮去除串可達10%以上。硝化反應速率隨著溶解氧濃度的降低而下降;反硝化反應速率隨著溶解氧濃度的降低而上升。硝化及反硝化的動力學分析表明,在溶解氧為0.14 mg/L左右時會出現硝化速率和反硝化速率相等的同步硝化反硝化現象。其速率為4.7mg/(L•h),硝化反應KN=0.37 mg/L;反硝化反應KD=0.48 mg/L。
在反硝化過程中會產生N2O是一種溫室氣體,產生新的污染,其相關機制研究還不夠深入,許多工藝仍在實驗室階段,需要進一步研究才能有效地應用於實際工程中。另外,還有諸如全程自養脫氮工藝、同步硝化反硝化等工藝仍處在試驗研究階段,都有很好的應用前景。
❺ 廢水中的總氮該怎麼去除
首先,要先了解總氮的構成,總氮包括有機氮、氨氮、硝態氮,組成成分不同版,處理方式也不同,總體分為物化法權和生化法。
對於不同種類的廢水,通常會應用不同的物化法,例如氨氮廢水,通常會採用氨氮去除劑,折點加氯,將氨氮以氮氣的形式脫離出廢水;有機氮廢水,則需通過高級氧化法。但是,大多數物化方法是不能完全將總氮處理到較低的標准。
生化法多以活性污泥為主,適用性也較強,可以處理低濃度廢水。生物脫氮主要包括氨化、硝化和反硝化三個主要的生化過程。這種方法水力停留時間短,運行成本低。但是由於大部分使用此工藝的系統反硝化環節受限,導致出水氨氮雖然下降,硝氮卻提高了,最終總氮依舊超標。
如上所述,活性污泥法不能將廢水中的總氮完全去除,主要是因為廢水中硝態氮的超標,由於迴流比數值偏離、缺氧段溶解氧含量較高等因素導致。那麼在反硝化過程即可採用強化HDN高效脫氮設備,通過對填料、結構、布水的優化,提高了負荷,一步消耗硝態氮,同時還能降低COD,是出水水質達標,實現廢水中總氮的去除。
❻ 總氮去除方法及原理
樓主,你好:
我來為您解答下,如果總氮超標的話,需要檢測總氮中哪種氮存在內超標情況(氨氮、容有機氮、硝態氮、亞硝態氮)。
超標現象之一:氨氮超標,說明好氧硝化系統存在問題,這時候需要檢測和核算系統中的鹼度、溶解氧、停留時間是否合理,調整後再進行下一步分析,尤其是硝化菌群可能存在問題,是否是用土菌調試的,這是第一步。
超標現象之二:硝態氮或亞硝態氮超標,這種情況說明反硝化存在問題,需要核算系統的迴流量,碳源是否合理(新爾特研究的反硝化菌碳氮比是5:1才能良好進行,5是碳源,1是硝態氮和亞硝態氮,不是其它的總氮,否則不準確)。
超標現象之三:有機氮超標,一般有兩種原因,一是該有機氮非常穩定,難以破解,而是生化系統存在嚴重問題,不能把有機氮分解開來,如果有機氮穩定導致超標的話,需要預處理強化破壞有機結構,或者深度處理去除有機氮。
樓主,涉及到技術點和工況較多,因此需要具體問題具體分析,有需要可以聯系,希望對您有幫助。
新爾特生物為您提供。
❼ 總氮的去除方法及原理
1、廢水中總氮的構成
總氮元素主要由氨氮、有機氮、硝態氮、亞硝態氮以及氮氧化合物組成,其中氨氮主要來自於氨水以及諸如氯化銨等無機物。有機氮主要來自於一些有機物中的含氮基團,比如有機胺類等。氮氧化合物諸如一氧化氮以及二氧化氮等是有毒氣體,由於狀態不穩定,一般很少存在。硝態氮在自然界中比較穩定,且含量較高,比如國防工業ZhaYao製造過程中大量用◇◇作為原料,機械化學等工業使用大量與◇◇相關的原材料作為氧化劑,同時很多污水通過前期生化以及硝化以後也含有大量的◇◇,因為硝態氮十分穩定,且極易溶解於水,因此污染十分嚴重,極易擴散。
2、氨氮的去除辦法
含氨氮廢水目前市場上技術已經非常成熟,一般通過以下幾種辦法去除。
第一,折點加氯氧化法,通過加入次◇◇或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二,利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞◇◇和◇◇,然後再進行反硝化,將◇◇轉化為氮氣。其反應原理圖如下所示:
2NH3 + 3O2 → HNO2 + H2O + 能量(亞硝化作用)
2HNO2 + O2 → 2HNO3 + 能量(硝化作用)
HNO3 + CH3OH → N2 + CO2 + H2O + 能量(反硝化作用)
3、有機氮的去除辦法
在一些廢水中含有有機氮,有機氮大多通過微生物去除。在轉化中,主要包括氨化、硝化和反硝化三個階段。在氨化過程中,水中有機氮在微生物作用下轉化為氨氮。硝化過程中,首先在亞硝化桿菌的作用下,氨氮轉化為亞◇◇氮,然後在硝化桿菌作用下,亞◇◇氮進一步被氧化成◇◇氮。反硝化過程中,◇◇氮轉化為氮氣,釋放到空氣中,也正是在這個過程中,水中的氮被徹底去除了。
4、硝態氮的去除辦法
硝態氮主要是指◇◇根離子,目前有採用離子交換、膜滲透、吸附以及生物脫氮的方法。其中離子交換法、膜滲透法以及吸附法都只是◇◇根離子的濃縮與轉移,無法真正去除總氮,濃縮以後的◇◇根廢液需要進一步處理。
在生物脫氮中,主要是指◇◇根離子通過反硝化細菌降解轉化為氮氣的過程。在傳統的生化方法中,需要極大地佔地面積,而且由於微生物密度低,微生物脫氮效率很低,而且出水不清澈,有懸浮物,不耐毒性物質。
蘇州湛清環保科技有限公司新設計一種高效反硝化生物濾池裝置,經過特殊結構設計的高效反硝化生物濾池,專為工業廢水處理研發,適應工業廢水高鹽分、高毒性、高硝氮、波動大的水質特點。
該技術具有以下特點:
脫氮效率高——正常運行脫氮負荷2kg N/m³·d,出水總氮穩定達標
佔地面積小——10t/h的處理量,降低20mg/L總氮,佔地面積僅3㎡
易操作維護——全自動控制,無需更換填料,反沖洗水量少、頻率低
污泥產量少——反沖洗排出的少量微生物迴流至生化池繼續分解
運行成本低——去除20 mg/L的總氮,噸水成本約0.7元
❽ 稀釋可以去除總磷總氮嗎
某廢水處理站水量抄1噸/進水COD:襲210mg/LBOD:50mg/LSS:45mg/L總氮:200mg/L總磷36mg/L要求水達COD:500mg/LBOD:300mg/LSS:400mg/L總氮:60mg/L總磷8mg/L(進水總氮氨氮60mg/L)
根據水標准COD、BODSS都問題總磷用絮凝除
面總氮相比較高除投碳源通化處理
❾ 如何去除污水中的總磷
最好的的辦法是加裝凈水機,可以去除水中的決大多數雜質,而成為純凈水。
❿ 如何高效去除COD,氨氮,總磷
cod:
化學需氧量cod(chemical
oxygen
demand)是以化學方法測量水樣中需要被氧化的還原性物質的量。廢水、廢水處理廠出水和受污染的水中,能被強氧化劑氧化的物質(一般為有機物)的氧當量。在河流污染和工業廢水性質的研究以及廢水處理廠的運行管理中,它是一個重要的而且能較快測定的有機物污染參數,常以符號cod表示。
總磷:
總磷是水樣經消解後將各種形態的磷轉變成正磷酸鹽後測定的結果,以每升水樣含磷毫克數計量。
總氮:
總氮,簡稱為tn,水中的總氮含量是衡量水質的重要指標之一。
氨氮:
氨氮是指水中以游離氨(nh3)和銨離子(nh4+)形式存在的氮。
動物性有機物的含氮量一般較植物性有機物為高。同時,人畜糞便中含氮有機物很不穩定,容易分解成氨。因此,水中氨氮含量增高時指以氨或銨離子形式存在的化合氮。
ph:
氫離子濃度指數(英語hydrogen
ion
concentration;法語potentiel
d'hydrogène)是指溶液中氫離子的總數和總物質的量的比。一般稱為「ph」,而不是「ph值」。表示溶液酸鹼度的數值,ph=-lg[h+]即所含氫離子濃度的常用對數的負值。