『壹』 污水處理方法的物理化學方法主要有哪些
污水處理常用的方法有:重力沉降法、機械過濾法、離心分離法、絮凝沉澱法、氣浮法、離子交換法;化學氧化-還原和消毒法、濕式氧化法等方法。
『貳』 物理化學法處理廢液的方法有哪些
廢水萃取處理法
廢水萃取處理法是利用萃取劑,通過萃取作用使廢水凈化的方法。根據一種溶劑對不同物質具有不同溶解度這一性質,可將溶於廢水中的某些污染物完全或部分分離出來。向廢水中投加不溶於水或難溶於水的溶劑(萃取劑),使溶解於廢水中的某些污染物(被萃取物)經萃取劑和廢水兩液相間界面轉入萃取劑中。
萃取操作按處理物的物態可分固——液萃取、液——液萃取兩類。工業廢水的萃取處理屬於後者,其操作流程:①混合,即使廢水和萃取劑最大限度地接觸;②分離,即使輕、重液層完全分離;③萃取劑再生,即萃取後,分離出被萃取物,回收萃取劑,重復使用。萃取劑的選擇應滿足:①對被萃取物的溶解度大,而對水的溶解度小;②與被萃取物的比重、沸點有足夠差別;③具有化學穩定性,不與被萃取物起化學反應;④易於回收和再生;⑤價格低廉,來源充足。此法常用於較高濃度的含酚或含苯胺、苯、醋酸等工業廢水的處理。
廢水光氧化處理法
廢水光氧化處理法是利用紫外光線和氧化劑的協同氧化作用分解廢水中有機物,使廢水凈化的方法。廢水氧化處理使用的氧化劑(氯、次氯酸鹽、過氧化氫、臭氧等),因受溫度影響,往往不能充分發揮其氧化能力;採用人工紫外光源照射廢水,使廢水中的氧化劑分子吸收光能而被激發,形成具有更強氧化性能的自由基,增強氧化劑的氧化能力,從而能迅速、有效地去除廢水中的有機物。光氧化法適用於廢水的高級處理,尤其適用於生物法和化學法難以氧化分解的有機廢水的處理。
廢水離子交換處理法
廢水離子交換處理法是藉助於離子交換劑中的交換離子同廢水中的離子進行交換而去除廢水中有害離子的方法。其交換過程:①被處理溶液中的某離子遷移到附著在離子交換劑顆粒表面的液膜中;②該離子通過液膜擴散(簡稱膜擴散)進入顆粒中,並在顆粒的孔道中擴散而到達離子交換劑的交換基團的部位上(簡稱顆粒內擴散);③該離子同離子交換劑上的離子進行交換;④被交換下來的離子沿相反途徑轉移到被處理的溶液中。離子交換反應是瞬間完成的,而交換過程的速度主要取決於歷時最長的膜擴散或顆粒內擴散。
離子交換的特點:依當量關系進行,反應是可逆的,交換劑具有選擇性。應用於各種金屬表面加工產生的廢水處理和從原子核反應器、醫院和實驗室廢水中回收或去除放射性物質,具有廣闊的前景。
廢水吸附處理法
廢水吸附處理法是利用多孔性固體(稱為吸附劑)吸附廢水中某種或幾種污染物(稱為吸附質),以回收或去除某些污染物,從而使廢水得到凈化的方法。有物理吸附和化學吸附之分。前者沒選擇性,是放熱過程,溫度降低利於吸附;後者具選擇性,系吸熱過程,溫度升高利於吸附。
吸附法單元操作分三步:①使廢水和固體吸附劑接觸,廢水的污染物被吸附劑吸附;②將吸附有污染物的吸附劑與廢水分離;③進行吸附劑的再生或更新。
按接觸、分離的方式,可分為:①靜態間歇吸附法,即將一定數量的吸附劑投入反應池的廢水中,使吸附劑和廢水充分接觸,經過一定時間達到吸附平衡後,利用沉澱法或再輔以過濾將吸附劑從廢水中分離出來;②動態連續吸附法,即當廢水連續通過吸附劑填料時,吸附去除其中的污染物。吸附劑有活性炭與大孔吸附樹脂等。爐渣、焦炭、硅藻土、褐煤、泥煤、粘土等均為廉價吸附劑,但它們的吸收容量小,效率低。
『叄』 什麼是物化處理法及其在污水處理中的優點
物化處理是指運用物理和化學的綜合作用使廢水得到凈化的方法。通常是指由物理方法和化學方法組成的廢水處理系統,或指包括物理過程和化學過程的單項處理方法,如吹脫、
吸附、萃取、電解、離子交換、反滲透等。
1935年W.魯道夫和E.H.特魯尼克開始試驗用物理化學處理系統處理污水。隨著工業的發展,工業廢水水質日趨復雜,廢水中許多污染物,如重金屬離子,用通常的生物處理法難以去除;許多復雜的有機物,生物難以降解;對有毒的污染物其濃度超過微生物的耐受限度時,生物處理法又不適用。為了保護環境和合理利用水資源,廢水排放標准越來越嚴格,對廢水回用率的要求越來越高。因此,70年代以來,物理化學處理法得到廣泛重視和迅速發展。
物理化學處理既可以是獨立的處理系統,也可以是生物處理的後續處理措施。其工藝的選擇取決於廢水水質、排放或回收利用的水質要求、處理費用等。
為除去懸浮的和溶解的污染物而採用的化學混凝——沉澱和活性炭吸附的兩級處理,就是比較典型的一種物理化學處理系統。處理過程是在廢水中投加石灰,快速混合後,進行絮凝沉澱,除去大部分懸浮的和膠體的物質,同時除去一部分磷酸鹽。沉澱後的出水,流過活性炭接觸床,由於活性炭的吸附作用,除去溶解的污染物,如溶解的有機物等。活性炭要進行反沖洗和再生。沉澱池的沉渣經脫水、煅燒後,其中石灰可回收利用。煅燒產生的二氧化碳氣體可用作調整沉澱出水的pH值。通過這個系統處理後,出水水質的代表性數據是:BOD(生化需氧量)5毫克/升、COD(化學需氧量)15毫克/升、懸浮物5毫克/升、磷0.15毫克/升、氮
2.6毫克/升。假若對水質有其他要求,還可增加相應的處理過程,如為了進一步脫氮,可以增加氨解析、離子交換或折點氯化。
物化處理法和生物處理法相比,物理化學處理法在污水處理中的優點是:
佔地面積可少1/4至1/2;出水水質好,而且效果比較穩定;對廢水水量、水溫和濃度變化的適應性較強;可以除去有害的重金屬離子;除磷、脫氮和脫色的效果好;可根據不同要求,選擇處理方案;處理系統的操作管理易於實現自動檢測和自動控制。但這種處理系統的設備費和日常運轉費較高,要比生物處理法消耗較多的能源和物料,因此決定處理工藝方案時要根據對出水水質的要求,進行技術、經濟比較和對環境影響的全面分析。
『肆』 怎麼用物理化學法處理塗裝廢水,水性漆
1、廢水萃取處理法
廢水萃取處理法是利用萃取劑,通過萃取作用使廢水凈化的方法。根據一種溶劑對不同物質具有不同溶解度這一性質,可將溶於廢水中的某些污染物完全或部分分離出來。向廢水中投加不溶於水或難溶於水的溶劑(萃取劑),使溶解於廢水中的某些污染物(被萃取物)經萃取劑和廢水兩液相間界面轉入萃取劑中。
萃取操作按處理物的物態可分固——液萃取、液——液萃取兩類。工業廢水的萃取處理屬於後者,其操作流程:①混合,即使廢水和萃取劑最大限度地接觸;②分離,即使輕、重液層完全分離;③萃取劑再生,即萃取後,分離出被萃取物,回收萃取劑,重復使用。萃取劑的選擇應滿足:①對被萃取物的溶解度大,而對水的溶解度小;②與被萃取物的比重、沸點有足夠差別;③具有化學穩定性,不與被萃取物起化學反應;④易於回收和再生;⑤價格低廉,來源充足。此法常用於較高濃度的含酚或含苯胺、苯、醋酸等工業廢水的處理。
2、廢水光氧化處理法
廢水光氧化處理法是利用紫外光線和氧化劑的協同氧化作用分解廢水中有機物,使廢水凈化的方法。廢水氧化處理使用的氧化劑(氯、次氯酸鹽、過氧化氫、臭氧等),因受溫度影響,往往不能充分發揮其氧化能力;採用人工紫外光源照射廢水,使廢水中的氧化劑分子吸收光能而被激發,形成具有更強氧化性能的自由基,增強氧化劑的氧化能力,從而能迅速、有效地去除廢水中的有機物。光氧化法適用於廢水的高級處理,尤其適用於生物法和化學法難以氧化分解的有機廢水的處理。
3、廢水離子交換處理法
廢水離子交換處理法是藉助於離子交換劑中的交換離子同廢水中的離子進行交換而去除廢水中有害離子的方法。其交換過程:①被處理溶液中的某離子遷移到附著在離子交換劑顆粒表面的液膜中;②該離子通過液膜擴散(簡稱膜擴散)進入顆粒中,並在顆粒的孔道中擴散而到達離子交換劑的交換基團的部位上(簡稱顆粒內擴散);③該離子同離子交換劑上的離子進行交換;④被交換下來的離子沿相反途徑轉移到被處理的溶液中。離子交換反應是瞬間完成的,而交換過程的速度主要取決於歷時最長的膜擴散或顆粒內擴散。
『伍』 有什麼物化法可以處理高COD廢水
1.活性抄炭曝氣吸附。活性炭的量和反襲應時間你要摸索一下,試驗嘛,不是實驗,污染物又不相同。(西丁廢水的效果,一般COD可從80000-120000,降到40000左右。降的太多也不是什麼好事,因為它的可生化性也降低了。)
2.然後,(不知道pH值是多少,最好調到5-8,為生化處理做准備)進行厭氧反應,最好是120g厭氧污泥/廢水L(這個比例你也可以再摸索一下),反應時間最好12h以上。
3.好養處理,6h以上。
僅供參考~
『陸』 有什麼物化法可以處理高COD廢水
1、混凝沉澱或混凝氣浮,後續一個砂濾,1mm粒徑的細沙,20000的COD大致可以降低到500~2000之間,,再用芬頓氧專化,沉澱或氣浮後出水經過一屬次活性炭吸附處理,基本上做到100以下。
2、化學需氧量COD(Chemical Oxygen Demand)是以化學方法測量水樣中需要被氧化的還原性物質的量。廢水、廢水處理廠出水和受污染的水中,能被強氧化劑氧化的物質(一般為有機物)的氧當量。在河流污染和工業廢水性質的研究以及廢水處理廠的運行管理中,它是一個重要的而且能較快測定的有機物污染參數,常以符號COD表示。
『柒』 廢水物理化學處理法的概念
水或廢(污)水中的污染物在處理過程或自然界的變化過程中,通過相轉移作用而達專到去除的目屬的,這種處理或變化工程稱為物理化學過程。污染物在物理化學過程中可以不參與化學變化或化學反應,直接從一相轉移到另一相,也可以經過化學反應後再轉移,因此在物理化學處理過程中可能伴隨著化學反應,但不一定總是伴隨化學應。常見的物理化學處理過程,有吸附、離子交換、萃取、吹脫和汽提、膜分離過程等。
『捌』 污水處理方案用MBR法和化學處理法 兩種方法要詳細
根據你說的我為你做了生活污水處理方案,供參考如下:
1. 設計規模:18m3/d
2. 設計指標:採用國家標准《污水綜合排放標准》(GB8978-96)中的一級標准。設計指標為:SS≤70mg/L,CODcr≤100mg/L,BOD5≤20mg/L,PH = 6~9。
3. 編制原則:在保證達標排放的原則下,盡可能簡化工藝、方便操作,降低工程造價和運行費用;採用目前較先進的工藝和設備,保證本設計的先進性。
4. 工藝流程及預期效果分析
4.1 工藝流程
污水中的主要污染物處理前後的含量及要求的去除率見下表。
污染物名稱 SS CODcr BOD5
處理前含量mg/L 500 950 530
處理後含量mg/L 51.9 88.4 17.4
要求的去除率% 86 89.4 96
生活污水含有油脂、鹼類、糞便及纖維類雜物等,並有大量鏈球菌、大腸菌等。這類廢水有機物含量高,具有良好的可生化性,一般均利用生化工藝處理。
本項目為小型生活污水處理工程。為節約用地,簡化工藝和操作,擬採用一體化處理設備、其工藝流程如下:
污水 → 格柵 → 集水、沉澱池 → 一體化處理設備 →排放
污泥干化池 → 干污泥外運
4.2 主要設施、設備設計參數:
4.2.1 集水、沉澱池:該池的作用是緩沖水量、水質對污水處理系統的沖擊、沉澱、分離污水中的可沉降污染物,同時起水解酸化作用。該池池深2.8m,有效水深2.4m,有效池容20m3 ,平面尺寸凈3.0×3.0m,水力停留時間24小時。該池為地下式設置。
4.2.2一體化污水處理設備簡介:
一體化污水處理設備為方型容器結構,內裝生物填料,底部為W形結構,便於污泥濃縮與排放。採用射流曝氣方式為水體供氧,支持好氧菌新陳代謝。配置半自動加葯裝置,可加速懸浮物絮凝沉澱。根據水質的不同,一體化設備還可增設氣浮、消毒等裝置,對於生活污水則無需這些裝置。
一體化污水處理設備採用SBR運行方式,即曝氣——沉澱——排放——上水——曝氣間斷循環運行方式。
設備內塗玻璃鋼防腐層,外裝保溫層和彩鋼外殼,經久耐用,冬季不影響運行。
本項目採用SH—20A型一體化污水處理設備,長4.5m、寬2.4m、高2.6m,有效容積18m3,水力停留時間20小時,總功率7kw。
4.2.3 污泥干化池:該池採用磚混結構,凈尺寸2m×2m,總深度:1.6m,過濾面積4m2。濾層自下而上為爐渣、碎焦和石英砂。
4.3預期治理效果:可達到設計指標。
5 主要原、輔材料來源及動力供應情況
5.1 原輔材料來源
該工程建設過程中所需主要原輔材料有:水泥、沙、石灰、石子、鋼筋等,可 在附近市場購買。
5.2 動力供應
該治理工程的動力消耗主要是水泵用電,總裝機容量7KW,實際最大功率消耗6KW,建設單位現有供電系統可滿足需求。
6 治理項目建設地點及總平面布置
本工程佔地面積:5.0m×10.0m=50m2
具體位置和結構, 在進行施工圖設計時確定。
7 污水處理設施的管理、監測及定員
本污水處理系統操作比較簡單,配製有半自動控制裝置,需一人兼職負責設施的運行和維護。
8 建設工期和實施進度
完成治理方案編制、方案審批及施工圖設計。
完成土建施工和設備安裝。
完成系統調試及竣工驗收。
9 投資概算
9.1投資概算
序號 名稱 型號 數量 單價(元) 合價(元) 備注
1 一體化處理設備 SH-20A 1 90000.00 90000.00
2 其他 68000 68000
3 土建部分 0 0 用戶自備
合計 158000.00 158000
註:總投資15.8萬元,含運輸、安裝、調試費(不含土建部分)。
10 運行費用分析(元/噸•水)
電費(以0.55元/度計算) 0.5度/噸•水 0.225元
葯劑(1.5元/Kg) 0.1Kg/噸•水 0.15元
設備折舊(按10年折舊,留殘值10%) 0.08元
其他設施折舊(按30年折舊) 0.01元
人工工資 0.15元
設備維修(每年600元) 0.02元
合計 0.64元
11 環境效益分析
本工程投運後,每年可減少排入水體 SS11 噸,CODcr 12 噸,BOD55噸。具有良好的環境及社會效益。
12製作周期
設備製作在20天內完成。
『玖』 工業廢水的處理措施是什麼 用物理法還是化學法
簡單地說i就是利用某些物質對廢水中的有害物質有吸附作用達到吸附有害物質使廢水版能夠達標排權放。
原理:固體表面與液體表面都有一個特點;即表面層分子受力是不對稱的,因此都存在表面張力及表面吉布斯函數。又因為固體表面上的分子幾乎不能移動,這使得固體不能像液體那樣收縮表面來降低吉布斯函數,因為固體通過從表面的外部空間吸引氣體分子到表面以減小表面分子受力不對稱的程度。
物理吸附:吸附力是范德華力,一般為單層或者多層吸附,吸附具有可逆性,選擇性比較差;
化學吸附:吸附力為化學鍵力,一般為單層吸附,選擇性高,但是吸附過程一般不可逆。