Ⅰ 某工業園區污水處理廠一期設計規模為1×104m3/d,二期設計規模為1×104m3/d,
污水可以用壓濾機可直接用泵打到機器裡面來處理污水。方便操作簡單。工程量也不大。
Ⅱ 工業園區集中式污水廠提標改造工藝
北極星節能環保網訊:摘要:以某化工園區集中式污水廠一期工程處理廢水為研究對象,研究了Fenton氧化預處理和臭氧催化氧化深度處理的工藝條件。實驗結果表明:Fenton氧化能有效地去除廢水中的COD,提高廢水的可生化性,有利於後續生化處理;臭氧催化氧化能進一步降低生化出水COD,起到達標保障作用。在此基礎上,該污水廠擴建工程(處理規模1.5萬m3/d)設計採用了「Fenton氧化+初沉池+A2/O+二沉池+臭氧催化氧化+砂濾+紫外消毒」的主體工藝。
1引言
某工業集中式污水廠一期工程處理規模為0.3萬m3/d,原設計主要處理對象為工業區內的綜合污水,其中化工企業排放的工業廢水佔80%,另包括20%的生活污水。目前實際進水全部為工業廢水。一期工程污水處理採用「水解調節+A/O+BAF+微絮凝過濾」的主體工藝路線。污水廠實際污水進水水量約為2000m3/d。由於工業區大量企業簽約入園,並已陸續開工建設,將使工業區污水水量迅速增加,需要啟動污水廠擴建工程建設,污水廠擴建工程設計規模為1.5萬m3/d。筆者在分析一期工程運行情況基礎上,通過小試工程實驗研究確定了擴建工程的工藝流程。
2擴建改造工藝分析
2.1一期工程運行分析
一期工程於2009年建成通水,2012年1月通過竣工驗收,運行基本正常。2013年統計的平均進出水主要水質指標情況見表1。
2.2改造擴建工程工藝選擇
污水廠接納的污水主要為有機硅、香精香料、生物制葯及五金電氣等企業排放的廢水。根據當地環保部門要求,納管COD要求為COD≤500 mg/L(B/C≥0.3)或COD≤200 mg/L(B/C<0.3)。
由於該污水廠處於環境敏感區域,有必要在生化處理單元後面增設保障處理單元,在生化處理系統不穩定時,起到達標保障作用。本文主要研究前端Fenton氧化預處理和後端臭氧催化氧化深度處理的可行性和工藝條件,在實驗研究基礎上確定了擴建工程處理工藝。
3小試工程實驗
3.1廢水來源與水質
取該污水廠2014年4月9日事故池廢水(主要為4月6~8日排入事故池的污水廠進水)進行Fenton氧化實驗,取2014年4月1日排放口廢水進行臭氧催化氧化實驗。
3.2實驗材料和方法
3.2.1試劑
七水合硫酸亞鐵、雙氧水(30%)、濃硫酸(98%)、氫氧化鈉、聚丙烯醯胺(陰離子型)、催化劑A和B(載體為活性炭,負載過渡族金屬)等。
3.2.2主要實驗儀器設備
磁力攪拌器、pH計(SPM-10A數字酸度計)、氧氣源臭氧發生器等。
3.2.3實驗方法
(1)Fenton氧化實驗方法,本方案對pH值、H2O2/Fe2+摩爾比、H2O2投加量、反應時間等因子進行優化試驗。
①pH值條件實驗:取污水廠廢水200 mL/批次,按200 mg/L的H2O2(30%濃度)用量和4∶1的H2O2/Fe2+摩爾比投加硫酸亞鐵和雙氧水,Fenton反應pH值分別控制在2.5、3、3.5、4、4.5、5,反應時間2h,Fenton氧化反應出水用鹼調pH值至8.0,投加PAM,攪拌混凝,靜置沉澱後測定上清液COD。
②H2O2和Fe2+摩爾比實驗:雙氧水濃度200 mg/L,pH值3.5,反應時間2h,按2∶1、3∶1、4∶1、6∶1、8∶1、10∶1的H2O2/Fe2+摩爾比投加硫酸亞鐵,其它同上。
③反應時間實驗:pH值3.5,按3∶1的H2O2/Fe2+摩爾比和100 mg/L的H2O2(30%濃度)用量投加硫酸亞鐵和雙氧水,水樣反應時間分別為0.5 h、1 h、1.5 h、2 h、2.5 h和3 h,其它同上。
(2)臭氧催化氧化實驗方法。在Ф10 cm×80 cm有機玻璃柱中填充50 cm高度的催化劑,加入廢水至水位高出催化劑頂5 cm,開啟臭氧發生器,通過催化劑層底部的曝氣頭通入臭氧,反應一定時間後取樣測定廢水的COD。
(4)分析方法。COD測定:採用快速消解分光光度法(HJ/T399-2007)。
3.3實驗結果與討論
3.3.1Fenton氧化實驗
通過實驗表明,隨著初始pH值的升高,COD的去除率增大,當pH值升至3~3.5時,COD去除率達到最大值約50%,之後隨著pH值的繼續上升,COD去除率開始下降。根據Fenton反應機理,Fenton試劑的強氧化作用是由H2O2被Fe2+催化分解產生羥基自由基(OH˙),從而引發的一系列鏈式反應。
Fe2++H2O2→Fe3++OH-+OH˙(1)
Fe3++H2O2→Fe2++H++HO2˙(2)
Fe2++OH˙→Fe3++OH-(3)
Fe3++HO2˙→Fe2++O2+H+(4)
OH˙+H2O2→H2O+HO2˙(5)
Fe2++HO2˙→Fe3++HO-2(6)
根據反應式(1),初始pH值的升高會抑制OH˙的產生;同時過多的OH-使溶液中的Fe2+和Fe3+以氫氧化物的形式沉澱而失去催化能力。根據反應式(2)當pH值較低時,溶液中的H+濃度過高,Fe3+不能被順利的還原為Fe2+,後面的鏈反應不能順利進行下去,催化反應受阻。
3.3.2Fenton實驗小結
通過上述實驗可以得出以下結論。
(1)Fenton氧化對去除污水處理廠廢水中的COD是有效的,最大COD去除率可達到50%以上。較適合的Fenton氧化反應條件為:pH值為3~3.5,雙氧水投加量100 mg/L,H2O2/Fe2+摩爾比3∶1,反應時間1.5~2.0 h。
(2)Fenton氧化可以提高廢水的B/C比,有利於後續生化處理。這些參數是在實驗用的廢水水質條件下的優化結果,工程實際運行時可根據進水水質來調整和優化參數,以達到效果合適、成本較低的要求。
3.4臭氧催化氧化實驗
實驗結果說明,臭氧催化氧化能夠有效去除難以生化降解的COD,可以作為生化後的深度處理方法,能夠作為污水達標處理的保障技術之一。
4工藝流程
目前該工程正在施工中,擴建工程設計處理規模1.5萬m3/d,其中生活污水0.3萬m3/d,工業廢水1.2萬m3/d,另一期工業廢水0.3萬m3/d。為調節水質水量和應對事故來水,新增工業廢水事故/調節池。工業廢水經Fenton氧化預處理提高可生化性後,與生活污水一起進入「混合水解池-A/O池-二沉池」,生化去除大部分的COD。生化出水經臭氧催化氧化處理進一步去除COD,然後經砂濾去除SS,最後經紫外消毒後達標排放。擴建工程設計與原一期工程相比,增加了Fenton氧化預處理和臭氧催化氧化深度處理單元,能夠保障處理出水達到《城鎮污水處理廠污染物排放標准》(GB18918-2002)中的一級A標准。
5結論
(1)實驗結果表明,Fenton氧化能有效地去除廢水中的COD,提高廢水的可生化性,有利於後續生化處理。
(2)臭氧催化氧化能進一步降低生化出水COD,起到達標保障作用。
(3)在分析一期工程運行情況基礎上,通過實驗研究,該污水廠擴建工程(處理規模1.5萬m3/d)設計採用了「Fenton氧化+初沉池+A2/O+二沉池+臭氧催化氧化+砂濾+紫外消毒」的主體工藝。
Ⅲ 國內哪些設計院能用百樂克工藝做工業園區污水處理廠的設計
中國市政工程東北設計研究總院北京設計咨詢分院 已經做過很多
01083659791-8020 李工
Ⅳ 工業園區污水處理廠設計需要注意的事項有哪些
既然是工業園區的,就不能像城市污水處理那樣設計!
工業園區有大量的工專業廢水,這些工屬業廢水如果都由園區的污水處理站處理,應當設置不同的排水系統,將需要單獨處理的工業廢水通過獨立的排水系統,排放但專門的廢水處理站,處理後的水再進入園區污水處理站。
Ⅳ 城市污水處理工程和工業園區污水處理工程設計和施工的區別
城市污水以生活抄污水為主要污水水源,通過單一的排水管道送到污水處理站。而工業園區有大量的工業廢水,這些工業廢水如果都由園區的污水處理站處理,應當設置不同的排水系統,將需要單獨處理的工業廢水通過獨立的排水系統,排放但專門的廢水處理站,處理後的水再進入園區污水處理站。
Ⅵ 工業園區污水排放許可證辦理里的設計方案怎麼寫
有設計資質的設計院出圖,說明。