❶ 中和酸性廢水為什麼不用氫氧化鈉
1、中和酸性廢水一般用氧化鈣或復合鹼,不能用氫氧化鈉,原因在於回:
①答氫氧化鈉腐蝕性強,鹼性太強,容易造成局部鹼性過強;熟石灰氧化鈣在水中溶解度很小,所以就算多加也不會造成廢水鹼性化;
②熟石灰較氫氧化鈉便宜。
2、氫氧化鈉及其基本介紹。氫氧化鈉,化學式為NaOH,俗稱燒鹼、火鹼、苛性鈉,為一種具有很強腐蝕性的強鹼,一般為片狀或顆粒形態,易溶於水(溶於水時放熱)並形成鹼性溶液,另有潮解性,易吸取空氣中的水蒸氣和二氧化碳。NaOH是化學實驗室其中一種必備的化學品,亦為常見的化工品之一。純品是無色透明的晶體。密度2.130g/cm³。熔點318.4℃。沸點1390℃。工業品含有少量的氯化鈉和碳酸鈉,是白色不透明的晶體。有塊狀,片狀,粒狀和棒狀等。式量40.01氫氧化鈉在水處理中可作為鹼性清洗劑,溶於乙醇和甘油;不溶於丙醇、乙醚。在高溫下對碳鈉也有腐蝕作用。與氯、溴、碘等鹵素發生歧化反應。與酸類起中和作用而生成鹽和水。
❷ 酸性礦井廢水:這個問題能不能解決
石灰及其衍處理礦山酸性廢水用,該 廢水微量害重金屬元素除作用通解.該文用石灰內石、石灰處理某硫鐵礦露采容場酸性廢水,考察廢水微量害重金屬元素沉澱除效 .結表明:數重金屬離言,pH值越高,重金屬離除效越,若重金屬離兩性化合物沉澱,則存適宜pH值.石灰石 酸性條件沉澱重金屬離除效及沉渣沉降性能較,高pH值6,其重金屬離除效限;石灰pH值較調 節范圍,處理效明顯優於石灰石;石灰石-石灰二段處理效總體與石灰相,達與石灰相同處理效,能夠降低約1/3石灰投加量 沉渣產量,沉渣含水率相比石灰更低,沉降性能更.廢水微量害重金屬元素沉澱除效與pH值密切相關,工藝選擇外, 劑投加量投加式,處理設施更精準掌控運作非關鍵,研究確立石灰石-石灰處理礦山酸性廢水佳工藝程式控制制條件提供依據.
酸性礦井廢水:這個問題能不能解決
請詳細描敘問題
❸ 用石灰中和含鐵含氟含硫酸根的酸性廢水時,產生的污泥經板框壓濾後的脫水污泥含水率有多高其密度是多少
50%. 2
❹ H2S的密度是多少
H2S的密度是1.189(相對密度) 15℃ 0.10133MPa。
硫化氫,分子式為H2S,分子量為34.076,標准狀況下是一種易燃的酸性氣體,無色,低濃度時有臭雞蛋氣味,濃度極低時便有臭味,有劇毒(LC50=444ppm<500ppm)。
其水溶液為氫硫酸。分子量為34.08,蒸汽壓為2026.5kPa/25.5℃,閃點為<-50℃,熔點是-85.5℃,沸點是-60.4℃,相對密度為(空氣=1)1.19。能溶於水,易溶於醇類、石油溶劑和原油。燃點為292℃。
硫化氫主要用途:
用於合成熒光粉,電放光、光導體、光電曝光計等的製造。有機合成還原劑。用於金屬精製、農葯、醫葯、催化劑再生。通用試劑。製取各種硫化物。
用於製造無機硫化物,還用於化學分析如鑒定金屬離子
(4)煤礦酸性廢水的密度擴展閱讀
硫化氫是有毒物質,其預防措施為
1、產生硫化氫的生產設備應盡量密閉,並設置自動報警裝置(不能根據臭味來判斷危險場所硫化氫的濃度,硫化氫達到一定濃度時會導致嗅覺麻痹)。
2、對含有硫化氫的廢水、廢氣、廢渣,要進行凈化處理,達到排放標准後方可排放。
3、進入可能存在硫化氫的密閉容器、坑、窯、地溝等工作場所,應首先測定該場所空氣中的硫化氫濃度,採取通風排毒措施,確認安全後方可操作。
4、硫化氫作業環境空氣中硫化氫濃度要定期測定。
5、操作時做好個人防護措施,戴好防毒面具,作業工人腰間縛以救護帶或繩子。做好互保,要2人以上人員在場,發生異常情況立即救出中毒人員。
6、患有肝炎、腎病、氣管炎的人員不得從事接觸硫化氫作業。
7、加強對職工有關專業知識的培訓,提高自我防護意識。
8、安裝硫化氫處理設備。
參考資料來源:網路-H2S
❺ 煤礦酸性水水化學特徵及其環境地球化學信息研究
摘 要 以水化學數據為依據,應用相關分析,結合地質、水文勘探資料,對煤礦酸性礦排水( AMD) 的水化學特點及其成因進行了研究。煤礦 AMD 在一定的物質條件和環境條件下形成,只要條件適宜,不管是高硫煤還是低硫煤均可產生酸性水; 低 pH、高 Eh、高 TDS 及高硬度是煤礦 AMD 的重要特徵,水中的 SO42 -與其 EC 之間以及 Fe3 +/ Fe2 +比值與其 Eh 值走勢具有良好的一致性,水中微量元素及重金屬來源較復雜,如 Ni、Cu、Co、Zn 等來源於黃鐵礦的氧化溶解,但 Pb、Sr 等主要來自 AMD 對煤系地層中煤及岩石中礦物的淋濾作用。
任德貽煤岩學和煤地球化學論文選輯
一、引言
煤礦在開采過程中,因含煤地層中所含硫化物( 主要為黃鐵礦) 的賦存環境變化而自發進行氧化還原反應,可導致產生酸性礦排水( AMD) 。AMD 的低 pH 值和較高的礦化度特徵,說明其有很強的溶解性和侵蝕性,這種礦排廢水能攜帶大量的重金屬及有害化學物質進入環境。煤礦酸性礦井水在我國分布廣泛,北方主要分布在陝、晉、魯和內蒙等省區,南方分布在川、桂、貴、浙、閩等省區。目前,對 AMD 的研究多集中在金屬礦床、礦尾庫等的酸性礦排水治理方面,而對含煤地層環境下產生的 AMD 的水化學數據中所蘊含的豐富環境地球化學信息的解讀還不多見。煤礦 AMD 的化學特徵在一定程度上反映了相應地區的物質組成、主要水—岩反應和水中組分的相互作用等環境信息,對這些信息的研究可了解煤礦AMD 的產生、變化過程及可能產生的環境效應,為煤礦環境治理及模擬預測提供可靠依據。筆者通過對福建省永安及上京兩個礦區的井下現場勘查,系統採集和測試了煤層、頂底板岩石、黃鐵礦以及礦井中的酸性水樣品,通過綜合分析這些數據,試圖總結煤系酸性水的水化學特徵,並探討其中所反映的環境信息。
二、研究區地質環境
區內地層主要由上石炭統船山組、下二疊統棲霞組、文筆組、童子岩組、上二疊統翠屏山組及第四系殘坡積物層組成。下二疊統童子岩組為主要含煤地層,由一套海陸過渡相岩性組成,以泥質岩為主,次為粉砂岩和砂質岩,砂岩多為鈣質膠結。普遍含形態各異、含量不等的菱鐵礦和黃鐵礦結核。童子岩組內由下而上分為第 1、第 2、第 3 段,其中第 1 和第 3 段為含煤段。在永安礦區,第 3 段為主要含煤段,自上而下有 0 ~11 號煤層,其中 1 號、2 號、5 +6 號、9 號為主採煤層。在上京礦區,第 1 段為主要含煤段,煤層自上而下為 22 ~ 49 號煤,其中 33、34、38、45、48 等 16 層煤層為可採煤層。
研究區溝谷發育,植被茂盛,海拔最高點標高為809m,最低點為300m。本區為亞熱帶潮濕氣候區,年平均降雨量和氣溫分別為1565mm、18.9℃,氣溫最高39.2℃,全年相對濕度平均79%。水文地質條件屬簡單—中等類型,下部棲霞灰岩富水性較強,但遠離煤層(距煤層200m左右),正常情況下對煤層沒有影響。大氣降水是礦坑水的直接或間接補給水源。另外煤系構造裂隙發育,但富水性弱,岩性為砂岩,鑽孔涌水量Q=0.57~4.5L/s,滲透系數K=0.073~0.15m/d。裂隙水水質為HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,總礦化度0.016~0.15g/L,屬低礦化度具侵蝕性水。
三、樣品採集與檢測
為全面了解永安礦區童子岩組內整個含煤地層酸性水的情況,在永安礦區東坑仔礦的0號、1號、9號和上京礦區小華煤礦的34、38、48號等主採煤層的頂底板、煤和水及部分黃鐵礦進行采樣。在井下現場測定了水樣溫度、Eh值和pH值,其餘水質項目按取樣標准處理後送核工業北京地質研究院測定。用等離子質譜法(ICP-MS)測定水中陽離子及痕量元素含量;離子色譜法(IC)測定氯離子、氟離子、溴離子、硝酸根離子和硫酸根含量;採用容量法測定碳酸根、重碳酸根、氫氧根的濃度。對煤樣、煤層頂底板岩樣及黃鐵礦樣品進行了X射線衍射(XRD)分析和等離子質譜分析。
四、結果與討論
1.井下AMD的環境特徵
在井下調研時發現,大量褐紅色氧化鐵沉澱物與酸性水伴生,可視其為存在酸性水或曾經有酸性水產出的標志。酸性水常常出現在鬆散、破碎的煤層頂板處及平巷上部的采空區下方,這些現象表明酸性水明顯受環境條件的控制,這可能與含氧水的進入有關。在無破碎區,地表水中有限溶解氧在緩慢的下滲過程中,被淺部地層中的物質消耗,不足以氧化較深部的含硫礦物而產生酸性水。
地質勘探資料表明,本區煤系由以鋁、硅酸鹽礦物為主的泥岩、粉砂岩及砂岩組成,地層中碳酸鹽岩組分相對很少,CaCO3僅以脈狀或鈣質膠結物形式產出。有關黃鐵礦氧化動力學實驗表明[1],在有碳酸鹽岩存在時,產酸能力受到抑制。Holmstrom[2]等的研究表明,尾礦是否產生酸性排水和釋放重金屬主要取決於碳酸鹽礦物的含量,而不是硫化物的含量。永安礦區煤中總硫含量小於1%,為低硫煤,但卻產生了pH值低達2.75的酸性水,這一事實表明不管是高硫煤還是低硫煤均可產生酸性水。
2.煤層AMD的水化學特徵
所取水樣有3種類型:煤層酸性水樣、煤層非酸性水樣、地表水樣。各水樣的化學組成檢測結果見表1,樣品中除JS8為地表水外,其餘為井下礦排水。
根據礦井原鑽孔資料,未經淋濾的地層裂隙水的水質為HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,總礦化度0.016~0.15g/L。而經淋濾煤層後形成的酸性水的組成變化很大,按庫爾洛夫表達式計算後,水質類型變為SO4-Ca-Mg(如DS2)和SO4-Mg-Fe-Ca(如HS5)型水,TDS為1.64~4.398g/L,為高礦化度水。
表1 永安礦區煤層礦井水水化學常量組分含量w單位:mg·L-1
注:-為未檢出;表中硬度以CaCO3計。
由表1可以得出本區煤礦酸性有如下特點:
(1)pH值變化范圍較大,可從5點幾至2點幾,而在pH≤3.00的水中,HCO-3含量均為未檢出。根據水中碳酸系統平衡關系,此時水中的碳酸鹽組分以H2CO3或游離CO2形式存在,即水的總鹼度趨於零,具有較強的侵蝕性。
(2)酸性水具有SO42-高、總硬度高和TDS高的三高特徵。SO2-4含量在陰離子中占絕對優勢,表1中HS7水樣硫酸根離子濃度達3239.9mg/L,煤礦酸性水水化學類型一般為SO2-4-Ca、Mg(Fe、Al)型。酸性水使地層中碳酸鹽類及鋁硅酸鹽類礦物大量溶解,而造成水的高硬度和高TDS,TDS>1g/L。如,HS7的TDS達4398.5mg/L。酸性水中硫酸鹽是其礦化度主要貢獻者,水中SO2-4離子濃度與其電導率(EC)具有良好的對應關系(圖1)。
(3)煤礦酸性水的Eh范圍在600~800mv,是一種高氧化態水,水中的多價態元素以高價態存在,如Fe3+、V5+、Mn4+、Cr6+等。檢測結果表明,Fe3+/Fe2+比值在多數情況下與環境的Eh值有良好的相關性(圖2),Eh隨Fe3+/Fe2+值增加而增加,Fe3+/Fe2+比值在井下酸性水環境中起到決定電勢作用。
圖1 電導率與SO42-含量走勢相關圖
圖2 Eh與Fe3+/Fe2+走勢相關圖
3.AMD中微量組分來源分析
造岩礦物及礦石礦物中的微量元素通常以類質同象形式存在,而天然水中微量元素的分布通常受環境中水—岩相互作用控制。對永安礦區酸性礦坑水樣中50多種微量元素進行了ICP—MS測定。對7個礦井水樣中含量100×10-9以上的微量元素與水樣中的主要特徵元素進行了相關分析(表2)。綜合分析上述數據,並結合煤、岩及黃鐵礦樣品的XRD分析結果,可得出以下初步結論:
(1)pH值與大多數組分呈負相關,說明各組分的溶解度隨介質pH的降低而增大,尤其對Fe和Al溶解度影響較大。同時也可能與它們在pH增大時易形成氫氧化物膠體而沉澱有關。膠體形成後對其他微量元素的吸附產生共沉澱是pH對微量元素含量的一個間接影響。
(2)Ni、Co、Zn、Y等與Fe、SO2-4高度相關,相關系數大於0.94,說明它們的來源與黃鐵礦的氧化溶解密切相關。Ni、Co、Zn均為過渡元素,常在黃鐵礦中與鐵形成類質同象替代,而在黃鐵礦風化過程中被釋放進入溶液;與Fe、SO2-4有較高相關性的還有Na、Cu、Mg、Mn元素,這些元素在地球化學上與鐵元素常親密共生,說明黃鐵礦是其部分來源,或是黃鐵礦的氧化溶解對它們的釋放遷移有重要影響。
(3)水中Pb-K和Pb-Al的相關系數分別為0.77和0.64,而與Fe和SO2-4的相關系數較低,分別為0.39和0.41。ICP-MS對煤、岩、礦的分析結果表明,大多數煤樣品中的Pb含量高於同層位中黃鐵礦的Pb含量,且由於本區為低硫煤,因此黃鐵礦對礦井水中Pb的貢獻相對較小,即本區酸性水樣中的Pb除來源於黃鐵礦的氧化溶解外,還來源於地層中的含鉛礦物,如鉀長石、黑雲母的水解反應:
任德貽煤岩學和煤地球化學論文選輯
(4)鍶是廣泛存在於地下水中的一種微量元素。它在造岩礦物中的分配主要受鈣和鉀的互帶性控制[3],Sr2+主要是以類質同象的形式存在於含鈣、鉀的鋁硅酸鹽礦物中,隨著含鍶的鈣長石、鉀長石、白雲母等礦物的水解,鍶被釋放而進入地下水中。
本研究水樣中鍶含量在幾百~上千μg/L,Sr與Ca呈正相關,相關系數為0.79,與K的相關系數僅為0.27。本水樣中的鍶可能主要來源於鈣長石的水解反應。趙廣濤(1998)[4]對嶗山礦泉水的研究得出Ca-Sr的相關系數為0.6636,而K-Sr的正相關則不明顯。這一結論與本文結果較為吻合,但是否具有代表性還有待研究。
表2 永安酸性煤礦坑水中特徵組分及微量元素間的相關系數矩陣
五、結論
(1)煤礦AMD可產生於高硫煤或低硫煤層中,含氧水沿破碎帶入滲和地層中相對少量的碳酸鹽岩是產生煤礦AMD的重要條件。
(2)低pH、高礦化度和高硬度是煤礦AMD的水化學的典型特徵。水中的硫酸鹽是其礦化度的主要貢獻者;煤礦酸性水中的SO2-4含量與其電導率具有良好的對應關系;Eh隨Fe3+/Fe2+比值的增加而增加,Fe3+/Fe2+比值決定著煤礦酸性水的電勢。
(3)煤礦AMD中含有眾多重金屬及其他微量元素。其中Ni、Co、Zn、As等主要有害微量元素來源於黃鐵礦的氧化分解,而Pb、Sr等則來源於酸性水對地層中物質的溶濾作用。煤礦酸性水的酸度大大增加了環境中有害化學物質的出溶率和遷移性。
參 考 文 獻
[1] Nicholson R V,Gillham R W,Reardon E J. Pyrite oxidation in carbionate buffered solution: 1. Experimental Kineti- ca. Geochim Cosmochim Acta,1988,52: 1007 - 1085
[2] Holmstrom H,Salmon U J,Carlsson E et al. Geochemical investigations of sulfide-bearing tailings at Kristineberg,north- ern Sweden,a few years after remediation. The Science of the Total Environment,2001,( 273) : 111 - 133
[3] 文冬光,沈照理,鍾佐 . 水-岩互相作用的地球化學模擬理論及應用 . 中國地質大學出版社,1998
[4] 趙廣濤,李玉瑛,曹欽臣等 . 青島西北地區礦泉水的水化學特徵與形成機理 . 青島海洋大學學報,1998,28( 1) :135 - 141
The environment geochemistry information of the coal mine acid mining drainage
YUE Mei1,2,ZHAO Feng-hua1,REN De-yi1
( 1. Department of Resource & Earth Sciences,University of China Mining & Technology( Beijing) ;
Key Laboratory of Coal Resource,Ministry of Ecation,Beijing 100083,China;
2. Anhui University of Sciences & Technology,Huainan 232001,China)
Abstract: The chemical characteristic and its formation of the coal acid mining drainage are discussed in this paper based on the spot investigation,samples examination,applied the cor- relation analysis method,and combined w ith the geology and hydrogeology background informa- tion. Coal AMD formed in the specific substance and environment condition. And w hen the con- dition is meet,the AMD can be proced in both high or low sulfur in the coal. Low pH and high Eh,TDS,hardness are the important characteristic of coal AMD. There are good relation betw een SO2 -4and EC,Fe3 +/ Fe2 +radio and Eh. Some trace elements and harmful heavy metal such as Ni、Cu、Co、Zn in the AMD come from pyrit dissolution w hile some others like Pb、Sr are mainly come from the AMD eluviation to the coal and rocks.
Key words: coal AMD; chemical characteristic; trace elements; correlation analysis
( 本文由岳梅、趙峰華、任德貽合著,原載《煤田地質與勘探》,2004 年第 32 卷第 3 期)
❻ 煤礦廢水處理的幾種方法
煤礦廢水一般有兩種,一種是採煤時遇到了地下水層,通過泵抽上來的地下水回,這種無需處理答,回灌即可。
另一種是洗煤產生的廢水,這種單純沉澱過濾後即可回用。
有一種針對洗煤廢水的辦法是壓縮法,較沉澱法省土地,效果也不錯。
❼ (一)某工廠以流量為Q 1 排出含硫酸a%的工業廢水,現在往該廢水中注入含氫氧化鈉b%的工業廢水將其酸性中
設時間為t. 2NaOH+H 2 SO 4 ═Na 2 SO 4 +2H 2 O 80 98 Q 2 tρ b% Q 1 tρa% 80:98=Q 2 tρ b%:Q 1 tρa%, Q 2 =
答:氫版氧化鈉溶液的流量為
設25g氯化鋇權溶液中氯化鋇質量為x,5g混合物中硫酸鈉質量為y Na 2 SO 4 +BaCl 2 =BaSO 4 ↓+2NaCl 142208 233 y x2.33g 142:233=y:2.33g 解之得 y=1.42g 208:233=x:2.33g 解之得 x=2.08g 未知氯化鋇溶液的質量分數=
原混合物中硫酸鈉的質量分數是
答:(1)未知氯化鋇溶液的質量分數為8.32%; (2)原混合物中硫酸鈉的質量分數為28.2%. |
❽ 廢水中PH達標值為多少
工業廢水的分類
按工業廢水中所含主要污染物的化學性質分類,分為:含無機污染物為主的無機廢水、含有 工業廢水
機污染物為主的有機廢水、兼含有機物和無機物的混合廢水、重金屬廢水、含放射性物質的廢水和僅受熱污染的冷卻水。例如電鍍廢水和礦物加工過程的廢水是無機廢水,食品或石油加工過程的廢水是有機廢水。 按工業企業的產品和加工對象可分為造紙廢水、紡織廢水、製革廢水、農葯廢水、冶金廢水、煉油廢水等。 按廢水中所含污染物的主要成分可分為酸性廢水、鹼性廢水、含酚廢水、含鉻廢水、含有機磷廢水和放射性廢水等。
編輯本段工業廢水造成的污染
工業廢水造成的污染主要有:有機需氧物質污染,化學毒物污染,無機固體懸 工業廢水污染
浮物污染,重金屬污染,酸污染,鹼污染,植物營養物質污染,熱污染,病原體污染等。許多污染物有顏色、臭味或易生泡沫,因此工業廢水常呈現使人厭惡的外觀。各種工業廢水的污染特徵和廢水中的主要污染物列表如下。
編輯本段工業廢水的特點
工業廢水的特點是水質和水量因生產工藝和生產方式的不同而差別很大。如電力、礦山等部門的廢水主要含無機污染物,而造紙和食品等工業部門的廢水,有機物含量很高,BOD5(五日生化需氧量)常超過2000毫克/升,有的達30000毫克/升。即使同一生產工序,生產過程中水質也會有很大變化,如氧氣頂吹轉爐煉鋼,同一爐鋼的不同冶煉階段,廢水的pH值可在4~13之間,懸浮物可在250~25000毫克/升之間變化。工業廢水的另一特點是:除間接冷卻水外,都含有多種同原材料有關的物質,而且在廢水中的存在形態往往各不相同,如氟在玻璃工業廢水和電鍍廢水中一般呈氟化氫(HF)或氟離子(F-)形態,而在磷肥廠廢水中是以四氟化硅(SiF4)的形態存在;鎳在廢水中可呈離子態或絡合態。這些特點增加了廢水凈化的困難。 工業廢水的水量取決於用水情況。冶金、造紙、石油化工、電力等工業用水量大,廢水量也大,如有的煉鋼廠煉 1噸鋼出廢水200~250噸。但各工廠的實際外排廢水量還同水的循環使用率有關。例如循環率高的鋼鐵廠,煉1噸鋼外排廢水量只有2噸左右。
編輯本段工業廢水處理遵循的原則
1、優先選用無毒生產工藝代替或改革落後生產工藝,盡可能在生產過程中杜絕或減少有毒有害廢水的產生。 工業廢水
2、在使用有毒原料以及產生有毒中間產物和產品過程中,應嚴格操作、監督,消除滴漏,減少流失,盡可能採用合理流程和設備。 3、含有劇毒物質廢水,如含有一些重金屬、放射性物質、高濃度酚、氰廢水應與其它廢水分流,以便處理和回收有用物質。 4、流量較大而污染較輕的廢水,應經適當處理循環使用,不宜排入下水道,以免增加城市下水道和城市污水處理負荷。 5、類似城市污水的有機廢水,如食品加工廢水、製糖廢水、造紙廢水,可排入城市污水系統進行處理。 6、一些可以生物降解的有毒廢水,如酚、氰廢水,應先經處理後,按答應排放標准排入城市下水道,再進一步生化處理。 7、含有難以生物降解的有毒廢水,應單獨處理,不應排入城市下水道。工業廢水處理的發展趨勢是把廢水和污染物作為有用資源回收利用或實行閉路循環。
編輯本段工業廢水處理方法
含酚廢水
含酚廢水主要來自焦化廠、煤氣廠、石油化工廠、絕緣材料廠等工業部門以 高濃度氨氮工業廢水中去生物
及石油裂解制乙烯、合成苯酚、聚醯胺纖維、合成染料、有機農葯和酚醛樹脂生產過程。含酚廢水中主要含有酚基化合物,如苯酚、甲酚、二甲酚和硝基甲酚等。酚基化合物是一種原生質毒物,可使蛋白質凝固。水中酚的質量濃度達到0.1一0.2mg/L時,魚肉即有異味,不能食用;質量濃度增加到1mg/L,會影響魚類產卵,含酚5—10mg/L,魚類就會大量死亡。飲用水中含酚能影響人體健康,即使水中含酚質量濃度只有0.002mg/L,用氯消毒也會產生氯酚惡臭。通常將質量濃度為1000mg/L的含酚廢水.稱為高濃度含酚廢水,這種廢水須回收酚後,再進行處理。質量濃度小於1000mg/L的含酚廢水,稱為低濃度含酚廢水。通常將這類廢水循環使用,將酚濃縮回收後處理。回收酚的方法有溶劑萃取法、蒸汽吹脫法、吸附法、封閉循環法等。含酚質量濃度在300mg/L以下的廢水可用生物氧化、化學氧化、物理化學氧化等方法進行處理後排放或回收。
含汞廢水
含汞廢水主要來源於有色金屬冶煉廠、化工廠、農葯廠、造紙廠、染料廠及熱工儀器儀表廠等。從廢水中去除無機汞的方法有硫化物沉澱法、化學凝聚法、活性炭吸附怯、金屬還原法、離子交換法和微生物法等。一般偏鹼性含汞廢水通常採用化學凝聚法或硫化物沉澱法處理。偏酸性的含汞廢水可用金屬還原法處理。低濃度的含汞廢水可用活性炭吸附法、化學凝聚法或活性污泥法處理,有機汞 rfc-b系列工業廢水機
廢水較難處理,通常先將有機汞氧化為無機汞,而後進行處理。 各種汞化合物的毒性差別很大。元素汞基本無毒;無機汞中的升汞是劇毒物質,有機汞中的苯基汞分解較快,毒性不大;甲基汞進入人體很容易被吸收,不易降解,排泄很慢,特別是容易在腦中積累。毒性最大,如水俁病就是由甲基汞中毒造成的。
含油廢水
含油廢水主要來源於石油、石油化工、鋼鐵、焦化、煤氣發生站、機械加工等工業部門。廢水中油類污染物質,除重焦油的相對密度為1.1以上外,其餘的相對密度都小於1。油類物質在廢水中通常以三種狀態存在。(1)浮上油,油滴粒徑大於100µm,易於從廢水中分離出來。(2)分散油.油滴粒徑介於10一100µm之間,懇浮於水中。(3)乳化油,油滴粒徑小於10µm,不易從廢水中分離出來。由於不同工業部門排出的廢水中含油濃度差異很大,如煉油過程中產生廢水,含油量約為150一1000mg/L,焦化廢水中焦油含量約為500一800mg/L,煤氣發生站排出廢水中的焦油含量可達2000一3000mg/L。因此,含油廢水的治理應首先利用隔油池,回收浮油或重油,處理效率為60%一80%,出水中含油量約為100一200mg/L;廢水中的乳化油和分散油較難處理,故應防止或減輕乳化現象。方法之一,是在生產過程中注意減輕廢水中油的乳化;其二,是在處理過程中,盡量減少用泵提升廢水的次數、以免增加乳化程度。處理方法通常採用氣浮法和破乳法。
重金屬廢水
重金屬廢水主要來自礦山、冶煉、電解、電鍍、農葯、醫葯、油漆、顏料等企業排出的廢水。廢水中重金屬的種類、含量及存在形態隨不同生產企業而異。由於重金屬不能分解破壞,而只能轉 工業廢水處理
移它們的存在位置和轉變它們的物理和化學形態。例如,經化學沉澱處理後,廢水中的重金屬從溶解的離子形態轉變成難溶性化台物而沉澱下來,從水中轉移到污泥中;經離子交換處理後,廢水中的重金屬離子轉移到離子交換樹脂上,經再生後又從離子交換樹脂上轉移到再生廢液中。因此,重金屬廢水處理原則是:首先,最根本的是改革生產工藝.不用或少用毒性大的重金屬;其次是採用合理的工藝流程、科學的管理和操作,減少重金屬用量和隨廢水流失量,盡量減少外排廢水量。重金屬廢水應當在產生地點就地處理,不同其他廢水混合,以免使處理復雜化。更不應當不經處理直接排入城市下水道,以免擴大重金屬污染。對重金屬廢水的處理,通常可分為兩類;一是使廢水中呈溶解狀態的重金屬轉變成不溶的金屬化合物或元素,經沉澱和上浮從廢水中去除.可應用方法如中和沉澱法、硫化物沉澱法、上浮分離法、電解沉澱(或上浮)法、隔膜電解法等;二是將廢水中的重金屬在不改變其化學形態的條件下進行濃縮和分離,可應用方法有反滲透法、電滲析法、蒸發法和離子交換法等。這些方法應根據廢水水質、水量等情況單獨或組合使用。
含氰廢水
含氰廢水主要來自電鍍、煤氣、焦化、冶金、金屬加工、化纖、塑料、農葯、化工等部門。含氰廢水是一種毒性較大的工業廢水,在水中不穩定,較易於分解,無機氰和有機氰化物皆為劇毒性物質,人食入可引起急性中毒。氰化物對人體致死量為0.18,氰化鉀為0.12g,水體中氰化物對魚致死的質量濃度為0.04一0.1mg/L。含氰廢水治理措施主要有:(1)改革工藝,減少或消除外排含氰廢水,如採用無氰電鍍法可消除電鍍車間工業廢水。(2)含氰量高的廢水,應採用回收利用,含氰量低的廢水應凈化處理方可排放。回收方法有酸化曝氣—鹼液吸收法、蒸汽解吸法等。治理方法有鹼性氯化法、電解氧化法、加壓水解法、生物化學法、生物鐵法、硫酸亞鐵法、空氣吹脫法等。其中鹼性氯化法應用較廣,硫酸亞鐵法處理不徹底亦不穩定,空氣吹脫法既污染大氣,出水又達不到排放標准.較少採用。
食品工業廢水
食品工業原料廣泛,製品種類繁多,排出廢水的水量、水質差異很大。廢水 冰結晶化處理工業廢水
中主要污染物有(1)漂浮在廢水中固體物質,如菜葉、果皮、碎肉、禽羽等;(2)懸浮在廢水中的物質有油脂、蛋白質、澱粉、膠體物質等;(3)溶解在廢水中的酸、鹼、鹽、糖類等:(4)原料夾帶的泥砂及其他有機物等;(5)致病菌毒等。食品工業廢水的特點是有機物質和懸浮物含量高,易腐敗,一般無大的毒性。其危害主要是使水體富營養化,以致引起水生動物和魚類死亡,促使水底沉積的有機物產生臭味,惡化水質,污染環境。 食品工業廢水處理除按水質特點進行適當預處理外,一般均宜採用生物處理。如對出水水質要求很高或因廢水中有機物含量很高,可採用兩級曝氣池或兩級生物濾池,或多級生物轉盤.或聯合使用兩種生物處理裝置,也可採用厭氧—需氧串聯的生物處理系統。
造紙工業廢水
造紙廢水主要來自造紙工業生產中的制漿和抄紙兩個生產過程。制漿是把植物原料中的纖維分離出來,製成漿料,再經漂白;抄紙是把漿料稀釋、成型、壓榨、烘乾,製成紙張。這兩項工藝都排出大量廢水。制漿產生的廢水,污染最為嚴重。洗漿時排出廢水呈黑褐色,稱為黑水,黑水中污染物濃度很高,BOD高達5—40g/L,含有大量纖維、無機鹽和色素。漂白工序排出的廢水也含有大量的酸鹼物質。抄紙機排出的廢水,稱為白水,其中含有大量纖維和在生產過程中添加的填料和膠料。造紙工業廢水的處理應著重於提高循環用水率,減少用水量和廢水排放量,同時也應積極探索各種可靠、經濟和能夠充分利用廢水中有用資源的處理方法。例如浮選法可回收白水中纖維性固體物質,回收率可達95%,澄清水可回用;燃燒法可回收黑水中氫氧化納、硫化鈉、硫酸鈉以及同有機物結合的其他鈉鹽。中和法調節廢水pH值;混凝沉澱或浮選法可去除廢水中懸浮固體;化學沉澱法可脫色;生物處理法可去除BOD,對牛皮紙廢水較有效;濕式氧化法處理亞硫酸紙漿廢水較為成功。此外,國內外也有採用反滲透、超過濾、電滲析等處理方法。
印染工業廢水
印染工業用水量大,通常每印染加工1t紡織品耗水100一200t.其中80%一90%以印染廢水排出。常用的治理方法有回收利用和無害化處理。 回收利用:(1)廢水可按水質特點分別回收利用,如漂白煮煉廢水和染色印花廢水的分流,前者可以對流洗滌.一水多用,減少排放量;(2)鹼液回收利用,通常採用蒸發法回收,如鹼液量大,可用三效蒸發回收,鹼液量小,可用薄膜蒸發回收;(3)染料回收.如士林染料可酸化成為隱巴酸,呈膠體微粒.懸浮於殘液中,經沉澱過濾後回收利用。 無害化處理可分:(1)物理處理法有沉澱法和吸附法等。沉澱法主要去除廢水中懸浮物;吸附法主要是去除廢水中溶解的污染物和脫色。(2)化學處理法有中和法、混凝法和氧化法等。中和法在於調節廢水中的酸鹼度,還可降低廢水的色度;混凝法在於去除廢水中分散染料和膠體物質;氧化法在於氧化廢水中還原性物質,使硫化染料和還原染料沉澱下來。(3)生物處理法有活性污泥、生物轉盤、生物轉筒和生物接觸氧化法等。為了提高出水水質,達到排放標准或回收要求.往往需要採用幾種方法聯合處理
染料生產廢水
染料生產廢水含有酸、鹼、鹽、鹵素、烴、胺類、硝基物和染料及其中間體等物質,有的還含有吡啶、氰、酚、聯苯胺以及重金屬汞、鎘、鉻等。這些廢水成分復雜.具有毒性,較難處理。因此染料生產廢水的處理.應根據廢水的特性和對它的排放要求.選用適當的處理方法。例如:去除固體雜質和無機物,可採用混凝法和過濾法;去除有機物和有毒物質主要採用化學氧化法、生物法和反滲透法等;脫色一般可採用混凝法和吸附法組成的工藝流程,去除重金屬可採用離子交換法等。
化學工業廢水
化學工業廢水主要來自石油化學工業、煤炭化學工業、酸鹼工業、化肥工業、塑料工業、制葯工業、染料工業、橡膠工業等排出的生產廢水。化工廢水污染防治的主要措施是:首先應改革生產工藝和設備,減少污染物,防止廢水外排,進行綜合利用和回收;必須外排的廢水,其處理程度應根據水質和要求選擇。一級處理主要分離水中的懸浮固體物、膠體物、浮油或重油等。可採用水質水量調節、自然沉澱、上浮和隔油等方法。二級處理主要是去除可用生物降解的有機溶解物和部分膠體物,減少廢水中的生化需氧量和部分化學需氧量,通常採用生物法處理。經生物處理後的廢水中,還殘存相當數量的COD,有時有較高的色、嗅、味,或因環境衛生標准要求高,則需採用三級處理方法進一步凈化。三級處理主要是去除廢水中難以生物降解的有機污染物和溶解性無機污染物。常用的方法有活性炭吸附法和臭氧氧化法,也可採用離子交換和膜分離技術等。各種化學工業廢水可根據不同的水質、水量和處理後外排水質的要求,選用不同的處理方法。
酸鹼廢水
酸性廢水主要來自鋼鐵廠、化工廠、染料廠、電鍍廠和礦山等,其中含有各種有害物質或重金屬鹽類。酸的質量分數差別很大,低的小於1%,高的大於10%。鹼性廢水主要來自印染廠、皮革廠、造紙廠、煉油廠等。其中有的含有機鹼或含無機鹼。鹼的質量分數有的高於5%,有的低於1%。酸鹼廢水中,除含有酸鹼外,常含有酸式鹽、鹼式鹽以及其他無機物和有機物。 酸鹼廢水具有較強的腐蝕性,需經適當治理方可外排。治理酸鹼廢水一股原則是:(1)高濃度酸鹼廢水,應優先考慮回收利用,根據水質、水量和不同工藝要求,進行廠區或地區性調度,盡量重復使用:如重復使用有困難,或濃度偏低,水量較大,可採用濃縮的方法回收酸鹼。(2)低濃度的酸鹼廢水,如酸洗槽的清洗水,鹼洗槽的漂洗水,應進行中和處理。 對於中和處理,應首先考慮以廢治廢的原則。如酸、鹼廢水相互中和或利用廢鹼(渣)中和酸性廢水,利用廢酸中和鹼性廢水。在沒有這些條件時,可採用中和劑處理。
選礦廢水
選礦廢水具有水量大,懸浮物含量高,含有害物質種類較多的特點。其有害物質是重金屬離子和選礦葯劑。重金屬離子有銅、鋅、鉛、鎳、鋇、鎘以及砷和稀有元素等。在選礦過程中加入的浮選葯劑有如下幾類:(1)捕集劑.如黃葯(RocssMe)、黑葯[(RO)2PSSMe]、白葯[CS(NHC6H5)2];(2)抑制刑,如氰鹽(KCN,NaCN)、水玻璃(Na2SiO3);(3)起泡劑,如松節油、甲酚(C6H4CH30H);(4)活性刑,如硫酸銅(CuS04)、重金屬鹽類;(5)硫化劑,如硫化鈉;(6)礦槳調節劑,如硫酸、石灰等。選礦廢水主要通過尾礦壩可有效地去除廢水中懸浮物,重金屬和浮選葯劑含量也可降低。如達不到排放要求時,應作進一步處理,常用的處理方法有:(1)去除重金屬可採用石灰中和法和焙燒白雲石吸附法;(2)主除浮選葯劑可採用礦石吸附法、活性炭吸附法;(3)含氰廢水可採用化學氧化法。
冶金廢水
冶金廢水的主要特點是水量大、種類多、水質復雜多變。按廢水來源和特點分類,主要有冷卻水、酸洗廢水、洗滌廢水(除塵、煤氣或煙氣)、沖渣廢水、煉焦廢水以及由生產中凝結、分離或溢出的廢水等。冶金廢水治理發展的趨向是:(1)發展和採用不用水或少用水及無污染或少污染的新工藝、新技術,如用干法熄焦,煉焦煤預熱,直接從焦爐煤氣脫硫脫氰等;(2)發展綜合利用技術,如從廢水廢氣中回收有用物質和熱能,減少物料燃料流失,(3)根據不同水質要求,綜合平衡,串流使用,同時改進水質穩定措施,不斷提高水的循環利用率;(4)發展適合冶金廢水特點的新的處理工藝和技術,如用磁法處理鋼鐵廢水.具有效率高,佔地少,操作管理方便等優點。
編輯本段氧化還原法
廢水氧化還原法:把溶解於廢水中的有毒有害物質,經過氧化還原反應,轉化為無毒無害的新物質,這種廢水的處理方法稱為廢水的氧化還原法。在氧化還原反應中,有毒遇害物質有時是作為還原劑的,這是需要外加氧化劑如空氣、臭氧、氯氣、漂白粉、次氯酸鈉等。當有毒有害物質作為氧化劑時,需要外加還原劑如硫酸亞鐵、氯化亞鐵、鋅粉等。如如果通電電解,則電解時陽極是一種氧化劑,陰極是一種還原劑。 一、葯劑氧化 廢水中的有毒有害物質為還原性物質,向其中投加氧化助劑,將有毒有害物質氧化成無毒或毒性較小的新物質,此種方法稱為葯劑氧化法。在廢水處理中用的最多的葯劑氧化法是氯氧化法,即投加的葯劑為含氯氧化物如液氯、漂白粉等,其基本原理都是利用產生的次氯酸根的強氧化作用。 氯氧化法常用來處理含氰廢水,國內外比較成熟的工藝是鹼性氯氧化法。在鹼性氯氧化法處理反應中,pH值小於8.5則有放出劇毒物質氯化氰的危險,一般工藝條件為:廢水pH值大於11,當氰離子濃度高於100mg/L時,最好控制在pH=12~13。在此情況下,反應可在10~15min內完成,實際採用的20~30min。該處理方法的缺陷是雖然氫酸鹽毒性低,僅為氰的千分之一。但產生的氰酸鹽離子易水解生成氨氣。因此,需讓次氯酸將氰酸鹽離子進一步氧化成氮氣和二氧化碳,消除氰酸鹽對環境的污染同時進一步氧化殘余的氯化氰。在進一步氧化氰酸鹽的過程中,pH值值控制是至關重要的。pH值大於12,則反應停止,pH值7.5~8.0,用硫酸調節pH值,反應過程適當攪拌以加速反應的完全進行。 二、臭氧氧化 臭氧氧化法是利用臭氧的強氧化能力,使污水(或廢水)中的污染物氧化分解成低毒或無毒的化合物,使水質得到凈化。它不僅可降低水中的BOD、COD,而且還可起脫色、除臭、除味、殺菌、殺藻等功能,因而,該處理方法愈來愈受到人們重視。 三、葯劑還原與金屬還原 葯劑還原法是利用某些化學葯劑的還原性,將廢水中的有毒有害物質還原成低毒或無毒的化合物的一種水處理方法。常見的例子是用硫酸亞鐵處理含鉻廢水。亞鐵離子起還原作用,在酸性條件下(pH值=2~3),廢水中六價鉻主要以重鉻酸根離子形式存在。六價鉻被還原成三價鉻,亞鐵離子被氧化成鐵離子,需再用中和沉澱法將三價鉻沉澱。沉澱的污染物是鉻氫氧化物和鐵氫氧化物的混合物,需要妥善處理,以防二次污染。該工藝流程包括集水、還原、沉澱、固液分離和污泥脫水等工序,可連續操作,也可間歇操作。 金屬還原法是向廢水中投加還原性較強的金屬單質,將水中氧化性的金屬離子還原成單質金屬析出,投加的金屬則被氧化成離子進入水中。此種處理方法常用來處理含重金屬離子的廢水,典型例子是鐵屑還原處理含汞廢水。其中鐵屑還原效果與水中pH值有關,當水中pH值較低時,鐵屑還會將廢水中氫離子還原成氫氣逸出,因而,當廢水的pH值較低時,應調節後再處理。反應溫度一般控制在20℃~30℃。
編輯本段工業廢水處理工藝流程
[1] 企業的工業廢水,主要分布在電子、塑膠、電鍍、五金、印刷、食品、印染等行業。從工業廢水的排放量和對環境污染的危害程度來看,電鍍、線路板、表面處理等以無機類污染物為主的工業廢水和食品、印染、印刷及生活污水等以有機類污染物為主的工業廢水是處理的重點。本文主要介紹幾種比較典型的工業廢水處理技術。 1.磨光、拋光工業廢水 在對零件進行磨光與拋光過程中,由於磨料及拋光劑等存在,工業廢水中主要污染物為COD、BOD、SS。 一般可參考以下工業廢水處理工藝流程進行處理: 工業廢水
廢水→調節池→混凝反應池→沉澱池→水解酸化池→好氧池→二沉池→過濾→排放 2.除油脫脂工業廢水 常見的脫脂工藝有:有機溶劑脫脂、化學脫脂、電化學脫脂、超聲波脫脂。除有機溶劑脫脂外,其它脫脂工藝中由於含鹼性物質、表面活性劑、緩蝕劑等組成的脫脂劑,工業廢水中主要的污染物為pH、SS、COD、BOD、石油類、色度等。 一般可以參考以下工業廢水處理工藝進行處理: 廢水→隔油池→調節池→氣浮設備→厭氧或水解酸化→好氧生化→沉澱→過濾或吸附→排放 該類工業廢水一般含有乳化油,在進行氣浮前應投加CaCl2破乳劑,將乳化油破除,有利於用氣浮設備去除。當廢水中COD濃度高時,可先採用厭氧生化處理,如不高,則可只採用好氧生化處理。 3.酸洗磷化工業廢水 酸洗工業廢水主要在對鋼鐵零件的酸洗除銹過程中產生,廢水pH一般為2-3,還有高濃度的Fe2+,SS濃度也高。 可參考以下工業廢水處理工藝進行處理: 廢水→調節池→中和池→曝氣氧化池→混凝反應池→沉澱池→過濾池→pH回調池→排放 磷化廢水又叫皮膜廢水,指鐵件在含錳、鐵、鋅等磷酸鹽溶液中經過化學處理,表面生成一層難溶於水的磷酸鹽保護膜,作為噴塗底層,防止鐵件生銹。該類工業廢水中的主要污染物為:pH、SS、PO43-、COD、Zn2+等。 可參考以下工業廢水處理工藝進行處理: 廢水→調節池→一級混凝反應池→沉澱池→二級混凝反應池→二沉池→過濾池→排放 4.鋁的陽極氧化工業廢水所含污染物主要為pH、COD、PO43-、SS等,因此可採用磷化工業廢水處理工藝對陽極氧化廢水進行處理。
❾ 煤礦酸性廢水如何處理
酸性廢水來源廣泛,排污量較大。廢水中含有很多懸浮物、金屬離子和有用酸,專直接排放屬不僅浪費資源還會污染環境,所以需要對酸性廢水回用。
酸性廢水回用裝置的優點:
1、減少了中和葯劑的使用。
2、分離廢水中的有機物和金屬離子。
3、回用的酸可以重復使用,減少了運行投資。
4、減少了污染物的排放。
5、出水水質可以達到國家標准。
6、設備簡單、操作方便,自動化程度高。
7、節能、低耗,節約成本。