① 鋼渣廠直排廢水污染環境 老闆終獲刑,污染環境行為有哪些
故意破壞環境罪
② 含砷廢水怎樣處理
處理含砷廢水,目前國內外主要有中和沉澱法、絮凝沉澱法、鐵氧體法、硫化物沉澱法等,適用於高濃度含砷廢水,生成的污泥易造成二次污染。在化學法方面的研究已經比較成熟,很多人曾在這方面做了深入的研究。
1 化學法處理含砷廢水
中和沉澱法作為工程上應用較廣的一種方法,很多人在這方面作了深入的研究,機理主要是往廢水中添加鹼(一般是氫氧化鈣)提高其pH,這時可生成亞砷酸鈣、砷酸鈣和氟化鈣沉澱。這種方法能除去大部分砷和氟,且方法簡單,但泥渣沉澱緩慢,難以將廢水凈化到符合排放標准。
絮凝共沉澱法,這是目前處理含砷廢水用得最多的方法。它是藉助加入(或廢水中原有)Fe3+、Fe2+、Al3+和Mg2+等離子,並用鹼(一般是氫氧化鈣)調到適當pH,使其形成氫氧化物膠體吸附並與廢水中的砷反應,生成難溶鹽沉澱而將其除去。其具體方法有,石灰-鋁鹽法、石灰-高鐵法、石灰-亞鐵法等。
鐵氧體法,在國外,自70年代起已有較多報道,工藝過程是在含砷廢水中加入一定數量的硫酸亞鐵,然後加鹼調pH至8.5-9.0,反應溫度60-70℃,鼓風氧化20-30分鍾,可生成咖啡色的磁性鐵氧體渣。Nakazawa Hiroshi 等研究指出,在熱的含砷廢水中加鐵鹽(FeSO4或Fe2(SO4)3),在一定pH下,恆溫加熱1 h。用這種沉澱法比普通沉澱法效果更好。特別是利用磁鐵礦中Fe3+鹽處理廢水中As(III)、As(V),在溫度90℃,不僅效果很好,而且所需要的Fe3+濃度也降到小於0.05mg/L。趙宗升曾從化學熱力學和鐵砷沉澱物的紅外光譜兩個方面探討了氧化鐵砷體系沉澱除砷的機理,發現在低pH值條件下,廢水中的砷酸根離子與鐵離子形成溶解積很小的FeAsO4,並與過量的鐵離子形成的FeOOH羥基氧化鐵生成吸附沉澱物,使砷得到去除。
馬偉等報道,採用硫化法與磁場協同處理含砷廢水,提高了硫化渣的絮凝沉降速度和過濾速度,並提高了硫化劑的利用率。研究發現經磁場處理後,溶液的電導率增加,電勢降低,磁化處理使水的結構發生了變化,改變了水的滲透效果。國外曾有人提出在高度厭氧的條件下,在硫化物沉澱劑的作用下生成難溶、穩定的硫化砷,從而除去砷。
化學沉澱法作為含砷廢水的一種主要處理方法,工程化比較普遍,但並不是採用單一的處理方式,而是幾種處理方式的綜合處理,如鈣鹽與鐵鹽相結合,鐵鹽與鋁鹽相結合等等。這種綜合處理能提高砷的去除率。但由於化學法普遍要加入大量的化學葯劑,並成為沉澱物的形式沉澱出來。這就決定了化學法處理後會存在大量的二次污染,如大量廢渣的產生,而這些廢渣的處理目前尚無較好的處理處置方法,所以對其在工程上的應用和以後的可持續發展都存在巨大的負面作用。
2 物化法處理含砷廢水
物化法一般都是採用離子交換 、吸附、萃取、反滲透等方法除去廢液中的砷。物化法大都是些近年來發展起來的較新方法,實用的尚不多見,但是有眾多學者在這方面做了深入的研究,並取得了顯著的成果。
陳紅等曾利用MnO2對含As(III)廢水進行了吸附實驗,結果表明,MnO2對As(III)有著較強的吸附能力,其飽和吸附量為44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),陰離子的存在使MnO2吸附量有所下降,一些陽離子(如Ga3+、In3+)可增加其吸附量,吸附後的MnO2經解吸後可重復使用。
胡天覺等報道,合成制備了一種對As(III)離子高效選擇性吸附的螯合離子交換樹脂,用該離子交換柱脫砷:含As(III)5 g/L的溶液脫砷率高於99.99%,脫砷溶液中砷含量完全達標,而且離子交換柱用2mol/L的氫氧化鈉(含5% 硫氫化鈉)作洗脫液洗滌,可完全回收As(III)並使樹脂再生循環利用。
劉瑞霞等也曾制備了一種新型離子交換纖維,該離子交換纖維對砷酸根離子具有較高的吸附容量和較快的吸附速度。實驗表明該纖維具有較好的動態吸附特性,30mL 0.5mol/L氫氧化鈉溶液可定量將96.0 mg/g吸附量的砷從纖維上洗脫。
另外,還有不少人作了用鋼渣、選礦尾渣、高爐冶煉礦渣等廢渣處理含砷廢水的研究,取得了不錯的成果。但由於物化法只能處理濃度較低,處理量不大,組成單純且有較高回收價值的廢水,而工業廢水的成分較復雜,所以物化法的工程化程度較低。
3 微生物法處理含砷廢水
與傳統物理化學方法相比,用微生物法處理含砷廢水具有經濟、高效且無害化等優點,已成為公認最具發展前途的方法。
3.1 活性污泥
國內外諸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金屬離子,尤其是重金屬離子,他們與ECP的絡合更為穩定。關於吸附機制,在ECP的復雜成分中吸附重金屬離子的似乎是糖類。Brown和Lester(1979)指出ECP中的中性糖和陰離子多糖有著吸附不同金屬離子的結合點位,不同價態或不同電荷的金屬離子可以在不同的點位與 ECP結合,如中性糖的羥基、陰離子多聚物的羥基都可能是金屬的結合位。Kasan、Lester、Modak和Natarajam等認為:活性污泥對重金屬離子的吸附有兩種機制即表面吸附和胞內吸收;表面吸附是指活性污泥微生物的胞外多聚物(甲殼素、殼聚糖等)含有配位基團—OH,—COOH,—NH2,PO43-和—HS等,他們與金屬離子進行沉澱、絡合、離子交換和吸附,其特點是快速、可逆和不需要外加能量,與代謝無關;胞外吸收通過金屬離子和胞內的透膜酶、水解酶相結合而實現,速度較慢需要能量,而且與代謝有關。
此外,Ralinske指出:好氧生物能大量富集各種重金屬離子,這些離子積累於細胞外多聚物中,並在厭氧條件下釋放回液相中。這就有利於我們在二沉池中分離和沉降重金屬離子。
在活性污泥法處理含砷廢水的實驗中,存在許多影響因素,主要影響因素如下:
(1)砷的濃度及價態
不同價態的砷對活性污泥的毒性不同。實驗表明,As(III)對脫氫酶的毒性比As(V)平均大53倍。As(III)對蛋白酶活性的毒性約為As(V)的75倍。還有,As(III)對活性污泥脲酶活性的毒害作用是As(V)的35倍。所以處理含砷廢水時有必要將As(III)氧化成As(V)。實驗還表明,活性污泥對低濃度砷的去除率高於對高濃度砷的去除率,這是由於污泥的吸附能力有限所造成的。此外,重金屬離子濃度小於5mg·L-1時,活性污泥法對污水中有機物的處理效果不受重金屬影響,當重金屬離子濃度大於30mg·L-1時,活性污泥法污水中有機物的處理效果則大大受到影響。
(2)有機負荷
有機負荷對活性污泥去除五價砷也有較大的影響,有機負荷高,去除率也高。主要有兩方面的原因:一是污水中的有機物本身可和五價砷相結合,降低了污水中砷的濃度;二是有機物濃度高有利微生物生長繁殖,這進一步提高活性污泥對五價砷的去除率。此外,有機負荷高還可以防止污泥膨脹。因為在高有機負荷環境中絮狀菌比大多數絲狀菌有更強的吸附和存貯營養物能力,能夠充分利用高濃度的底物迅速增殖,具有較高的比生長速率,抑制了絲狀菌的生長。在低負荷下混合液中底物濃度長時間都低,由於缺少足夠的營養底物,絮狀菌的生長受到抑制,而絲狀菌具有較大的比表面積,當環境不利於微生物的生長時,絲狀菌會從菌膠團中伸展出來以增加其攝取營養物質的表面積。一方面,伸出絮體之外的絲狀菌更易吸收底物和營養,其生長速率高於絮狀菌,從而成為活性污泥中的優勢菌種;另一方面,絲狀菌越多,其菌絲越長,活性污泥越不易沉降,SVI越高,導致了污泥膨脹。
(3)pH
pH 對金屬去除影響很大,因為pH不僅影響金屬的沉降狀態,而且影響吸附點的電荷。一般pH 升高有利於污泥對陽離子金屬的吸附。直至產生氫氧化物沉澱,反之則有利於對呈負電荷狀態存在的金屬的吸附。但是,過高或過低的pH對微生物生長繁殖不利,具體表現在以下幾個方面:①pH過低(pH=1.5),會引起微生物體表面由帶負電變為帶正電,進而影響微生物對營養物的吸收。②過高或過低的 PH還可影響培養基中有機化合物的離子化作用,從而間接影響微生物。③酶只有在最適宜的pH時才能發揮其最大活性,極端的pH使酶的活性降低,進而影響微生物細胞內的生物化學過程,甚至直接破壞微生物細胞。④過高或過低的pH均降低微生物對高溫的抵抗能力。
(4)生物固體停留時間(Qc)
Qc對陽離子金屬去除有較大影響,因為活性污泥表面常被難溶性或微溶性的多聚物所包圍(如多糖),這些多聚物表面的電荷可使金屬迅速地得以去除。已經證實,細菌多聚物產生和細菌生長相有關,穩定相和內源呼吸階段多聚物產量最大,而Qc增大,污泥中細菌處於穩定相和內源呼吸階段,有利於對金屬的去除。
(5)污泥濃度
污泥濃度高,吸附點也隨著增加,從而有利於金屬的去除。從去除金屬的角度出發,高有機負荷,高污泥濃度的運行方式最為理想。
活性污泥法處理含砷廢水,不論在處理費用,還是二次污染,或者工程化方面,都比傳統處理方法具有相當突出的優勢。雖然在理論研究方面還不是十分完善,但是在處理機制和影響因素方面都已達成一定的共識。如果在處理工藝上再進行一定的改進,如往污泥中投加優勢菌種,可以改善污水的處理效果;此外,還可以引進生活污水進行混合處理並進行曝氣,這樣不僅降低了砷的濃度以及砷對污泥的毒害作用,同時還解決了活性污泥的營養源問題,為活性污泥法處理含砷廢水的工程化應用開辟了一片新天地。
3.2 菌藻共生體
國外研究表明,生物遷移轉化作為一種新的微生物法處理重金屬廢水,與傳統方法相比,具有更高效,費用更低等優點。用小球藻的生物遷移轉化處理重金屬廢水的工藝,有一些已投入工程運作。
菌藻共生體對砷的去除機理可認為是藻類和細菌的共同作用。許多研究表明,在去除金屬過程中,微生物的表面起著重要作用。菌藻共生體中,藻類和細菌表面存在許多功能鍵,如羥基、氨基、羧基、硫基等。這些功能鍵可與水中砷共價結合,砷先與藻類和細菌表面上親和力最強的鍵結合,然後與較弱的鍵結合,吸附在細胞表面的砷再慢慢滲入細胞內原生質中。因而在藻類和細胞吸附砷中,可能經過快吸附過程和較慢吸附兩過程後,吸附作用才趨於平衡。
廖敏等人曾研究了菌藻共生體對廢水中砷的去除效果。研究發現:培養分離所得菌藻共生體中以小球藻為主,此時菌藻共生體積累砷達7.47 g/kg乾重。在引入菌藻共生體並培養16h後,其對無營養源的含As(III),As(V)的廢水除砷率達80%以上,並趨於平衡,含營養源的As(III)、As(V)的廢水中,菌藻共生體對As(V)的去除率大於As(III),對As(V)去除率超過70%,但對As(III)的去除率也在50%以上,在除砷過程中同時出現砷的解吸現象。在無營養源條件下,對As(III)、As(V)混合廢水的除砷率超過80%。
菌藻共生體是一種易培養獲得的材料。其對廢水中的砷具有較強的去除力,並能同時去除廢水中的營養物,因此其在含砷廢水的處理運用中有著廣闊的前景。
3.3 投菌活性污泥法
投菌活性污泥法(Application of Bio-Augmentation Process with Liquid Live microorganisms)是將具有強活力的細菌投入到曝氣池裡去,使曝氣池混合液內的各種細菌處於最佳活性狀態,這樣.不僅投入了吸氣池內所缺少的細菌,在流入污水水質不變的條件下,微生物氧化作用顯著,而且,當污水水質改變,環境變異的情況下,微生物仍能適應,保持活性,其氧化代謝過程依然充分,投入菌液後使曝氣池耐沖擊負荷,提高污水處理廠的處理效果,改善了出水水質。
投菌活性污泥法(LLMO)是出之一種新的概念,它是根據在同一環境里,最適宜的細菌能自然繁殖,同樣,污水處理廠曝氣池混合液內的細菌也會自然繁殖到一定數目,自然界無處不可找到細茵,然而,在同一環境里並非可以找到一切細菌這一原則,作為理論指導,從自然界土壤內篩選出污水廠中的有用細菌製成液態的或固態的產品。液態菌液微生物成活率高;固態菌使用前需先用水溶成液態,細菌的成活率較液態菌液低,使用時按一定比例將液態菌液投入曝氣池內或投到需用處,投菌活性污泥法(LLMO)在國外已收到良好的應用效果。
因此,我們可望通過向活性污泥中投加對砷具有高耐受力,對砷具有特殊處理效果的混合菌種,達到對砷的高效處理,凈化工業含砷廢水。
4 前景展望
隨著冶金、化工等產業的日益發展,以及含砷製品市場的日益拓大,含砷廢水的排放和污染問題,必將影響到人們的生活水平的提高,影響到人類生存環境的改善,所以解決含砷廢水的污染問題已迫在眉睫。然而傳統的處理方法都存在一定的問題。如化學法,雖然在工程上有了一定的應用,處理效果也較明顯,但由於化學葯劑的添加,導致了產生大量的廢渣,而這些廢渣目前尚無較好的處置辦法。而物理法的處理費用較高,處理投資非常大,無法進行工程運作。微生物法作為一種最有前途的處理方法,不僅具有高效、無二次污染,而且處理費用低等優點。其中,活性污泥法處理含砷廢水的理論在國內外處於熱點研究探索中,又由於活性污泥具有的來源廣泛,容易培養,處理後二次污染小等一系列優點,使其在工程上的應用成為可能,成為含砷廢水的主要處理方法。此外,若對單純活性污泥法進行工藝上的改進,如引進優勢菌種,或摻入生活污水進行混合處理等工藝上的改進,都可能為活性污泥法的應用創造更為廣闊的前景。
③ 鋼渣吸附劑處理廢水,製造改性鋼渣的設備和改性劑都是什麼啊!!
以鋼渣、粉煤灰、水泥熟料為主要原料,摻入少量激發劑,制備了早強鋼渣粉煤灰復版合水泥。研權究了復合水泥組分和不同激發劑對水泥性能的影響,並通過 SEM 分析了激發劑對復合水泥硬化漿體結構的影響。結果表明,當鋼渣粉煤
灰復合水泥的組成范圍為熟料 30%、鋼渣 35%~40%、粉煤灰 25%~35%、石膏 5.0% 時,摻入激發劑 2.75%,性能指標達到國家標准 42.5 復合水泥要求;摻入激發劑可進一步提高鋼渣、粉煤灰的水化活性,加快復合水泥的水化速度,
提高水泥的力學性能,縮短復合水泥的凝結時間。
④ 鋼渣坑悶處理工藝中水循環問題怎麼解決
在整個鋼渣熱悶處理工藝中,水作為轉爐鋼渣熱悶的工作介質,熱悶需要通過加水完成,因此水的正常供應是關鍵。熱悶噴水過程分為兩步:第一步為倒入每罐熔融鋼渣後噴水冷卻,第二步為熱悶裝置裝滿鋼渣後噴水熱悶。對單個熱悶裝置而言,第一步和第二步分開噴水,但對多個熱悶裝置而言,第一步和第二步有可能重合。
(1)第一步噴水冷卻
每次將一組鋼渣倒入熱悶裝置後,排蒸汽罩車移動到熱悶裝置上,開始進行噴水冷卻,倒渣後噴水冷卻用水最大噴水量為100m3/h,每次噴水冷卻時間為10分鍾,間隔30分鍾,再噴10分鍾,最大噴水量為100m3/h,靜停,進行第二次倒渣。
噴水制度:每倒入一罐熔融鋼渣後開始噴水冷卻,噴水時間為10分鍾,然後靜停30分鍾,再次噴水時間為10分鍾,靜停。等待第二次運渣車,至6小時最後一車渣倒完之後,進入第二步。
(2)第二步噴水熱悶
轉爐鋼渣處理一般需要8~12個熱悶裝置,一個熱悶裝置最大噴水量為100m3/h,最多有4~8個熱悶裝置同時噴水,設計最大噴水量為400~800m3/h,水壓為0.35M~0.40MPa。
噴水制度:當第一步噴水冷卻過程結束後,開始進入第二步噴水熱悶過程,熱悶過程分4次噴水,每次噴水時間為1小時,兩次噴水間隔時間也為1小時,
鋼渣熱悶處理生產線用水採用全廠廢水處理系統處理後的回用水。本著節約用水、提高水資源重復利用率的原則,生產線採用循環系統。除停產檢修時,正常生產不向外排水。
生產用水系統主要是轉爐鋼渣熱悶用水、抑塵冷卻用水。生產系統用水採用循環給水系統。該系統由以下部分組成:
回水井→回水泵房→冷卻沉澱池→吸水井→供水泵房→各用水點鋼渣熱悶用水, 一部分水變成蒸汽與鋼渣中f-CaO、f-MgO發生水化反應使鋼渣自解粉化,鋼渣含有3%~5%的水分;另一部分水為使鋼渣降溫由熱悶裝置底部排水孔流入排水溝。回水經排水溝收集後匯同進入回水井。進入回水井後,由耐熱潛污泵(90℃)提升後進入沉澱池。
在沉澱池的一端底部有污泥池,懸浮物聚集到污泥池便於清運。在沉澱池上方安裝有電動單軌抓鬥起重機,可以定期將沉澱在污泥池中的污泥吊運至運輸車中,待脫水後將污泥送到鋼渣處理生產線的受料斗從而進入生產線。平流沉澱池出水進入吸水井和供水泵房,供水泵房出水供熱悶循環使用。
⑤ 鋼渣可做機井濾料嗎
可以抄
由於鋼渣具有一襲定的鹼性和較大的比表面積,因此可考慮用於吸附處理廢水。鄭禮勝等進行了用鋼渣處理含鉻廢水的研究, 認為鋼渣具有化學沉澱和吸附作用。對質量濃度在 300 mg/ L 以內的含鉻廢水,按鉻/ 鋼渣重量比為1/ 30 投加鋼渣進行處理, 鉻去除率達到 99%。王士龍等進行了用鋼渣處理含鋅廢水的研究, 發現對質量濃度在 200 mg/ L以內的含鋅廢水, 按鋅/ 鋼渣重量比為 1/ 30 投加渣進行處理,鋅去除率達 98%以上, 處理後的廢水可達 GB-8978-88污水綜合排放標准。鋼渣還可用於處理含磷廢水及含其他重金屬廢水。
⑥ 如何區分鉛渣與鋼渣
渣處理關於鋼渣吸附劑的研究
作者:葉青 農登… 來源:大眾科技網 時間:2006-2-27 閱讀: 1499
【摘 要】文章介紹了鋼渣的特性和綜合利用現狀,重點論述了鋼渣作為吸附劑處理廢水的優勢和國內外對此新途徑的研究。
【關鍵詞】鋼渣;吸附劑;綜合利用
一、鋼渣及其特性
(一)鋼渣的形成
鋼渣是煉鋼生產的副產品。在煉鋼過程中,從爐料熔化起,鋼渣就開始形成,一直到出鋼為止。煉鋼過程是在高溫下把爐料熔化成兩個互不溶解的液相,將鋼水和其他雜質分離。這里所說的雜質即為鋼渣,它主要包括:爐料被氧化後生成的氧化物及硫化物、被侵蝕的爐襯及爐襯材料、金屬爐料帶入的雜質,如泥沙等;為調整鋼渣性質所加入的造渣材料,如石灰石、鐵礦石、螢石等。按煉鋼工藝鋼渣可分為:平爐渣、轉爐渣和電爐渣;按冶煉過程一般可分為:初期渣、精煉渣、出鋼渣及澆鋼渣;按形成形態可區分為:水淬粒狀鋼渣、塊狀鋼渣和粉狀鋼渣。
(二)鋼渣的性質
鋼渣的性質包括化學成分、礦物組成和主要的物理性能。由於鋼渣受到煉鋼爐、爐料來源及操作等方面影響,因此它的性質變化很大,各鋼鐵廠的鋼渣性質也有顯著差異,但同一類型鋼渣還是存在著相似點。
1.鋼渣的物理性質。由於化學成分及冷卻條件不同造成鋼渣外觀形態、顏色差異很大。鹼度較低的鋼渣呈灰色,鹼度較高的鋼渣呈褐灰色、灰白色。渣塊鬆散不粘結,質地堅硬密實,孔隙較少。渣坨和渣殼結晶細密,界限分明,尤其是渣殼斷口整齊。自然冷卻的鋼渣堆放一段時間後發生膨脹風化,變成土塊狀和粉狀。鋼渣的含水率與燜渣方式和冷卻條件關系較大。鋼渣通常含水在3%~8%,容重1.32~2.26t/m3,抗壓強度在1150㎏/cm3左右。平爐鋼渣比重略小,孔隙稍多,穩定性要好一些。
2. 鋼渣的化學成分。隨著鋼品種、原料、冶煉工藝及堆放期限的不同,鋼渣的化學成分波動大。大多情況下,鋼渣的主要化學成分為CaO、SiO2、Al2O3、MgO、Fe2O3、FeO、MnO、P2O5等,其混合樣的化學成分范圍如表1。
表1 鋼渣混合樣的化學成分范圍 %
3. 鋼渣的礦物組成。鋼渣的主要礦物組成一般為:β-C2S、C3S、C3MS2、CSH、RO相和金屬鐵等。但隨著堆放期的延長金屬鐵的含量增大。
鋼渣的礦物組成決定了鋼渣具有一定的膠凝性,主要源於其中一些活性膠凝礦物的水化,如平爐渣的CaO含量較高時,常生成C3S、C2S及鐵鋁酸鹽。轉爐渣的C3S含量更多,故活性高於一般平爐渣。電爐還原渣中常含有C2S、CA、CI2A7等,若CaO含量高時還形成C3S和C3A。與硅酸鹽水泥熟料相比,鋼渣中這些礦物要少得多,且警惕發育粗大,活性較低。鋼渣中游離的CaO、MgO含量較高,因而穩定性差。此外,鋼渣中鐵和錳的含量也比較高,由於鐵、錳離子具有極化能力,對氧有很大的親和力,因此氧離子能脫離正硅酸鈣(錳)四面體破壞正硅酸鹽結構,使四面體互相連接起來,生成巨大而復雜的硅氧團,從而降低其易磨性。
二、鋼渣的綜合利用現狀
由於鋼鐵生產技術的提高和發展,導致大量鋼渣棄置堆積。堆積鋼渣形成渣山,既污染環境又佔用大量的土地。為了適應鋼鐵工業發展的需要,工業發達國家注重於研究鋼渣的利用技術,尋求利用量大,簡易可行的鋼渣利用途徑,並已取得顯著成果,達到了消除渣害的目的。通過鋼渣的綜合利用,越來越多的國家意識到,鋼渣不再是單純的副產品,而是寶貴的資源。20世紀70年代以來,工業發達國家面臨嚴重的資源不足和缺乏能源的處境,可是鋼渣的處理和利用技術卻得到進一步發展。工業發達國家鋼渣的綜合利用率得到迅速提高,一直處於世界領先行列。由於煉鋼設備、工藝布置、造渣制度、鋼渣物化性能的多樣性及其利用上的多種途徑,決定了鋼渣處理工藝上的多樣化。工業發達國家根據鋼渣的用途、煉鋼工藝特點以及有利於提高煉鋼生產能力來選擇鋼渣的處理工藝,從而保障了鋼渣綜合利用率的提高。
盡管我國對鋼渣的綜合利用研究的積極性大有提高,但綜合利用技術發展不平衡。鋼渣在燒結、煉鐵、化鐵爐、水泥生產的利用量僅為60多萬噸。鋼渣在工程回填料、農肥、築路、油田建設等方面利用,資源流失比例仍然不小。
三、鋼渣利用新途徑———鋼渣吸附劑處理廢水
鋼渣處理和綜合利用具有良好的社會經濟效益,已被人們普遍認識。充分利用鋼渣,不僅解決了堆積佔地問題,而且也解決了環境污染,緩解了廢鋼供應緊張的局面。因此大力研究各種不排渣或少排渣的處理技術,開發鋼渣綜合利用新方法,推廣鋼渣處理和綜合利用新成果,是各個鋼鐵企業面臨的問題。
(一)吸附法與吸附劑的選擇
吸附法處理廢水就是利用多孔性固體(稱為吸附劑)的表面吸附去除水中的一種或幾種溶質(稱為吸附質)以回收或去除某種溶質的過程。吸附法因操作簡單、處理速度快、凈化效率高、應用較廣泛。
吸附法的關鍵技術是吸附劑的選擇。吸附劑的種類很多,可分為無機的和有機的,天然的和合成的。眾所周知,活性炭是應用最早、用途最廣的吸附劑,它是由各種含炭物質,如煤、木材、石油焦、果殼、果核等炭化後,再用水蒸氣或化學葯品進行活化處理製成的空隙發達的吸附劑。活性炭雖然性能優良,但我國活性炭產量少、價格昂貴,且吸附時間長,再生工藝復雜,限制了它在一些經濟不發達地區和一些行業的使用。此外,研究報道較多的吸附劑有:活性氧化鋁、硅膠、腐殖酸類吸附劑(如磺化煤)、黏土類吸附劑(如沸石、膨潤土、凹凸棒石、坡縷石等)交聯聚苯乙烯、殼聚糖、廢棄物吸附劑(如污泥、粉煤灰、煤矸石、礦山尾礦)等。雖然許多固體表面都具有吸附能力,但滿足工業需要的吸附劑需滿足:有巨大的內表面,選擇性良好;有較好的機械強度、熱穩定性和化學穩定性;原料來源廣泛,制備簡單,價格低廉。
顯然,能夠同時滿足這些要求的吸附劑並不多,許多吸附劑還只是實驗室研究結果,無法投入到工業中。因此,開發新型高效吸附劑尤其是需求量大的金屬廢水處理吸附劑,仍然是一個異常活躍的領域,而近年來利用廢棄物開發吸附劑尤其引人注目。
(二)鋼渣吸附劑處理廢水的優勢
近年來,鋼渣在污水治理中的獨特作用逐漸被環保工作者認識,鋼渣在污水治理方面可應用於處理含磷、鎳、鉻、砷等廢水及其它污染物。利用鋼渣製作吸附劑,尤其是廢水處理吸附劑是鋼渣綜合利用的新方法,所製作的吸附劑是一種新型的吸附材料。與其他吸附材料相比,鋼渣製作吸附劑,尤其是製作廢水處理吸附劑的優勢明顯,主要表現在:
1.吸附性能優異。鋼渣對金屬離子的吸附不僅速度快,吸附過程徹底,一次性投放鋼渣處理含鉻的重金屬廢水可以達標排放,而且鋼渣對重金屬離子吸附的pH值范圍廣,在很寬的pH值范圍內都可以穩定去除重金屬離子,能夠適應pH值波動大的廢水。這是許多吸附材料所不具備的優點。
2.易於固液分離,簡化吸附後處理工藝,操作簡單。鋼渣比重大、粒度粗,因此利用物理沉澱就可以很容易從廢水中分離,應用於廢水處理可大大簡化廢水處理的操作環節,降低成本。許多黏土類吸附材料,雖然吸附性能好,但由於遇水後容易粉化,顆粒粒度小,固液分離困難,限制了它們的工業應用。可以說,吸附材料是否易於固液分離是衡量一種吸附劑能否真正工業化的關鍵因素。
3.鋼渣性能穩定,無毒害作用。鋼渣都經過了1000℃以上的高溫處理,鋼渣產品不再含有毒有害的易溶出成分,因此性能穩定、安全性能好。
4.變廢為寶、以廢治廢,社會效益、經濟效益和環保效益顯著。鋼渣是廢棄物,利用鋼渣做吸附劑,可以變廢為寶,減少鋼渣堆放的危害,減輕鋼鐵企業支付鋼渣佔用土地費用和環保排污廢的負擔。據介紹,廣西柳州鋼鐵集團這樣一個不大的企業,每年支付的鋼渣土地佔用費就高達200多萬元。
5.鋼渣來源廣泛,價格低廉,十分有利於廢水處理廠降低廢水處理成本。
6.與開發其他吸附劑相比,鋼渣吸附劑不需破壞其他礦物資源或生物資源(如黏土類礦物資源、木材等),這樣不僅保護了這些礦物資源,而且避免了開發這些資源(主要露天開采)所造成的環境破壞,如露天開採的環境破壞,粉狀材料焙燒固化過程中的排污等。
(三)國內外對鋼渣吸附劑的研究
國外20世紀90年代中期分別研究了鋼渣作為吸附劑對廢水中鎳、鉛、銅等的吸附行為。國外文獻曾報道了鋼渣作為吸附劑去除廢水中硝酸鹽的特性;鋼渣在處理廢水中磷酸鹽的應用;鋼渣在處理染料、造紙廢水中的應用;鋼渣處理廢水中銅離子、鎳離子、鉻離子、鉛離子的應用等。所有這些研究都表明,鋼渣是一種較好的環保吸附材料,而且鋼渣處理廢水,以廢治廢,變廢為寶,具有較好的發展前景。
國內山東建材學院鄭禮勝等人20世紀90年代初期最早研究了鋼渣對廢水中鉻和砷的吸附情況。廣西大學資源與環境學院馬少健等人1999年以來系統研究了鋼渣對銅、鉛、鉻、鋅重金屬離子和有機物等的吸附特徵以及鋼渣的改性吸附性能。但是至今為此,鋼渣作為廢水處理吸附劑的工業化開發與應用尚未見研究報道。根據廣西大學馬少健教授的研究實踐,認為鋼渣的工業化吸附劑尚有一些問題需要解決。其核心是:鋼渣直接冷卻後,大小塊度極不均勻,最大塊度可達一米以上,而且鋼渣中因含有少量的鐵導致鋼渣脆性下降,韌性加強,因此利用常規破碎技術即費時又耗能,產品粒度不均勻,有不少會過磨,粒度難於控制,很難生產出粒度適宜、性能均勻的吸附劑產品。非但不能產生疏鬆多孔的產品,而且會破壞原有的孔隙,從而導致吸附效果下降。鋼渣在煉鋼過程中處於熔融狀態(液態),具有液體的一些特點,有流動性,液體分子間引力較小,切割容易,可無限分割,遇水急劇冷卻凝固,如果處理方法得當,可以說鋼渣在熔融狀態下的粒化加工處理要比固態下加工容易得多,省時省電。另外鋼渣在液態下應該更容易控制加工粒度,使產出的產品顆粒大小適宜,粒度均勻。再次,如果往液態熔液中添加改性劑和孔隙強化材料,因液態鋼渣具有流動性,較易於混合均勻。因此,鋼渣吸附劑的開發關鍵在於如何能在液態下對其進行直接造粒。廣西大學資源與環境學院潘利文以液態鋼渣為模擬對象,研究液態鋼渣的離心粒化設備水淬法處理技術,在鋼渣剛出爐處於熔融狀態(即液態)下對鋼渣進行造粒,取得一定的成果。
四、結語
廣西是有色金屬之鄉,擁有大量的有色礦山、冶煉和加工企業,這些企業都排放重金屬離子污染廢水,對環境和人體健康造成危害。因此,面向工業廢水,尤其是有色金屬行業重金屬離子污染廢水,利用鋼渣開發吸附材料將為廣西帶來巨大的經濟效益、社會效益和環保效益。
【參考文獻】
[1]姜從盛,丁慶軍,王發洲,等.鋼渣的理化性能及其綜合利用技術發展趨勢[J] .國外建材科技,2002,(3).
[2]鄭禮勝,王士龍.用鋼渣處理含鉻廢水[J].1999,32(5).
[3]單志峰.國內外鋼渣處理技術與綜合利用技術的發展分析[J].工業安全與防塵,2000,(2).
[4]馬少健,劉盛余,胡治流,等.鋼渣吸附劑對鉻和鉛重金屬離子的吸附特性研究[J].有色礦冶,2004,(4).
[5]潘利文.液態鋼渣的離心粒化設備水淬法可行性模擬研究[J].
[6]鄭禮勝,王士龍,張虹,等.用鋼渣處理含砷廢水[J].化工環保,1996,16(6).
葉 青,農 登 (廣西大學機械學院,廣西 南寧 530004)
⑦ 根據《中華人民共和國固體廢物污染環境防治法》的界定,如何區分固體廢物、廢水和廢氣
1、最有效的區分方法的看廢棄物質(廢水、廢氣、廢渣)的形態:固體廢物的形態是固態、半固態廢棄物質;而廢氣是氣態、廢水是液態。
2、固態廢物的存在,具有相對固定性;而廢水、廢氣具有流動性、擴散性。
3、固態廢物的比重大於2kg/m3,;而廢水的 比重略大於1kg/m3、廢氣的 比重則更低。
(7)鋼渣處理廢水擴展閱讀:
一、廢物分類
1、工業廢物
是指在工業交通等生產活動中產生的固體廢物,其對人體健康或環境危害性較小,如鋼渣、鍋爐渣、粉煤灰、煤矸石、工業粉塵等。
2、生活垃圾
是指在城市日常生活中或者為城市日常生活提供服務的活動中產生的固體廢物以及法律法規規定視為城市生活垃圾的固體廢物。通過調查研究、城建統計等方式可以得到城市生活垃圾的各種信息。
3、危險廢物
是指列入國家危險廢物名錄或者根據國家規定的危險廢物鑒別標准和鑒別方法認定的具有危險特性的廢物,即指具有毒性、腐蝕性、反應性、易燃性、浸出毒性等特性之一。
由於其數量、濃度、物理化學性質或易傳播性引起死亡率增加。無法治癒的疾病發病率增高或者對人體健康或環境造成危害的固體、半固體、液體廢物等。
二、廢物國內管理
1、《中華人民共和國固體廢物污染環境防治法》。2003年,全國人民代表大會常務委員會開展了《中華人民共和國固體廢物污染環境防治法》執法檢查工作,並啟動了該法的修訂工作。
2、《醫療廢物管理條例》。2003年6月16日,國務院頒布《醫療廢物管理條例》。
3、《醫療廢物分類目錄》。為配合《醫療廢物管理條例》實施,國家環保總局與衛生部聯合發布。
4、國家環境保護總局制定並發布了《醫療廢物集中處置技術規范》、《醫療廢物專用包裝物、容器標准和警示標識規定》、《醫療廢物轉運車技術要求》、《醫療廢物焚燒爐技術要求》等標准和規范。
5、《全國危險廢物和醫療廢物處置設施建設規劃》。2003年,國家發改委和國家環保總局制訂,經國務院批准後印發各地實施。《規劃》要求用3年時間建設綜合性危險廢物集中處置設施31座,醫療廢物集中處置設施300座,基本實現全國危險廢物、醫療廢物和放射性廢物的安全處置。規劃總投資150億元。
6、《關於實行危險廢物處置收費制度,促進危險廢物處置產業化通知》經國務院同意,2003年11月18日國家發展改革委員會、國家環保總局、衛生部、財政部、建設部聯合發布。
⑧ 鋼渣磁選產生的廢水對環境的影響
1、氮磷的污抄染造成襲富營養化(設立專門除氮,除磷或在污水處理廠進行深度處理)
2、有機物污染(COD,BOD等)(建立污水處理設施,處理水達標排放)
3.、對景觀的破壞(可新建管網等公共設施)
4、病毒引起的疾病等(出水時消毒)
⑨ 廢渣處理的方法
工業廢渣處理綜合利用方法
1、含六價鉻離子廢渣的綜合利用及無害化處理方法
2、建築廢渣磚
3、一種免擠壓無粘土固體廢渣燒結磚的生產技術
4、從含鎳、AL2O3的催化劑廢渣中制備鎳化學品和鋁化學品的方法
5、利用廢渣和廢水固態發酵生產果膠酶
6、用電廠廢渣灰制砌抹砂漿方法
7、用鍋爐廢渣灰制水硬性凝固劑方法
8、一種利用β-內醯胺抗生素菌絲廢渣製取生物飼料的方法
9、從生產AE-活性酯廢渣中制備純2-硫化二苯並噻唑的方法
10、用工業廢渣生產水泥混合材的方法
11、利用雙氰胺廢渣添加粘土燒結紅磚的工藝
12、薯蕷皂素工業廢水、廢渣處理技術
13、石膏礦廢渣陶粒及其制備方法
14、工業重金屬固體廢渣的處理方法
15、含油廢渣的鹼性處理
16、磷銨廢渣加工磷石膏的方法
17、磷銨廢渣製造磚、瓦的方法
18、工業廢渣綜合利用、穩定化、固化處理電鍍污泥的方法
19、工業廢渣活化助磨劑
20、免燒廢渣磚及其製作方法
21、由黃姜、穿山龍提取薯蕷皂素的方法及用其廢渣生產生物有機肥
22、利用工業廢渣生產的復合硅酸鹽水泥
23、糠醛廢渣制生物有機增效肥的製作方法
24、煉鎂廢渣的處理方法
25、一種以工業廢渣為基料的合成材料及其生產工藝
26、利用工業廢渣和EM活菌生產畜禽和水產動物飼料
27、金礦工業廢渣釉面磚
28、含鉻廢渣燒結固化體長期浸出試驗方法
29、用廢渣鐵生產鑄造生鐵和高純度生鐵的方法
30、利用飼料級磷酸氫鈣的廢渣制備德氮、磷復合肥的方法
31、用發酵生產廢渣製造一次性餐具、食品包裝及方法和用途
32、粉煤灰廢渣微晶玻璃
33、用造紙廢渣白泥生產的脫脂劑
34、用工業廢渣製造的琉璃製品
35、由滌綸廢液廢渣制備聚氨酯塗料聚酯組分的方法
36、配製食用菌培養基治理糠醛廢渣對環境污染的方法
37、含氰、鋇工業廢渣的處理方法
38、一種廢渣作燒成水泥熟料礦化劑
39、含鉻廢渣的鋇鹽法處理工藝
40、全廢渣內牆面硅的製造方法
41、氨鹼廢渣制水泥的方法
42、電解法從鍍鎳廢渣中精製硫酸鎳
43、用硫酸生產用後的硫鐵礦廢渣作原料,用加熱焙燒法生產硫酸高鐵粗精產品
44、用硫酸廢渣生產的牆地磚
45、採用含三氧化二鐵廢渣的固定床煤氣發生爐制氣方法
46、造紙黑液鹼回收廢渣白泥的利用方法
47、用石膏或石膏廢渣製造石膏陶瓷裝飾材料
48、利用電石渣、白泥和赤泥等富鈣工業廢渣生產增鈣渣
49、利用工業廢渣在磚窯上生產節能型水泥的新方法
50、含栲膠廢渣飼料及其製法
51、電鍍含鉻廢水、廢渣的處理方法
52、工礦廢渣節能固體燃料
53、含工業廢渣的固體配製燃料
54、用鹽析法處理三羥甲基丙烷工業廢渣的工藝
55、由咖啡廢渣加熱水解回收芳香物
56、環氧乙烷廢渣變石灰膏的處理法
57、用薯干發酵檸檬酸廢渣制活性炭的方法
58、利用工業廢渣綜合處理軟土地基的方法及機具
⑩ 鋼廠污水都有哪些種類各有什麼特點
鋼廠的污染物主要有三類:廢水(包括廢酸水,含有油污的冷卻水等 ),廢氣(含有較高濃度二氧化硫等氣體,粉塵),廢渣(煤渣和鋼渣)