导航:首页 > 纯水知识 > 红粘土遇水软化

红粘土遇水软化

发布时间:2022-09-03 22:37:57

① 如何判断红粘土能否通过改良作为路基填料

高液限粘土水稳性差,遇水易膨胀软化,失水会干缩,且由于其土颗粒细小,毛细水上升高度大,会破坏路基的稳定性,所以不能直接用于路基填料。 路基:路基工程是道路桥梁工程专业的一门分支学科。

② 土的主要工程性质有什么

土的工程性质是在设计和建造各种工程建筑物时所必须掌握的天然土体或填筑土料的工程特性。

不同类别的工程,对 土的物理和力学性质的研究重点和深度都各自不同。对沉降限制严格的建筑物,需要详细掌握土和土层的压缩固结特性;天然斜坡或人工边坡工程,需要有可靠的土抗剪强度指标;土作为填筑材料时,其粒径级配和压密击实性质是主要参数。

土的形成年代和成因对土的工程性质有很大影响,不同成因类型的土,其力学性质会有很大差别(见土和土体)。各种特殊土(黄土、软土、膨胀土、多年冻土、盐渍土和红粘土等)又各有其独特的工程性质。 除土的粒径级配外,土中各个组成部分(固相、液相、气相)之间的比例,将影响到土的物理性质,如单位体积重,含水量,孔隙比,饱和度和孔隙度等。

粘性土中含水量的变化,还能使土的状态发生改变,阿太堡最早提出将土的状态分为坚硬、可塑和流动三种,并提出了测定区分三种状态的界限含水量的方法。从流动转到可塑状态的界限含水量称液性界限;从可塑转到坚硬状态时的界限含水量称塑性界限。两者之间的差值称土的塑性指数,它反映了土的可塑状态的范围。

拓展资料

土的界限含水量和土中粘粒含量、粘土矿物的种类有密切关系。为反映天然粘性土的状态,常用液性指数,它等于天然含水量和塑性界限的差值(-)与其塑性 指数的比值。≤0时,土处于坚硬状态;>1时,为流动状态,0≤≤1时,为可塑状态。

砂土的密实状态是决定砂土力学性质的重要因素之一,用相对密度表示:=( -)/( - )。为天然状态时孔隙比, 为砂土最松状态时的孔隙比, 则为最密状态时的孔隙比。≈1时,最密实;≈0时,最松散。

土的压缩和固结性质 土在荷载作用下其体积将发生压缩,测定土的压缩特性可分析工程建筑物的地基沉降和土体变形。饱和粘土的压缩时间决定于土中孔隙水排出的快慢。逐渐完成土压缩的过程,即土中孔隙水受压而排出土体之外,同时导致孔隙压力消失的过程称土的固结或渗压。

K.泰尔扎吉最早提出计算土固结过程的一维固结理论,并指出某些 粘土中超静孔隙水压力完全消失后,土还可能继续压缩,称次固结。产生次固结的原因一般认为是土的结构变形。反映土固结快慢的指标是固结系数,土层的水平向固结系数和垂直向的不一定相同。

土的压缩量还和它的应力历史有关。土层在其堆积历史上曾受过的最大有效固结压力称先期固结压力。它与现今作用的有效覆盖压力相同时,土层为正常固结土;若先期固结压力大于现今的覆盖压力,则为超固结土;反之则为欠固结土。对于超固结土,外加荷载小于其先期固结压力时,土层的压缩很微小,外加荷载一旦超过先期固结压力,土的变形将显著增大。

土的强度性质 通常指土体抵抗剪切破坏的能力,它是土基承载力、土压和边坡稳定计算中的重要指标之一。它和土的类型、密度、含水量和受力条件等因素有关。饱和或干砂或砂砾的强度表现为颗粒接触面上的摩阻力,它与作用在接触面的上法向有效应力σ和砂的内摩擦角有关,即=σtg。纯粘性土的不排水抗剪强度仅表现为内聚力,而与法向应力无关,即=。

一般土则既有内聚力又有摩阻力,即=+σtg。式中的和不是常量而是变量,不仅决定于土的基本状态,还和外加荷载速率、外加荷载条件、应力路线等有关。饱和土中的孔隙为水充满,受外加荷载作用时,控制土体强度的不是其所受的总应力σ,而是有效应力σ′(即总应力与孔隙压力μ之差):σ′=σ-μ。

因而强度试验的条件不同,所得的强度指标亦异。试验时,不允许土样排水所得到的是土的总强度指标;如允许完全排水则得到的是土的有效强度指标。理论上用有效应力和有效强度指标进行工程计算较为合适,但正确判别实际工程土体中的孔隙水压水较困难,因而目前生产上仍多用总强度原理和总强度指标。

土体的强度还因其沉积条件的影响而存在各向异性。 土的流变性质土工建筑物的变形和稳定是时间的函数。有些人工边坡在建成后数年甚至数十年才发生坍滑,挡土墙后的土压力也会随时间而增大等,都与土的流变性质有关。

土的流变特性主要表现为:①常荷载下变形随时间而逐渐增长的蠕变特性;②应变一定时,应力随时间而逐渐减小的应力松弛现象;③强度随时间而逐渐降低的现象,即长期强度问题。三者是互相联系的。作用在土体上的荷载超过某一限值时,土体的变形速率将从等速转变至加速而导致蠕变破坏,作用应力愈大,变形速率愈大,达到破坏的时间愈短。通过试验可确定变形速率与达到破坏的时间的经验关系,并用以预估滑坡的破坏时间。

产生蠕变破坏的限界荷载小于常规试验时土的破坏强度。从长期稳定性要求,采用的土体强度应小于室内试验值。土体强度随时间而降低的原因,当然不只限于蠕变的影响。土的蠕变变形因修建挡土墙或其他建筑物而被阻止时,作用在建筑物上的土压力就随时间逐渐增大。

土的压实性质 对土进行人工压实可提高强度、降低压缩性和渗透性。土的压实程度与压实功能、压实方法和含水量有关。当压实方法和功能不变时,土的干容重随含水量的增加而增加,达到最大值后,再增加含水量,其干容重将逐渐下降。

对应于最大干容重时的含水量称最佳含水量。压实功能不增大而仅增加压实次数或碾压次数所能提高土的压实度有一定限度,超过该限度再增加压实或碾压次数则无效果。填筑土堤,在最佳含水量附近可用最小的功能达到最大的干容重,因而要在室内通过压实试验确定填料的最佳含水量和最大干容重(见路基填土压实)。

但压实的方法也影响压实效果,对非粘性土,振动捣实的效果优于碾压;对粘土则反之。研究土的压实性能,可选择最合适的压实机具。为改善土的压实性能,可铺撒少量添加剂。中国古代已盛行掺加生石灰来改善土的压实性能。

此外,人工控制填料的级配,也可达到改善压实性能的目的。 土的应力-应变关系 土的变形和强度是土的最重要的工程性质。60年代以前,在工程上通常分别确定土的变形和强度指标,不考虑强度与变形间的相互影响。因为土的应力-应变关系是非线性的并具有弹塑性、 甚至粘弹塑性特征,而当时的计算技术,尚无法进行分析。

随着计算机和数值分析法的普及,已可能把土的应力-应变关系纳入土工建筑物的分析计算中。正常固结粘土和松砂的剪应力和轴向应变的曲线呈双曲线型,在整个剪切过程中,土的体积发生收缩,这类土具有应变硬化的特性。 超固结粘土和密实砂的应力-应变曲线则有峰值,其后应变再增大时,则土的强度下降,最后达稳定值。

剪切过程中,土的体积先有轻微压缩,随后即不断膨胀,这类土具有应变软化的特征。为了使用数学方程描述各类土的应力-应变特性,现已有各种非线性弹性、弹塑性和粘弹塑性模型。利用这些模型和数值分析法,可以分析一些复杂边界条件和不均质土体的变形和稳定问题。但是这些模型中所对应的土的参数,目前尚难正确测定,土体的原始应力状态也难确定,因而还难于在工程中普遍应用。 土的动力性质 土在岩爆、动力基础或地震等动力作用下的变形和强度特性与静荷载下有明显不同。

土的动力性质主要指模量、阻尼、振动压密、动强度等,它与应变幅度的大小有关。应变幅度增大(<10),土的动剪切模量减小,而阻尼比例则增大。土的动模量和阻尼是动力机器基础和抗震设计的重要参数,可在室内或现场测试。1964年日本新潟大地震,大面积砂土液化造成大量建筑物的破坏,推动了对饱和砂土液化特性的研究。

液化的主要机理是土的有效强度在动荷载作用下瞬时消失,导致土体结构失稳。一般松的粉细砂最容易发生液化,但砂的结构和地层的应力历史也有一定的影响。具有内聚力的粘性土一般不发生 液化现象。 黄土的工程性质 一般分为新黄土和老黄土两大类,其性质也有显著差异(见黄土地区筑路、路基设计)。

软土的工程性质 软土一般指压缩性大和强度低的饱和粘性土,多分布在江、河、海洋沿岸、内陆湖、塘、盆地和多雨的山间洼地。软土的孔隙比一般大于1.0,天然含水量常高出其液限,不排水抗剪强度很低,压缩性很高,因而常需加固处理。最简单的方法是预压加固法(见预压法)。软土强度的增加有赖于孔隙压力的消失,因而在地基中设置砂井以加快软土中水的排出,这是最常用的加固方法之一。

预压加固过程中通过观测地基中孔隙水压力的消失来控制加压,这是保证施工安全和效率的有效方法。此外,也可用碎石桩(见振冲法)和生石灰桩等加固软土地基。 膨胀土的工程性质 粘土中的粘土矿物(主要是蒙脱石),当遇水或失水时,将发生膨胀或收缩,引起整个土体的大量胀缩变形,给建筑物带来损害(见膨胀土地基)。

多年冻土的工程性质 高纬度或高海拔地区,气温寒冷,土中水分全年处于冻结状态且延续三年以上不融化冻土称多年冻土。冻土地带表层土随季节气温变化有冻融交替的变化,季节冻融层的下限即为多年冻土的上限,上限的变化对建筑物的变形和稳定有重大影响(见冻土 地基、多年冻土地区 筑路)。

盐渍土的工程性质见盐渍土地区筑路。 红粘土的工程性质 热带和亚热带温湿气候条件下由石灰岩、白云石、玄武岩等类岩石风化形成的残积粘性土。粘土矿物主要是高岭石,其活动性低。中国红粘土的特点一般是天然含水量高、孔隙比大,液限和塑性指数高,但抗水性强,压缩性较低,抗剪强度也较高,可用作土坝填料。

③ 泥土颜色为红色,干燥时很硬,遇水后又很黏,这种土能种菜吗怎样改良

可以种菜,但要施肥,一下子全部改良有点难度,最好是两三年慢慢来。如果要一次性改良,要混合很多农家肥或其它泥土,加上腐叶或腐化的木梢等。

④ 桂林岩溶地基中的不良地质现象及治理<sup>[]</sup>

桂林是我国典型的岩溶地区之一,由于岩溶地质作用,桂林岩溶地基中广泛地发育有溶洞、土洞、塌陷、溶槽、溶沟等不良地质现象。

3.2.1桂林岩溶地基中的不良地质现象类型

桂林岩溶地基的组成主要有:红粘土、粉土、砂、卵砾石、石灰岩等,而根据成因,主要有残坡积(Qel+dl)和冲洪积(Qal+pl),其发育的不良地质现象主要有以下一些:

3.2.1.1溶洞

岩溶区溶洞的发育过程,实质上是水对方解石、白云石等碳酸盐岩的溶解作用。溶洞的发育必须具备有可溶性岩石、岩石中的通道、流动的水及具侵蚀性的水。

地质构造(褶皱、断裂)的性质、规模对溶洞的发育起着重要的控制作用。桂林岩溶区工程实践表明,地质构造不仅控制着溶洞发育的方向,而且还影响着溶洞发育的规模和大小。张性构造部位有利于溶洞发育,而压性构造部位则不利于溶洞的发育。

桂林市区内以及东郊一带的下伏基岩一般为上泥盆统融县组石灰岩(D3r):一般灰色—灰白色,质纯层厚,块状构造,坚硬性脆,局部不规则裂隙发育。控制桂林市的主要地质构造(褶皱、断裂)均通过该组灰岩,且多为张性断裂,因张性断裂带受拉张应力作用,张裂程度较大,断裂面较粗糙,裂口较宽,断层岩多为角砾岩、结构疏松。断层岩粒径相差悬殊,胶结性差或未胶结,孔隙度高、透水性强、利于地下水的赋存、运移,常为岩溶水的有利通道,故通常岩溶作用和岩溶化程度强烈。沿断裂带发育的溶洞比较多,规模也比较大。桂林岩溶区的溶洞绝大部分发育在该组灰岩中。

市区南郊雁山区一带为中泥盆统东岗岭组石灰岩(D2d):深灰—灰黑色,中—厚层状,主要矿物成分为方解石,该层溶洞的发育相对融县组石灰岩(D3r)要少。

市区北郊八里街一带基岩出露为下石炭统岩关组泥灰岩(C1y):灰黑色,薄—中厚层块状构造,含有泥质和碳质,岩石中方解石(CaCO 3)含量相对少。由于泥灰岩呈韧性,岩石中发育的地质构造(褶皱、断裂)也多为闭合、压性构造,不利于地下水的运动,也不利于溶洞的发育,在该区极少见有溶洞、土洞及塌陷等不良地质现象。

3.2.1.2土洞

土洞是在有效覆盖土的岩溶发育区,其特定的水文地质条件,使岩面以上的土体遭到流失迁移而形成土中的洞穴和洞内塌落堆积物以及地面变形破坏的总称。土洞是岩溶区常见的一种岩溶作用产物,它的形成发展与土层的性质、水的活动、岩溶的发育等因素有关。桂林岩溶地基中的土洞,主要分布在残坡积(Q el+dl)和冲洪积(Q al+pl)的粘性土层中、尤其在残、坡积粘土中发育较多,土洞趋于圆形或近圆形,直径大多在1 m 以内,一般发育垂直深度在距离地面5~15 m 之间,洞内有时为软、流塑的粘性土所充填,很多情况下为空洞。

此外,桂林岩溶区的土洞发育具有以下特征:

(1)土洞多位于粘性土层中,在桂林漓江一级阶地中的粉土、砂砾石、卵石等地层中极少见。

(2)在溶沟、溶槽处,即靠近基岩面附近,经常有软粘土分布,其抗冲(侵)蚀能力弱,常常有土洞发育。

(3)由地下水形成的土洞多位于地下水变化幅度以内,且大部分分布在高水位与低水位之间。在最高水位以上及低水位以下,土洞少见。

3.2.1.3岩溶塌陷

岩溶塌陷是指分布在下伏溶洞和土洞之上的岩、土体覆盖层,在自然或人为等各种因素的作用下失去平衡而向下陷落的作用和现象。它是溶洞、土洞发育发展的最终结果,桂林岩溶塌陷主要分布在桂林漓江一级阶地中,其次为残坡积(Q el+dl)和冲洪积(Q al+pl)的粘性土层中。

岩溶区地基土层塌陷大多是局部性的,其平面范围较小,如桂林市西城区的调查显示:已发生的岩溶塌陷规模,平面范围小于3 m 的塌陷,占塌陷总数的75%。从已有土洞塌陷的剖面形态来分析,桂林岩溶区主要的土洞塌陷的剖面形态有以下4种:

(1)井状:塌陷坑壁陡立呈直筒状;

(2)漏斗状:口大底小,塌陷坑壁呈斜坡状,状如漏斗;

(3)碟状:塌陷坑呈平缓凹陷,面积较大,深度小,呈碟形;

(4)坛状:口小肚大、塌陷坑壁呈反坡状。

3.2.1.4红粘土软弱下卧层

桂林岩溶区的红粘土,一般呈现上硬下软的分布特征(广西岩溶地区也大都如此),尤其是靠近基岩附近,常分布有软、流塑粘性土,构成地基的软弱下卧层。桂林红粘土下伏基岩为微风化石灰岩,致密石灰岩的渗透系数可以达到3 ×10-12 ~6 ×10-10cm/s,而红粘土的渗透系数大约为10-8cm/s左右,因此致密石灰岩便成为红粘土的相对隔水层。石灰岩顶面分布的粘土长期处在水的浸泡之中,最后成为软塑、流塑状态,并构成地基软弱下卧层。

3.2.1.5基岩面起伏

由于岩溶作用的差异以及溶洞引起塌陷,石灰岩表面经常可以形成很大的起伏,在桂林岩溶区的工程勘察中常可见到,相隔5 m以内距离的两个钻孔,揭露石灰岩的基岩面高差达10 m以上,几乎形成直立的陡崖。

3.2.2桂林岩溶地基中的不良地质现象主要成因

桂林岩溶地基中的不良地质现象,主要影响因素是地基土层、地下水、地表水、人为因素等。

3.2.2.1 地基土层的影响

3.2.2.1.1地基土层组成结构

地基土体的组成结构不同,土体产生渗透破坏的形式及抵抗渗透变形的能力也不同。漓江阶地中的冲洪积(Q al+pl)砂土层,级配良好的砂土容易产生潜蚀和管涌破坏,其临界水力坡度相对较低,抵抗渗透变形的能力也相对较低,在相同水力条件下容易产生渗透变形,形成土洞及塌陷。漓江一级阶地具有混杂结构的覆盖层,其抗塌性能较差。由于此类结构较松散,且粗细颗粒渗透性能差异大,在其接触面上容易产生接触冲刷而形成土洞和塌陷。漓江两岸阶地中砂、卵石层往往是直接覆盖在基岩上,此时,最有利于地基塌陷的孕育;其次是粘性土、砂卵石层混层结构;再其次是均一的粘性土地层。

分布在红粘土底部的软塑状态且粘粒含量低的土,其抗剪强度较低,抵抗渗透变形及塌陷的能力也较低,容易形成土洞及塌陷。

3.2.2.1.2地基土覆盖层厚度

通过对桂林市西城区大量钻孔资料和地表测绘资料的统计分析表明,覆盖层厚度越小,岩溶塌陷越发育。厚度小于6 m 区域的塌陷个数占总塌陷个数的74%以上;厚度小于10 m 区域的塌陷个数占总塌陷个数的99%以上;覆盖层厚度大于10 m 时,基本上不会发生岩溶塌陷。

3.2.2.2地下水活动的影响

据统计,桂林市80%以上的岩溶塌陷(含土洞塌陷)是在地下水强径流带发生的。对于岩溶塌陷的发育,它是一种十分敏感和活跃的动力因素,其作用主要有以下几种:

3.2.2.2.1渗透潜蚀作用

潜蚀是在地表水或地下水的渗透作用下,土体中的细颗粒在孔隙通道中移动并被携出的现象。在岩溶区的土层中,当渗透水的水力梯度加大,水力流速加快,动水压力增强,且水力坡度达到某一临界值Jk时,土中细粒被渗流带走迁移,产生土洞甚至塌陷。太沙基(1933)根据单位体积的土体在水中的浮重和作用于该体积的渗透水相平衡原理,得到土体产生潜蚀作用的临界水力梯度Jk,其表达式与式(1.43)相同。

当土层中地下水渗流的水力梯度大于临界水力梯度Jk时,土层就有可能产生潜蚀破坏。例如,桂林市漓江一级阶地中的冲洪积的粉质粘土、粉土地层,其土颗粒相对密度一般为2.65~2.70,孔隙度n为40%~50%,那么其产生潜蚀的临界水力梯度为0.83~1.02,当地下水位急剧变化时,其水力坡度就可能超过临界水力坡度,土体将产生潜蚀破坏。据调查,桂林市漓江两岸大部分土洞及塌陷均发生在水位变化幅度较大的冬春两季,尤其是冬春之交。

例如,桂林理工大学(原桂林工学院)教四楼东侧一楼联合教室基础下榻,使基础与上部墙体脱离达5 cm,形成直径4 m 的凹塌区,墙体由一楼至三楼,裂缝宽2~15 mm,其原因是隔壁的厕所与化粪池长期漏水使地基红粘土湿化、软化直至潜蚀流失所致。此外,桂林理工大学原图书馆的墙体开裂,也是由于地表池内水渗漏产生潜蚀作用使地面变形所致。

3.2.2.2.2真空吸蚀作用

当岩溶地下水位下降至覆盖层底板以下、由有压力转为无压力时,在岩溶空腔中的水、气形成了负压,对盖层产生了附加吸力而使其遭到吸蚀剥落并向下迁移,最大压力约为1个大气压的压力。对于上覆土层中所含的水,负压使其增加了向下渗透的附加水头,从而加剧了对土体的潜蚀作用,加速了土体颗粒间联接破坏并导致土洞的形成与扩展。桂林岩溶区的溶洞以及发育在残坡积红粘土中的土洞,当地下水在溶洞土洞中运动时,往往可产生真空吸蚀作用。

3.2.2.2.3地下水位波动的崩解作用

地下水位的波动,使覆盖层中的水反复饱和与丧失,其结果使覆盖土层产生崩解、散体、剥落而向下迁移,形成土洞并向上扩展。

桂林岩溶区广泛地分布红粘土,红粘土含有较多的亲水矿物,例如:通过X 射线衍射分析,桂林市区残积红粘土矿物成分中,伊利石约40%~60%,高岭土20%~30%,伊利石/蒙脱石混层矿物10%~20%,它们的结构联结力较弱,易于水化,遇水易产生崩解。

3.2.2.3其他因素

人工爆破、人为大幅度降水、交通工具加载或振动、地下工程施工及基坑开挖等产生临空面而改变溶洞周围应力状态等,都有可能引起溶洞地基的塌陷失稳。

3.2.3地基不良地质现象的处理

在桂林岩溶区进行地基基础设计时,若想采取浅基础方案,一般应对地基中存在的不良地质现象进行处理,并有针对性地采取不同的处理措施。

3.2.3.1溶洞地基

当采用天然地基浅基础时,不论溶洞大小、形态、分布如何,一般不考虑溶洞的不利影响;当采用桩基础时,对于桩基础底面3倍桩径且5 m以下的溶洞,一般也不考虑溶洞的不利影响。若要对溶洞进行地基处理,一般采取灌注混凝土,或者采用高压旋喷桩处理。对于重要工程,或者是岩溶很发育,溶洞之间相互联系密切,呈串珠状,若灌浆或灌注混凝土,易产生流失,很难奏效,此时采用钢管护壁,如2005年施工的横跨漓江的南洲大桥岸上桩,采用Φ1700 mm 孔口护筒;在钻进过程中有严重漏浆时,孔口护筒接高,护筒必须跟进;在钻进过程中有严重漏浆和塌孔现象时,Φ1700 mm 护筒入土15 m 后,在护筒内再套Φ1600 mm 护筒,护筒跟至岩面。最终护筒与钢筋砼结合在一起,作为永久结构支撑在岩石上。在2001年竣工的桂林市解放桥也是采用此方法进行桩基础施工的。

3.2.3.2土洞或岩溶塌陷地基

对于土洞或岩溶塌陷地基的处理措施,主要可以分为以下几种情形:

(1)当采用浅基础形式,若土洞或塌陷范围不大,且埋深不超过5 m,无地下水或地下水埋深很大,一般可直接开挖,清除洞内软土或塌陷充填物,再回填粘性土、砂石等并分层夯实,也可直接回填混凝土,但此时应注意在回填物表面做30 cm 左右的褥垫层,以调整地基土差异引起的不均匀沉降。

(2)桂林岩溶区的绝大部分土洞分布深度以及塌陷深度是在地表5 m 以下,此时一般采用灌浆处理,此法占桂林岩溶地基处理措施的80%以上。

在土洞或塌陷范围的顶部地基基坑面上钻孔,可采用多个钻孔,一般直径为110~220 mm,将碎石、砾石灌入洞内,然后再灌入水泥浆,或直接灌入混凝土再进行压力灌浆。灌浆所采用的水灰比为1:1~1:1.5,浆液配置以先稀后浓为原则,灌浆压力一般为0.15~0.30 MPa。例如桂林理工大学(原桂林工学院)新建图书馆、桂林旅游专科学校雁山校区等场地的土洞或塌陷处理,均采用此方法,处理效果很好。

对已查明的塌陷地段用钻机钻至软弱地层的底面,或用锥体挤密塌陷体形成空桩,然后用碎石加适量的干粉状水泥(配合比为6:1)充填挤密,同时对软弱地层予以挤密,然后采用压力灌浆,将水泥浆液充填到塌陷区深部的软弱地层及其孔隙,碎石水泥桩孔与压力灌浆孔交错布置,处理效果很好。实例如地处漓江一级阶地的桂林福隆园第一期拆迁回建房6号楼塌陷的处理。

3.2.3.3红粘土软弱下卧层

对于分布在红粘土之下,基岩面之上的红粘土软弱层,若拟采用浅基础方案,软弱下卧层验算不满足要求,此时可直接采取压力灌浆措施处理。先以Φ75~110 mm 钻具钻至基岩面或软弱土层底面,然后放入灌浆花管,(根据现场情况也可直接用钻机将灌浆花管打入到灌浆底部),然后用水泥砂浆灌注泵进行水泥压力灌浆。采用自下而上分段灌浆,灌浆段长1.0~1.5 m。灌浆所采用的水灰比为1:1~1:1.5,灌浆压力一般为0.20~0.30 MPa。桂林橡胶机械厂住宅楼场地的软弱土层即采用此方法处理。

3.2.3.4基岩面起伏

对于岩溶区基岩面起伏的情形,若采用天然地基浅基础,则应注意由于土层的厚薄不均引起的不均匀沉降,若采用桩基础,则在桩基础施工时应注意滑桩倾斜。

另外,在上泥盆统融县组石灰岩(D3r)中,常常发现分布有溶沟、溶槽、鹰嘴岩、孤石等,在有溶沟、溶槽、鹰嘴岩的地段桩基础的施工,应注意甄别孤石与完整石灰岩,避免误把孤石当成完整岩石而选为基础持力层。

3.2.4结论

桂林岩溶地基岩土层主要为红粘土、粉土、砂、卵砾石、石灰岩等,地基中发育的不良地质现象主要有溶洞、土洞、岩溶塌陷、溶沟等。不良地质现象一般由渗透潜蚀作用、真空吸蚀作用、地下水位波动的崩解作用以及人为因素等形成,若不采取相应的处理措施,将会影响建筑物的地基基础设计。

对岩溶发育的含溶洞岩石地基,一般采用灌注混凝土或采用钢管护壁处理措施;对土洞或岩溶塌陷地基,一般先在洞内灌入碎石、砾石,或灌入混凝土,然后再进行压力灌浆,灌浆所采用的水灰比为1:1~1:1.5,灌浆压力一般为0.15~0.30 MPa;对于分布在红粘土软弱下卧层,可直接采取水泥压力灌浆处理。

⑤ 红粘土处理技术

红粘土是碳酸盐类岩石在亚热带温湿气候条件下,经风化作用而形成的褐红色粘性土,广泛分布于我国云贵高原、广西和四川等地。

红粘土对工程建设的不利影响主要表现在以下方面:①有些地区的红粘土具有竖向裂隙,易产生朝向建筑物的临空面失稳问题;②红粘土遇水后膨胀量小,而失水后收缩量大,易引起地基表层剧烈干缩并迅速龟裂,对施工不利;③红粘土底部多处于基岩凹部或盆形溶槽内,上硬下软,且下层土多呈流塑状态,易引起地基不均匀沉降或侧向位移,影响建筑物的安全。

对于红粘土地基,常采用以下处理措施。

1)对于6层和6层以下的建筑物,用红粘土作为天然地基,可采用毛石混凝土条形基础。这种刚性基础的特点是:可大量利用山区丰富的石材,降低工程造价。对于单层工业厂房红粘土地基,可在浇筑一层50~100cm素混凝土垫层后,采用钢筋混凝土独立基础。

2)对于岩面起伏大、易产生不均匀沉降的地基:对外露的石芽可用褥垫;对土层厚度、状态不均匀的地段可置换。当石芽密布、溶槽不宽且采用单独或条形基础时,若溶槽中土层厚度小于1.2m可不作处理,否则全部或部分挖除溶槽中的土,使土层厚度减至1.2m以下。当石芽零星出露,周围土体厚度不等时,可打掉一定厚度的石芽,铺上300~500mm水稳定性好的褥垫材料,如煤渣、中细砂等。

3)基槽开挖后,首要的问题是“保持原状土含水量”,即既不能长期日晒风干而大量失水,也不能受雨雪的影响而使含水量增大,更不能受到反复干湿的影响。一般应在基槽开挖后立即浇筑一层15~20cm厚度的素混凝土垫层,以不使地基受到气候的影响。对于热工构筑物、工业窑炉,可在基础底面设置一定厚度的隔热层,以保证地基土水分的稳定。

4)竖向裂隙的存在,可能导致基础墙体开裂、边坡坍塌、地表水下漏影响施工等危害,可针对不同情况,采取以下相应措施:①为防止建筑物开裂,在基础浇筑前,在基底铺设20~30cm的砂或碎石层,使土的收缩变形得到减缓和扩散,以免集中传递给基础;②建筑物外围做1.5~2.1m宽的混凝土散水坡,坡度大于3%,散水坡可起到稳定基底土体含水量的作用,减少收缩变形;③适当增加基础埋深,以减少浅层大裂隙的影响。红粘土的裂隙发育深度约为4~6m,也有达10m以上的,此时最好采用桩基;④基础上部设置圈梁,以增加建筑物的整体性,减少不均匀沉降;⑤施工现场做好排水防水措施。临时水池、洗料场、搅拌站、淋灰池等应设在距建筑物8~12m以外,并根据必要情况在边坡处做好支挡防塌措施。

5)有的地区,地下水位相当高,水位线明显超出红粘土埋藏标高或位于红粘土表层,如开挖基槽,则必为水所浸没,无法施工,这里介绍几种有效的施工方法。①井点降水法:采用单层轻型井点降水,将地下水位降低3~6m,地下水位可完全降到红粘土表层以下,是一种相当有效的方法。②集水坑法:适用于地下水位并不高的土层,在拟建建筑物周围每隔3~5m挖一个1m×1m的深坑,坑底标高可低于基础底面标高1m左右,让开挖的基槽与集水坑相连,并对集水坑不断抽排水,便于基础施工。③分段浇筑基础,即开挖基槽、抽水、砌筑毛石混凝土基础同时进行,分段渐进。先施工外轴线基础,再由表及里进行。如果采用修理平整的条石砌筑,则效果更佳。④爆扩桩基础:由于红粘土的上层硬塑土一般厚3~5m,因此,在地下水位较高的地区,采用桩长2.5~3m,扩大端直径为70~90cm的爆扩短桩,能成功地在地下水位以下施工。这主要是由于红粘土经爆炸扩大,混凝土粘贴在扩大端周壁,可起挡水护壁作用,同时红粘土经爆扩后,周壁土密度增大,孔隙水加速消散,地下水不会立即渗入爆扩桩扩大端中,就有充足的时间进行混凝土浇筑作业。贵州红粘土地区采用爆扩桩基础的建筑物,施工了约10×104 m2,相当多的爆扩柱是在地下水位线以下3m施工,均相当成功。

6)对基岩面起伏大、岩质硬的地基,可采用大直径嵌岩桩或墩基,穿越红粘土层。

7)使用红粘土作为填筑土时,应控制干重度为14~15kN/m3,使其含水量接近塑限。

⑥ 地质灾害稳定性与危害性

一、地质灾害稳定性分析

(一)数值法

工程地质数值法,是采用弹塑性力学理论和数值计算方法,从研究岩土体应力和位移场的角度,分析评价岩土体在一定环境条件下的稳定性状态。近30多年来,数值法得到了迅速发展,并被广泛地应用于工程实践中,本文采用FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)软件进行斜坡稳定性数值分析。FLAC3D软件是美国ITASCA咨询集团开发,主要用于模拟岩土体及其他材料组成的结构体,在达到屈服极限后的变形破坏行为。该软件将流体力学中跟踪流体运动的拉格朗日法成功地用于解决岩石力学问题,它除了能解决一般的岩土问题之外,还能进行如高温应变、流变、或动荷载、水岩耦合分析等复杂的问题。

1.模型计算方法

FLAC3D软件是利用有限差的方法模拟计算由岩土体及其他材料组成的结构体在达到屈服极限后的变形破坏行为,包括静力计算和有限差强度折减计算两种方式。这两种计算方式得到的结果并不完全相同,本次同时选择这两种计算方式,对本区黄土滑坡和不稳定斜坡做验算分析。

静力计算的方法需要建立的模型以及所选参数必须使得模型计算的时候完全收敛,如果计算过程快速收敛,则认为模型是基本稳定的。但是,在做滑坡稳定性分析时候,由于影响滑坡稳定性的因素较多,比如坡高、坡度以及不同坡体的黄土体力学参数的不同,往往不能得到一个快速收敛的计算模型,因此通过静力计算的方式不能完全判断坡体的安全性。强度折减法是FLAC3D唯一的可以计算坡体安全系数的方法。因此,可以利用这一方法求出坡体的安全系数,然后结合静力计算的结果来判断坡体的稳定性。根据《滑坡防治工程勘察规范》(DZ/T 0218-2006),选择安全系数<1.05判断为不稳定,安全系数1.05~1.15为较稳定,安全系数≥1.15为稳定,以此作为主要灾害点的稳定性判据。

有限差强度折减系数法的基本原理,是将土体强度参数内聚力(C)以及内摩擦角(ϕ)值同时除以一个折减系数Ftrial,得到一组新的Ctrial和ϕtrial值。然后,作为新材料参数带入有限差进行试算。当计算正好收敛时,也即Ftrial再稍大一些(数量级一般为10~3),计算便不收敛,对应的Ftrial被称为坡体的最小安全系数,此时土体达到临界状态,发生剪切破坏。计算结果均指达到临界状态时的折减系数:

Ctrial=C/Ftrial

tanϕtrial=tanϕ/Ftrial

2.模型类型及参数选择

选择摩尔库仑模式作为材料模型,根据勘查和力学性质测试结果,并考虑到调查区灾害的发生与降雨关系密切,故选择饱水状态下的物理力学参数作为计算参数:

体积模量:

K=4.5MPa

剪切模量:

G=2.1MPa

内聚力:

C=3.4×104Pa

内摩擦角:

ϕ=21.4°

3.黄土边坡分析

(1)模型建立及网格剖分

调查资料表明,30°~60°的黄土直线型斜坡发生变形破坏的可能性较大,考虑到建立模型的方便性,选择30°~70°之间的直线型边坡进行分析,同时建立一些阶梯状的边坡进行比较分析。

按照郑颖仁教授的观点,在做边坡模型的强度折减法求边坡安全系数的同时,要求所建立的模型坡角到最左侧的距离为1.5倍坡高,而坡顶到最右侧的距离为2倍坡高,这样计算的安全系数结果最为准确。

以坡高40m坡度45°的直线型边坡为例,建立模型并进行网格剖分。虽然调查区黄土为层状结构,不同时期黄土厚度和土力性质不尽相同,但勘查试验数据表明,其饱和抗剪强度差异不大。因此,假设黄土是均质的,整个模型的强度参数均一。定义模型右侧和底部为约束边界条件,坡面和坡顶为自动边界。

(2)常规模型和简化模型的对比分析

在调查区黄土边坡中,坡高的分布十分不均匀,从十数米,数十米到上百米不等,并且每种坡高都对应有不同的坡度。因此,分析黄土边坡稳定性时需要全面分析,研究不同坡高不同坡度情况下的各种边坡的安全稳定性。本次利用FLAC3D软件模拟了20~50m(每5m区分)坡高情况下30°~70°(每5°区分)所有坡体的稳定性情况。由于模型的不同网格数量以及节点数量不同,造成软件计算时间上由巨大的差异。郑颖仁教授所提出的常规模型在计算中有一定的道理,但也同样极大地增多了模型网格和节点数目,所以强度折减的计算时间非常长。因此,必须首先比较了一下常规模型和简化模型的计算结果。

首先,用常规模型分析40m坡高30°~70°之间所有坡体的稳定性情况。利用强度折减系数法计算各种坡度情况下的安全系数,可利用静力平衡计算和强度折减计算,来得到一定坡高各种不同坡度边坡的稳定性分析(表3-16)。将常规模型计算的坡度与安全系数关系进行拟合,可以得到坡度与安全系数的影响关系曲线(图3-10)。

图3-10 常规模型40m坡高不同坡度与安全系数的关系曲线图

表3-16 常规模型40m坡高不同坡度边坡稳定性计算汇总表

由于常规模型网格个数的节和点数较多,计算机处理的过程中数据量过分庞杂,计算速度慢,而黄土边坡的长宽高往往又比较大。这样我们如果利用郑颖仁教授的常规模型分析,效率不是很理想。因此,将边坡的模型网格进行简化处理,以这样的处理结果对比常规模型的计算结果。对比时仍然以 40m 坡高35°~70°为例分析,计算结果如表3-17,得简化模型的拟合曲线如图3-11。

图3-11 简化模型40m坡高不同坡度与安全系数关系曲线图

观察一下常规模型强度折减法求得的安全系数发现:而当坡体不稳定时,两种模型计算的安全系数相同;而当坡体稳定时,简化模型的安全系数计算结果要比简化模型的结果小一些,但是总体上坡体稳定性的结果影响不是很大。在实际工程应用中,我们为了安全考虑,完全可以考虑使用计算结果较小的简化模型进行分析计算。

表3-17 简化模型40m坡高不同坡度边坡稳定性计算汇总

(3)坡度与安全系数的关系

利用简化模型,分别结合静力计算方法和强度折减系数方法,分析计算了20~50m坡高情况下的各种坡度边坡的稳定性;同时得到固定坡高的情况下,坡度和安全系数的拟合关系曲线。通过坡度与安全系数的拟合曲线可以看出,固定坡高时,当改变坡度,安全系数随着坡度的增加而减小,坡体逐渐不稳定。而安全系数随着坡度变化呈现对数关系变化,拟合程度较高。

(4)土体强度参数的变化分析

根据勘查和试验测试数据,区内黄土的内聚力C值以及内摩擦角ϕ值变化较大(如表3-18),因此有必要研究一下强度参数的变化趋势对于坡体安全系数的影响。

表3-18 黄土物理力学指标统计表

以20m坡高60°边坡为例,固定模型的内聚力:

C=34kPa

然后改变土体的内摩擦角,利用强度折减系数法分别计算不同内摩擦角情况下的安全系数情况,得到结果如表3-19所示。由计算结果可以看出,随着内摩擦角的增大,安全系数逐渐增大。内摩擦角越小,潜在滑动带越向外扩展,危险滑弧越开阔,而坡体的稳定性越差(图3-12)。

表3-19 不同内摩擦角对安全系数的影响统计表

仍然以20m坡高60°边坡为例,固定模型的内摩擦角:

ϕ=21.3°

然后改变土体的内聚力,利用强度折减系数法分别计算不同内聚力情况下的安全系数情况,得到结果如表3-20所示。计算结果显示,内聚力越大,安全系数越高。但是潜在滑动面越向外伸展,滑弧越开阔,但是稳定性越高,这一点和内摩擦角的影响恰好相反(图3-13)。

表3-20 不同内聚力对安全系数的影响统计表

图3-12 滑弧随内摩擦角的变化趋势图

图3-13 滑弧随内聚力的变化趋势图

(5)边坡剖面形态的影响

研究区黄土边坡的剖面形态大致分为四类:直线型、阶梯型、凸型和凹型。调查结果发现凸型边坡和直线型边坡发生失稳变化的数目最多,可能性最大。因此有必要分析坡型的变化对于坡体稳定性的影响。在这里我们只对直线型和阶梯型边坡作对比分析。

以40m坡高45°边坡为例,分别建立直线型和阶梯型边坡,利用静力平衡和强度折减方法计算其各自的安全系数,并对照最大不平衡力曲线和坡体内部剪切应变云图分析这两种坡体的稳定性。计算结果发现直线型边坡明显发生破坏,坡体内部剪切应变呈带状分布,而阶梯型边坡的安全系数增大,静力计算时在4460时步收敛,坡体稳定(图3-14,图3-15;表3-21)。

图3-14 直线型边坡静力计算下的最大不平衡力曲线图

图3-15 阶梯型边坡静力计算下的最大不平衡力曲线图

表3-21 40m、45°直线型和阶梯型边坡对比分析表

4.主要灾害点稳定性分析

根据上述分析方法,对调查区的30个主要滑坡和不稳定斜坡点进行数值分析,求出坡体的安全系数,判断坡体的稳定性,分析结果列于表3-22。

表3-22 主要灾害点稳定性数值分析结果表

(二)极限平衡法

1.计算方法与软件选择

斜坡稳定性分析的方法较多,目前较成熟的主要有:瑞典条分法、毕肖普法、工程师团法、罗厄法、斯宾塞法、摩根斯顿法、简化法等,由于这些方法对土体进行了不同的假定,计算结果也各有差别。本次采用Geo-Slope软件对选择的30处滑坡和不稳定斜坡进行稳定计算。

Geo-Slope软件是一个集极限平衡法和有限元法于一体的计算软件,分成斜坡稳定性分析(Slope/w)、渗流分析(Seep/w)、应力分析(Sigma/w)、地震状态分析(Quake/w)和温度变化分析(Temp/w)等。本次主要采用边坡稳定性分析(Slope/w)模块来分析黄土斜坡的安全系数,Slope/w可以采用力的极限和力矩极限平衡来计算稳定系数,其稳定分析原理主要是采用条分法原理。即通过滑面将滑动土块分成n个垂直条块,滑面可以是圆弧滑面和各种复合滑面,Slope/w综合了瑞典条分法、毕肖普法、斯宾塞法、摩根斯顿法、简化法等各种方法,Slope/w考虑了条块间的作用力,使计算结果更趋于合理。Slope/w通过手动给定可能的圆心变化范围,给定多个搜索步长,自动搜索最危险滑面。Slope/w可以通过在土层中给出可能的孔隙水位置来计算孔隙水存在状况下的稳定性,也可以计算局部加荷条件下的稳定性。

现以毕肖普法为例,简单介绍极限平衡法的计算原理。

毕肖普主要采用力的极限平衡来计算安全系数。以毕肖普法为例,说明极限平衡法的计算原理,其计算图示如图3-16所示。其上作用的荷载有Wi,Ui,Qi,待求的反力及内力有Ni,Si及ΔEi。根据剪切面上的极限平衡要求,可列出下式:

延安宝塔区滑坡崩塌地质灾害

图3-16 毕肖普法计算图示

将所有的荷载及反力、内力均投影在x’轴上,可写出:

延安宝塔区滑坡崩塌地质灾害

上式可改为

延安宝塔区滑坡崩塌地质灾害

将所有的分条的ΔEi迭加,由于∑ΔEi=0,得

延安宝塔区滑坡崩塌地质灾害

可得

延安宝塔区滑坡崩塌地质灾害

上式的Ni未知,我们利用分条上竖向力的平衡条件得出

延安宝塔区滑坡崩塌地质灾害

解方程得:

延安宝塔区滑坡崩塌地质灾害

代入式整理得

延安宝塔区滑坡崩塌地质灾害

上式两端都有k,因此在计算k时需要进行试算,一般首先假定右侧:k=1。

求出左端的k,再代入右端重新计算k值,直到假定的k值与计算出的k值非常接近为止。

2.主要灾害点稳定性分析

根据调查结果,调查区灾害的发生与降雨因素关系密切,故在参数选择上以饱水状态下的岩土体物理力学参数作为计算参数。根据《滑坡防治工程勘察规范》(DZ/T 0218-2006),选择安全系数<1.05判断为不稳定,安全系数1.05~1.15为较稳定,安全系数≥1.15为稳定作为主要灾害点的稳定性判据。运用Geo-Slope 软件计算30个灾害点和不稳定斜坡的安全系数进行计算,计算结果如表3-23所示。

表3-23 主要灾害点安全系数计算一览表

续表

下面以赵家岸滑坡为例来说明采用Slope/w进行稳定性分析的具体实施步骤:

(1)剖面图引入:Slope/w可以直接从Autocad中引入斜坡剖面图,也可以直接给出比例尺画出斜坡的剖面图。为了计算剖面精确起见,根据实测剖面数据,直接输入数据点画出剖面图。

(2)选择分析方法设置:Slope/w可以选择极限平衡方法和有限单元法来计算,极限平衡法中可以选择毕肖普法、斯宾塞法、摩根斯顿法、简化法等各种方法来计算安全系数,有限单元计算时要引入斜坡内部应力状态函数来计算。本次选择极限平衡法计算。

(3)确定分块的数目和分块的容差。以确定分析计算的精确性,一般以软件默认的分块为30个,容差为0.01。

(4)划分土层并赋予每个土层力学参数。Slope/w主要以不同岩土性质的分界线来区分各岩土性质,把不同岩性分成不同的土层区,并用不同的颜色以示区分。给土层分区后,再赋予各土层力学参数,力学参数根据延安部分地区勘查数据给出。

(5)给定潜在圆弧滑面的圆心位置,给出圆心位置x和y方向上的增量步和圆弧半径范围和半径增量步,程序自动搜索潜在的最危险滑面,计算其安全系数。对赵家岸滑坡,搜索的最危险滑面如图3-17所示,从图上可以看出,赵家岸滑坡后壁最不稳定。

图3-17 赵家岸滑坡最危险滑面图

(三)类比法

工程地质类比法,是把已有的滑坡或边坡的稳定性研究经验应用到条件相似的对象滑坡或边坡的稳定性判定中去。在进行类比时,不但要考虑滑坡或边坡结构特征的相似性,还应考虑促使滑坡或边坡演变的主导因素和发展阶段的相似性。影响滑坡或边坡稳定性的因素可分为地形地貌、地质特征(地层岩性、岩土体结构面特征、构造节理等)、降雨、人类工程活动(开挖、加载、蓄水等)。这些因素对滑坡或边坡的稳定性是相互作用、相互影响的。在这些因素的相互作用下,结合坡体变形特征,判别坡体的稳定性。

1.地形地貌

通过对调查区灾害点坡度与坡高统计认为,调查区滑坡多发生于25°以上、坡高大于30m的斜坡,且集中坡度在30°~50°、坡高在40~120m的坡体上。在调查的滑坡中,原始坡型为凸型坡的,占滑坡总数的36.52%;直线型坡占滑坡总数的52.56%;合计占滑坡总数的89.08%,即调查区滑坡发育坡体以凸型、直线型坡为主,安全隐患斜坡坡度在40°以上,且集中于坡度为60°~90°、坡高大于20m的地段内,在地貌上大多位于冲沟两侧或坡体前部的人工斩坡、开挖地段。

2.地层岩性

调查区地层岩性主要由更新世黄土、新近纪泥岩、侏罗纪和三叠纪砂、泥岩及互层组成。由于更新世黄土(主要是晚更新世黄土)的湿陷性崩解性,以及红粘土及泥岩的相对隔水和遇水软化、强度降低的性质,使其成为斜坡失稳、发生滑坡、崩塌灾害的易发地层。基岩是全区的基座地层,构成黄土-基岩接触面滑坡的滑床;在基岩出露较高、风化强烈地段或砂泥岩互层地段,是岩质斜坡失稳形成地质灾害的易发区。在黄土斜坡地带,人工开挖形成高陡边坡,成为地质灾害潜在隐患地段。

3.岩土体结构面

调查区岩土体结构面主要是黄土内部顺坡披覆的古土壤层、黄土与红粘土层界面、黄土与砂、泥岩层界面、滑坡所形成的滑塌节理面、滑面以及坡体内部发育的构造节理面、垂直节理面、裂隙等。由于渗透性的差异,在性质差异较大地层岩性界面上形成了隔水层,汇聚的雨水使得上覆黄土、泥岩软化、泥化,抗剪强度降低,形成软弱带,诱发滑坡的发生;而滑坡体内部发育的滑塌节理面、滑面是诱发滑坡复活或发生滑塌的主要因素。这些结构面的存在对坡体的稳定性有着潜在的威胁,一旦条件成熟,可能引起滑坡或诱发滑坡复活而造成灾害的发生。黄土内部发育的构造节理及垂直节理、裂隙等是黄土边坡失稳的一个重要因素。黄土边坡常常沿这些内部节理面发生破坏,比如居民窑洞发育构造节理,则常常沿构造节理面发生塌窑事故。高陡边坡地带,土体常沿垂直节理发育并形成卸荷裂隙、拉张裂缝,形成危岩、危坡。受构造作用,岩体内部发育共轭节理,岩体被切割为不同大小、不规则的岩块,受物理风化作用,发育风化裂隙,使得岩体更加破碎,在边坡尤其是高陡地段易发生崩坠现象,造成灾害。在砂泥岩互层高陡边坡地段,泥岩抗剪强度较低,与砂岩强度差异较大,再加之易受风蚀作用,致使上部砂岩悬空、鼓胀外倾,形成危岩体,易发生倾倒、拉裂、鼓胀等形式的崩塌灾害。

4.人类工程活动

人类工程活动是诱发地质灾害发生的直接因素。人类工程活动主要以不合理的斩坡、开挖及修建蓄水库为主。由于受地形地貌因素的制约,调查区居民为了居住、生活及经济建设等的需要,工程活动强烈,进行大量的开挖、斩坡等,造成坡脚应力集中并急剧增大,原有的应力平衡状态遭到破坏而失去平衡,诱发坡体失稳而发生塌方事故。比如尚合年村滑塌,麻塔崩塌等灾害,均是由于不合理的开挖,造成边坡过陡,引起坡脚应力过于集中,在其他因素的影响下发生的塌方事故,造成伤亡及财产损失。再如延安市卫校东侧沟内滑坡,是由于人为不合理的斩坡、开挖坡脚,导致滑坡发生,将石砌挡墙推倒,滑体涌至居民屋墙。目前,坡体坡度约45°,处于不稳定状态,对居民生命财产构成直接威胁。而人工修建蓄水库,引起地下水位抬升,导致坡体容重增加,破坏了原有的应力平衡状态,且地下水导致坡体内部软弱带软化、泥化,抗剪强度降低,易诱发滑坡的发生或老滑坡的复活。赵家岸滑坡由于坡后库岸蓄水,导致地下水位上升,村民地基严重渗水,且地下水位达到了老滑面上部,并有泉水出露,滑坡体稳定性很差,有复活的危险,危及赵家岸村民的生命财产安全。

根据以上因素分析对比,结合坡体变形迹象及特征,对部分重大灾害点进行稳定性判别(表324,表3-25)。

表3-24 主要滑坡灾害点稳定性分析

续表

表3-25 主要不稳定边坡点稳定性分析表

(四)主要地质灾害稳定性综合评价

前面已经用数值分析法、极限平衡法和工程地质类比法对主要灾害点的稳定性进行了分析,三种方法分析的侧重点不一样。数值法主要是采用弹塑性力学理论和数值计算方法,从研究岩土体的应力和位移场的角度,分析评价岩体在一定的环境条件下的稳定性状态;极限平衡法主要运用极限平衡理论来评价斜坡稳定性;而工程地质类比法则是把已有的滑坡或斜坡的稳定性研究经验应用到条件相似的滑坡或斜坡的稳定性判定中去。影响斜坡稳定性的因素比较复杂。因此,本节将综合这三种方法的计算结果,来综合判断主要地质灾害点所处坡体的稳定性。

综合分析结果表明:30处滑坡和不稳定斜坡中,稳定的3处,占总数的10%;较稳定的7处,占总数的23.3%;不稳定的20处,占总数的66.7%(表3-26)。

表3-26 地质灾害稳定性综合评判表

二、地质灾害危害性评估

(一)评估标准

地质灾害的威胁对象包括人口和财产。人口可以直接用数量来表征;财产包括土地、牲畜、房屋、道路等。根据遥感解译和实际物价调查资料,建立主要经济价值评估标准(表3-27),按照威胁对象的危险程度和易损性,依据标准逐一累加计算。地质灾害灾情与危害程度分级标准按表3-28的规定评估。

表3-27 承灾体经济价值评价标准表

表3-28 地质灾害灾情与危害程度分级标准表

1)灾情分级:即已发生的地质灾害灾度分级,采用“死亡人数”或“直接经济损失”栏指标评估;2)危害程度分级:即对可能发生的地质灾害危害程度的预测分级,采用“受威胁人数”或“直接经济损失”栏指标评估。

(二)现状评估

1.滑坡

根据收集以往滑坡资料,以及本次实地调查结果,调查区近些年来有记载的、造成一定经济损失和人员伤亡的滑坡共有34处。在这34处滑坡灾害中,除1处较大级滑坡外,其余33处灾情均为一般级,总共造成5人死亡,以及102.6万元的财产损失。从已查明日期的滑坡来看,新滑坡灾害发生率为0.76处/年(表3-29)。

表3-29 滑坡灾害灾情与危害程度评价表

2.崩塌

崩塌发生后,其遗迹不易保存,地质历史时期的崩塌一般多不存在,对其发生时间尚难以进一步查明。据有时间记载的崩塌调查资料,可对近年来崩塌发生的频率给出基本的数据。从20世纪60年代以来,共发生有记载的崩塌灾害16处,其中较大级崩塌2处,一般级崩塌14处,死亡12人,经济损失48万元(表3-30)。由于调查根据灾情分级,区地质环境条件差,人口密集,尽管年发生频率低,亦应引起人们的特别关注,每一处都有可能带来生命财产的损失。

表3-30 崩塌灾害灾情与危害程度评价表

(三)预测评估

地质灾害危害性预测评估就是对可能危及居民生民财产安全、工程建设的地质灾害的危害性做出评估。本次评估分滑坡、崩塌以及不稳定斜坡三种类型,对其危害性进行预测评估。评估内容主要是受威胁人数以及由于财产损毁而可能造成的潜在经济损失。

1.滑坡

区内滑坡可分为古滑坡、老滑坡和新滑坡3类型,这些滑坡在自然和人为因素的双重诱发下,均存在复活的可能性。野外调查滑坡总共有293处,可分为活动滑坡和不活动滑坡。本节筛选出活动滑坡39处,占调查滑坡总数的13%,对其危害性进行预测评估。

通过对这39处滑坡的危害性预测评估,危害性大的有8处,危害性中等的有25处,危害性小的有6处。总共有约2098人受到滑坡威胁,潜在经济损失约2863万元(表3-31)。

表3-31 滑坡灾害危害性预测评估

续表

2.崩塌

调查区地质灾害以黄土滑坡为主,崩塌居次;调查中所指的崩塌,有崩塌隐患和已发生崩塌两种,这里所指的是已发生崩塌的潜在危害性预测。根据实地调查和以往资料调查结果,区内所发生的52处崩塌灾害中有14处目前还处于不稳定状态,存在潜在危险,占调查崩塌总数的27%。崩塌发生的坡面,在以降水为主的风化作用下,也被改造,且极易生长植被,也不易发觉。既成崩塌少,并不意味着崩塌的危害性小。崩塌的形成条件在调查区普遍存在,黄土深厚,直立性好,垂直节理发育,延河及其支流两岸黄土陡壁悬崖比比皆是,大多窑洞都是选择很陡的坡面(>65°)水平掘进,窑洞前平房和院子都置于高陡黄土悬崖崩塌的威胁下。

这14处崩塌灾害中,危害性中等的有6处,危害性小的有8处,危害性大的暂无,这与崩塌灾害规模、影响范围较小有关。14处崩塌共威胁240人,潜在经济损失56万元(表3-32)。

表3-32 崩塌灾害危害性预测评估

3.不稳定斜坡

不稳定斜坡是一种潜在地质灾害,既有基岩斜坡,也有黄土斜坡,以及黄土-基岩斜坡,在调查区广泛分布。坡下多有居民居住,或为企事业单位办公、生产基地,是全区生产建设和人民生活的主要场所,从而构成潜在危害。不稳定斜坡只是对斜坡的稳定性做出不稳定的基本判断,但对其不稳定的变化模式没有给出确定的结论。这是由于潜在的变化存在许多不确定的因素,尚不能对其未来变化做出准确的预测。

在详细调查的51处不稳定斜坡中,有11处存在较大潜在威胁,占不稳定斜坡总数的22%。对其威胁人口和潜在经济损失进行估算统计表明,危害性较大的不稳定斜坡有3处,危害性中等的有8处,其他40处危害性较小(未列入)。总共威胁909人,潜在经济损失652万元(表3-33)。调查中只是有选择性地在不同地区选取了部分不稳定斜坡作为调查点,以反映不稳定斜坡的基本特征。实际上,未发生过崩滑灾害的不稳定黄土斜坡其危害性最难评估,对不稳定斜坡的预测评估工作有待于进一步的研究探索。

表3-33 不稳定斜坡危害性预测评估

续表

⑦ 岩溶区土洞发育机制的分析<sup>[]</sup>

土洞是岩溶区常见的一种岩溶作用产物,它的形成和发育与土层的性质、水的活动、岩溶的发育等因素有关。其中地下水或地表水的活动是土洞发育最重要最直接的影响因素。地下水或地表水的活动和运移,将对土层产生潜蚀作用及崩解作用而形成土洞。此外,土洞洞体形成后,其洞壁周围将产生应力集中现象,当地下水位发生变化时,将进一步改变土洞洞壁周围土体的应力状态,并有可能致使洞体周边处产生破坏,土洞进一步扩大而最终导致塌陷。

此外,土洞发育具有以下特征:

(1)土洞多位于粘性土层中,砂土及碎石土中少见。在粘性土中,凡颗粒细、粘性大、胶结好、水理性稳定的土层,不易形成土洞;反之,则易形成。

(2)在溶槽处,经常有软粘土分布,其抗冲蚀能力弱,是土洞发育的有利部位。

(3)土洞是岩溶作用的产物,其分布受岩性、岩溶水、地质构造等因素控制。凡具备土洞发育条件的岩溶发育的地区,一般均有土洞发育。

(4)土洞常分布于溶沟两侧和落水洞、石芽侧壁的上口等位置。

(5)由地下水形成的土洞多位于地下水变化幅度以内,且大部分分布在高水位与低水位之间。在最高水位以上及低水位以下,土洞少见。

1.2.1 潜蚀作用、崩解作用和真空吸蚀作用对土洞发育的影响

1.2.1.1 潜蚀作用对土洞发育的影响

潜蚀是在地表水或地下水的渗透作用下,土体中的细颗粒在孔隙通道中移动并被携出的现象。在岩溶区的土层中,渗透水的水力梯度加大,水力流速加快,动水压力增强,且水力坡度达到某一临界值Jkp时,土中细粒被渗流带走迁移,产生土洞甚至塌陷。太沙基(1933)根据单位体积的土体在水中的浮重和作用于该体积的渗透水相平衡原理,得到土体产生潜蚀作用的临界水力梯度Jkp为:

Jkp=(Gs-1)(1-n) (1-6)

式中:Gs为土颗粒相对密度;n为土体的孔隙率。

当土层中地下水渗流的水力梯度大于临界水力梯度Jkp时,土层就有可能产生潜蚀破坏。例如:桂林市漓江一级阶地中的冲洪积的粉质粘土、粉土地层,其土颗粒相对密度一般为2.65~2.70,孔隙率n为40%~50%,那么其产生潜蚀的临界水力梯度为0.83~1.02,当地下水位急剧变化时,其水力梯度就有可能超过临界水力梯度,土体将产生潜蚀破坏。据调查,桂林市漓江两岸的80%的土洞及塌陷发生在水位变化幅度较大的冬春两季,尤其是冬春之交,如桂林工学院教职工宿舍32场地地面产生的塌陷、图书馆地面塌陷等,就是由于粉质粘土、粉土地基中地下水的潜蚀作用而产生的。

一般来说,潜蚀作用多发生在黏粒含量相对较少,颗粒相对较粗的土层中,纯粘土中一般较少发生,粘土中由于含有较多的亲水矿物,在地下水的作用下较易发生崩解作用。潜蚀作用还与土颗粒的级配和颗粒大小有关,级配良好的砂、土,其空隙相对较大,较易产生潜蚀破坏,其临界水力梯度相对较低,抵抗渗透变形的能力较弱;配级不良的砂、土,粗颗粒空隙常被细颗粒充填,其空隙相对较小,较难发生潜蚀;而黏性土,由于其孔隙通道细小,粒间具有一定的黏结力,较不易产生单个颗粒的潜蚀作用,但在粗、细颗粒交界处,则容易产生接触冲刷或接触流土而形成土洞。例如:在桂林漓江两岸,广泛地存在黏性土、粉土、砂等二元或多元结构,当地下水位变化时,渗透水流垂直于层面运动,将细颗粒带入粗粒层中而产生接触流土,并最终发育成土洞乃至塌陷。

1.2.1.2 崩解作用对土洞发育的影响

黏性土由于浸水而发生崩解散体的现象叫崩解,崩解是由于土体没入水中后,水进入孔隙或裂隙中的情况不平衡,因而引起粒间扩散层增厚的速度也不平衡,以致粒间斥力超过引力的情况也不平衡,故产生了应力集中,使土体沿着斥力超过引力最大的面崩落下来。土体的成分、结构是影响崩解性的主要因素。

岩溶区广泛分布红粘土,红粘土含有较多的亲水矿物,例如:通过X射线衍射分析,桂林市区残积红粘土矿物成分中,伊利石约占40%~60%,高岭土占20%~30%,伊利石/蒙脱石混层矿物占10%~20%,它们的结构联结力较弱,易于水化,遇水易产生崩解。由于水化崩解后的土将会在自重作用下脱离土体,故土体不断产生新的临空面,使水化崩解过程可以向上部继续发展,甚至在地下水不运动的情况下,土体也可以产生较明显的破坏裂纹空间。一般来说,当土层出现干湿交替变化,土层的含水量或饱和度产生较大变化时,土层更容易崩解。这也是红粘土中土洞塌陷多发生在暴雨过后水位上升或人为降水之后的原因之一。

地下水位升降是土层崩解乃至塌陷最活跃的因素,地下水位变化愈频,土体崩解崩解愈快。根据不同水位变幅的崩解试验,土层的崩解率总体上随着水位的变幅的增大而增大,而水流速度的改变对土层崩解的影响在短期内是不大的。

除地下水动力因素外,地下水化学成分也是导致岩溶区土层土洞发育并塌陷的原因之一。不同水质的水体对土体崩解的影响存在明显差别,其中酸性水体的作用更具有突发性;如1981年,桂林市第二造纸厂排放的酸性溶液渗入地基中,造成较大范围的土洞发育及塌陷,主要是由于酸性液体渗入土体,使土体中的CaCO3或 CaMg(CO3)溶解,粒间联结变小,结构破坏。

水溶液的成分对崩解作用的影响,还表现为当水溶液的阳离子为一价离子时,缓慢崩解成细小的颗粒,并使水混浊成悬液,并且与原始含水率无关;若水溶液中的交换阳离子为二价的镁和钙时,则崩解特征与原始含水率有关,干土很快地崩解,湿土较为稳定;当水溶液中阳离子为三价的铝和铁时,土不易崩解。例如:桂林地区地下水中的阳离子主要为二价钙离子,其次为二价镁离子,土体在干燥时易崩解,而湿时较稳定,当久旱未雨后突遇大雨,地下水位升高,原来干燥的土遇水浸泡很容易产生崩解而形成土洞甚至塌陷。

1.2.1.3 真空吸蚀作用对土洞发育的影响

当经潜蚀作用和崩解作用形成较小规模的土洞后,真空吸蚀作用将有利于土洞的发育和扩大。真空吸蚀作用,是在岩溶区特定的地质-水文地质结构体系内,即岩溶真空地质环境中发生与形成的,与岩溶网络地下水面下降在土洞和土洞通道内造成的真空相关,是导致土洞周边土体结构机械破坏的原因之一。当地下水位大幅度下降到土洞空腔底面下时,空腔上部便形成相对真空,此时对盖层产生强大的抽吸力,并可引起以下三种作用:

(1)初始真空吸盘吸蚀作用:当土洞内存在地下水,因地下水位大幅下降,当水压面下降刚刚转为无压时,水面对盖层底面便产生如同吸盘一样的液面吸吮作用,紧紧地吸住土洞盖层,使土洞周边土体结构破坏并进一步发展扩大。

(2)真空腔吸蚀作用:在土洞空腔内,当初始真空吸盘离开盖层底面后,在下降的水与盖层之间形成真空腔,对土洞周边土体产生嘬蚀作用,把盖层内细小土粒和水分等嘬吸出来,使土洞周边土体结构变疏松,含水量增大,加快剥蚀,使土洞扩大。

(3)漩吸漏斗吸蚀作用:这是一种发生在地表水体与真空腔之间的盖层内部吸蚀作用,当土洞覆盖层厚度不大,土体为粉质粘土、粉土时。例如漓江一级阶地二元结构中发育土洞(土洞盖层厚度一般小于10m)。由于土洞处于相对真空,地表水在大气压的作用下,易被吸入土洞真空腔,并在盖层的通道内形成漩涡流,将穿透盖层周围土颗粒而使土洞发展扩大。

1.2.2 地下水位升降对土洞发育扩大的影响

岩溶区的土层,经前述地下水的潜蚀作用或崩解作用,起初形成较小的土洞,并认为土洞为球形。根据弹性理论,土洞洞壁周围将产生应力集中。

1.2.2.1 球形土洞的弹性力学分析

设一半径为a的球形土洞,受内压力为Pa;并假设同球心半径为b的球面上受一均布外压力Pb(设b>>a)。此问题相当于厚壁球形容器在内、外压力作用下的轴对称弹性力学问题(图1-1)。

图1-1 厚壁球形容器在内、外压力作用下示意图

Fig.1-1 Diagram for thick wall spherical container with the action of inner pressure and external pressure

根据弹性力学分析,不难得到球形容器的应力状态方程:

岩溶区溶洞及土洞对建筑地基的影响

式中:σθ、σr分别为半径为r时,球形容器球面上的切向应力、径向应力(kPa);a、b分别为球形容器的内、外半径(m);Pa、Pb分别为球形容器所受内、外初始压力(kPa)。

由于b≫a,即

,所以(1—7)式可写成如下:

岩溶区溶洞及土洞对建筑地基的影响

当只有外压力Pb作用时,即Pa=0,此时(1-8)式变为如下:

岩溶区溶洞及土洞对建筑地基的影响

根据圣维南原理,由于外压力Pb作用,将对容器内半径a边界周围附近产生应力集中,而远离内边界越远,应力集中影响越弱,其应力状态越接近原始应力。据(1-9)式可知:当r=3a时,σθ=1.02Pb,σr=0.96Pb与原始应力Pb误差不超过4%,从误差角度上来说,满足工程要求。

而当只有内压Pa作用,Pb=0时,此时(1-8)式可写成如下:

岩溶区溶洞及土洞对建筑地基的影响

同样,由于内压 Pa的作用,随着 r 的增大,其影响越来越小,当 r=3a时,σθ=0.02 Pa,σr=-0.04 Pa,即当r=3a时,由于Pa的作用,其对r=3a球面上应力的贡献分别只有0.02 Pa和-0.04 Pa,也小于5%Pa,满足工程上的要求。

通过对上述厚壁球形容器的应力分析可知:对于地面以下深度为h,半径为a的球形土洞。有地下水作用时,可视为产生的内压力Pa,而土层自重压力,可视为产生的外压力Pb,其影响半径可认为是3a,即只需分析Pb在b=3a时球面上的外压力对土洞内产生的应力集中。当经潜蚀或崩解作用产生的土洞半径较小时,即h≫a,此时可认为:Pb=γh,Pawhw。当无地下水时,即Pawhw=0;Pb=γh。将其代入(1-8)式,可以到球形土洞周边的应力状态。

1.2.2.2 土洞周边土体塑性破坏判别

当根据(1-8)式求得土洞周围土体任一点的应力状态后,可将其代入莫尔—库仑极限准则进行判别,判断该处是否产生塑性破坏。

莫尔—库仑极限平衡条件为:

岩溶区溶洞及土洞对建筑地基的影响

1.2.2.3 应用举例

某粉质粘土层中,设地面以下5m处有一经潜蚀作用形成,半径a=0.200m土洞,地下水位埋深为3.0m,粉质粘土的抗剪强度指标黏聚力c=26kPa,内摩擦角φ=18°,重度γ=18kN/m3,饱和重度γsat=19kN/m3

有地下水时土洞稳定性判别

当有地下水时:Pawhw=20(kPa)

岩溶区溶洞及土洞对建筑地基的影响

代入(1-8)式得土洞周边处(r=a)的应力为:

σθ=98(kPa);σr=20(kPa)

根据(1-11)式进行破坏判别:

得临界状态时的

岩溶区溶洞及土洞对建筑地基的影响

所以:σr=20kPa>σ3=13.9(kPa)。(安全)

地下水位下降时土洞稳定性判别

若天气久旱未雨(如秋冬季)地下水位下降至土洞底面以下,此时Pa=0;而Pb未变,Pb=72(kPa),将其代入(1-8)式得

土洞周边处应力(r=a):σθ=108(kPa);σr=0;

根据(1-6)式进行判别得临界状态的σ3=19.2(kPa)

即:σr=0<σ3=19.2(kPa);(破坏)

由此可见,由于地下水位的下降,改变了土洞周围土体的应力状态,导致土洞周围土体由安全变为破坏。

由于土洞认为是球对称,还可以求得土洞的破坏半径r大小,水位下降后,据(1-8)式得土洞周围的应力状态:

]]

θ=σ1; σr3

并代入极限平衡条件(1-6)式得:

r=0.216m

由此可见水位下降后,土洞的半径由原来的0.200m破坏扩大到0.216m。

综合前面分析可以得出以下结论:岩溶区地下水或地表水的活动,使土体中的细颗粒在孔隙通道中移动携出,产生潜蚀作用而形成土洞;岩溶区红粘土中富含亲水矿物,遇水易水化产生崩解作用,也是土洞形成的原因。一般来说,潜蚀作用多发生在砂、土层中,而崩解作用多发生在黏性土层中。真空吸蚀作用,有利于土洞的发育扩大。经潜蚀作用或崩解作用形成土洞后,土洞周边将产生应力集中;而地下水位的变化,将使土洞周围土体的应力状态进一步发生改变,并有可能导致土洞周围土体产生塑性破坏,使土洞进一步扩大甚至塌陷。

⑧ 典型滑坡

一、东馨家园滑坡(BT3067)

(一)概述

东馨家园滑坡位于桥沟镇东十里铺村延河河谷北坡,东临延安市糖厂,西到东十里铺村。地处东经109°31′38″~109°31′48″,北纬36°37′41″~36°37′51″。滑坡右翼紧邻已竣工的经济适用小区——东馨家园,滑体前缘下部为包-南线(原210国道),东与延安机场相接。

(二)滑坡基本特征

1.滑坡周界及形态特征

东馨家园滑坡周界在平面上呈簸箕状,滑体上窄下宽,上下薄,中间厚且突出,两侧稍低,整体倾向南东。滑坡两侧以冲沟为界,南北长340m,东西长300m,面积10×104m2,体积250×104m3,总体地势北高南低。滑体在剖面上为凹形,表面呈阶形;上陡下缓,整体坡度15°。滑坡后壁呈圈椅状,高达50m。滑壁倾向南东,倾角60°,崩塌现象时有发生。滑体中下部为人工改造的四级平台,各台面平整,台面高差6~10m,第四级平台台面高程约998.45m。滑坡前缘高程949.50m,高差50m,滑坡顶部距滑坡前缘高差100m(图5-1)。

2.滑体物质结构特征

滑体物质结构为滑坡堆积层和基岩。表层滑坡堆积层主要由黄土经崩塌、滑移形成的碎裂状、块裂状土体组成,滑体垂直节理、卸荷裂隙发育;基岩以三叠纪黄绿色砂泥岩、灰黑色炭质泥岩或砂泥岩互层为主,伏于黄土之下,在滑坡范围内未出露。经探井揭露,Qp3、Qp2及古土壤混杂,并可观察到滑带土。不同部位滑带土的物质组成有所不同:在滑体前部,岩性为碎石土,为基岩在风化、上覆土体巨大推力作用下形成的,可见镜面、擦痕;滑体后部滑带位于黄土中,为粉质粘土。滑带土坚硬致密,呈褐红色,表面光滑,擦痕清晰。由于滑体后缘拉张裂缝的发育,雨水入渗,致使滑体内部地下水集聚,在开挖过程中可见有少量地下水溢出。滑体下伏基岩呈层状构造,产状310°∠2°,层序正常,与原状Qp2黄土共同构成滑床。滑体及中后部滑床中更新世黄土物理力学性质(表5-1)与滑坡的形成和稳定性关系密切。

(三)滑坡形成的机理分析

根据滑坡区地质结构和水文地质特征分析,滑坡形成与延河侧向侵蚀作用有关。前部滑床位于延河二级阶地基座台面,滑坡的发生不会早于二级阶地时代;前缘位置已是其下滑之极限,滑坡未超出二级阶地前缘,滑坡发生不应晚于二级阶地时期。综合推断认为,该滑坡发生于二级阶地的形成时期,即该滑坡为Qp3时期老滑坡。在二级阶地时期,滑坡段为延河侵蚀岸(凹岸),坡脚在河水不断侵蚀下,高耸的黄土斜坡在重力作用下向河谷方向变形,产生位移,坡脚应力集中急剧增加;加之降水在地表汇集,沿垂直节理面入渗,不仅增大了坡体的重力,而且在黄土-基岩接触面上形成饱和层,致使上覆土体强度降低,并不断软化形成坡体内部的软弱带。软弱带与坡体应力集中区贯通,坡体整体失稳。在重力作用下沿其滑动,并在坡脚处剪出形成滑坡,致使河水南移,形成目前的凸岸现状。

图5-1 东馨家园滑坡平面、剖面图

1—晚更新世黄土;2—中更新世黄土;3—古土壤;4—滑床及滑向;5—粉质粘土(滑坡堆积);6—中侏罗世泥岩;7—中侏罗世砂岩

表5-1 滑体土物理力学指标

(四)滑坡稳定性分析

滑坡形成时期较早,势能降低较大,地下水排泄通畅,目前无失稳变形迹象。纵剖面反映出滑坡主滑段短,阻滑段长的特点,说明滑坡目前整体稳定性良好。通过稳定性分析验算,老滑坡在天然状态下整体稳定系数为1.7,在饱和状态下整体稳定系数为1.58,目前整体处于稳定,与前面的定性分析结论一致。

目前在前缘人为开挖对滑坡稳定性极为不利,但尚未影响到滑坡整体稳定。在滑体中后部取土修整,对滑坡整体稳定性是有利的。人工开挖使老滑体后部坡体变陡,增加了坡体产生失稳的临空条件,垂直节理很发育。经对滑坡体后部坡体稳定性进行计算,表明其处于基本稳定状态,但在雨季或暴雨期间可能引起局部失稳,产生崩塌、滑塌。

二、虎头峁滑坡(BT2121)

(一)概述

虎头峁滑坡属老滑坡复活。滑坡位于延安火车站南2km,南川河左岸,卧虎山东侧黄土斜坡地带。坡体近南北走向,地形起伏大。滑体位于黄土梁与阶地之间的斜坡地带,地面标高1010~1150m,相对高差140m。在其东侧一级阶地上拟建经济适用房小区(王家沟区),由于滑坡目前后缘发育有大量张裂缝和沉陷坑,雨季滑坡后壁有变形现象,2006年8~9月该滑坡中后部局部发生小型滑塌,有复活迹象,故建房计划尚未实施。

(二)滑坡基本特征

1.滑坡周界及形态特征

虎头峁滑坡在平面上呈近似“簸箕状”,两侧以冲沟为界,后陡前缓,周缘可明显看到错动带。滑坡周界范围清晰,滑体平均坡度20°,在剖面形态上呈凹形,表面呈阶形。滑体纵向长280m,横向宽260m,面积7×104m2,体积105×104m3

滑坡后缘为圈椅状陡壁,高20~50m,坡角50°~75°,后壁中部局部发生新崩塌;下部可见滑塌堆积物。滑体中部为台阶状,台面平坦。滑坡前缘存在陡坡,以下地形平缓。滑体中部沿坡体地形发育一条纵向冲沟,前缓后陡,将滑体分割成南北两部分。据钻孔资料,滑坡滑面呈后陡前缓坐椅状,北滑体平均厚度12m,南滑体平均厚度26m。

2.滑坡物质结构特征

滑坡结构自上而下划分为滑体、滑带和滑床三部分。滑体物质成分主要是Qp2及Qp3黄土,黄褐-褐色,软塑-硬塑,含少量钙质结核,土体挤压破碎现象明显;土中夹有错动古土壤层,硬塑,含较多钙质结核。土体物理力学性质见表5-2。

滑带分为上下两部分,物质成分不同。上部为0.5~1.5cm厚的黄土状土,黄褐色,软塑,含水量增大,结构紊乱,土体物理力学性质见表5-3;下部为0.5~1.0m厚泥质砾石层和强风化泥岩,砾石层粒径0.5~20cm,砂土充填,磨圆度较好;泥岩灰绿—灰黄色,厚度10~30cm,被上覆滑体错动挤压成泥状。滑床由两部分组成,即Qp2黄土和下伏侏罗纪灰绿—灰黄色页岩、砂岩组成。滑体前部沿侏罗纪页岩、砂岩顶面滑动,构成滑坡前部滑床;滑体中后部切割Qp2黄土形成滑面并沿其滑动,形成滑坡后部滑床,滑床土体物理力学性质见表5-4。

表5-2 滑体土物理力学性质指标统计表

表5-3 滑带土物理力学性质指标统计表

表5-4 滑床土物理力学性质指标统计表

3.滑坡变形特征

滑坡后缘为一陡壁,滑动迹象明显,下方为滑体下滑拉裂形成的后缘谷底,可见土体明显下错迹象。北坡体后缘土体下滑形成拉张裂缝带,总体走向NW340°,宽度10~40cm,延伸长度10~45m,两侧落距10~20cm;坡体中部表层土体疏松,陡坎侧壁土体结构破坏,垂直裂缝明显;前缘坡脚由于坡体变形,民房墙体出现裂缝。南坡体后缘也发育有走向NW320°、宽约40cm的拉张裂缝带,裂缝带延伸长度50m,两侧落距10~30cm;中部后缘处土体下凹,东西两侧有两条近平行裂缝,走向NW320°,宽度20~100cm,长度35m,两侧落距30~150cm,周围土体发生错动。坡体前缘陡坡处可见走向SE120°的拉张裂缝,宽度10~30cm,长度10~35cm,为坡体向侧向沟谷滑动形成。坡脚处可见滑塌破碎岩体。

(三)滑坡形成机理

滑坡的形成机理受多个因素决定。在地形上,受区域地壳上升、河流下切及侧蚀影响,坡体前部形成较大临空面,直立性良好,斜坡呈现出坡度较大的陡峭斜坡。该区降水集中在7~8月份,常出现暴雨。雨水入渗不仅增大坡体静水压力,且软化土体,大大降低土体抗剪强度,诱发滑坡产生。在地层岩性上,坡体上部为Qp2和Qp3黄土,下伏侏罗纪泥质页岩及砂岩,产状近水平。黄土垂直节理发育,为雨水入渗提供了良好通道;雨水沿黄土垂直节理入渗,并在下伏基岩接触面处汇聚。上覆黄土受雨水浸泡,抗剪强度降低,不断软化并形成坡体软弱带。坡体沿其向下滑动变形,坡体前部受到南川河的侧蚀作用,前缘形成较大临空面,导致坡脚应力急剧集中。当坡体软弱带构成的滑动面全面贯通时,坡体整体失稳,形成滑坡。人类工程活动包括开挖坡脚、基坑以及开挖坡体修筑道路等,改变了坡体应力状态,降低了坡体稳定性。

(四)滑坡稳定性分析

滑坡发生在1997年7月份一场暴雨之后。据现场勘查资料,滑坡滑体拉张裂缝、裂缝之间的块体有明显下错现象,滑坡后壁后缘近期出现多处滑塌现象。滑坡侧缘可见土体被推移、拉裂,前缘土体有被推出并顺坡滑落现象。坡体上出现多处拉张裂缝及错动裂缝,后壁时有崩-滑塌现象发生(图5-2)。坡体目前处于活动阶段,坡体稳定性较差。经稳定性定量计算,与前面定性分析结果一致,滑坡整体稳定性系数较小(1.03~1.04)。滑坡规模较大,前缘具有滑动临空面,滑体上裂缝密集,宽度、长度和深度都较大。降雨尤其是大暴雨容易沿裂隙入渗,发生再次滑坡的可能性很大。遇连阴雨或大暴雨可能会引发滑坡转化为泥石流灾害,影响拟建的王家沟小区安全。

图5-2 虎头峁滑坡工程地质剖面图

1—晚更新世黄土;2—中更新世黄土;3—古土壤;4—粉质粘土(滑坡堆积);5—中侏罗世砂岩;6—滑面及滑向

三、赵家岸滑坡(BT3021)

(一)概述

滑坡位于河庄坪镇赵家岸村,属黄土-基岩接触面老滑坡复活。滑坡东侧为延河和延-塞公路,赵家岸村居民居住在滑坡体上。滑坡顶部标高1100m,坡脚标高988m,相对高差112m。滑体南北宽350m,东西长200m,面积3.5×104m2,体积175×104m3。坡体前部由于人工开挖建房而变得较为破碎。为解决延安市供水,2003年春季在滑坡所在坡体后侧修建了红庄水库。由于水库蓄水,导致地下水位抬升,滑体上出现渗水现象,居民住房变形、墙体开裂,甚至塌落。

(二)滑坡基本特征

1.滑坡周界与滑体特征

滑坡在平面上近似半圆形,后缘可看到明显的因滑体下错形成的陡壁。滑坡两侧以冲沟为界,前部位于延河一级阶地上,可见散布卵石,滑坡周界十分明显。滑体剖面为凹形(图5-3),坡向105°,整体坡度30°。滑体中后部陡峭,前部因人工开挖、修建地基平台而变缓。滑体土因滑动而受强烈扰动,节理发育,产状100°∠60°,270°∠70°,将滑体分割成不同形状、不同大小的块体。

2.滑坡物质结构特征

滑坡物质结构由滑坡堆积土、黄土以及下伏侏罗系中统延安组砂泥页岩互层组成。滑坡堆积土主要由Qp3和Qp2黄土滑动后的混杂堆积物组成,结构破碎、疏松。受滑动作用形成的节理,将滑坡堆积土分割成不同形状、不同大小的块体,可见散乱堆积的钙质结核。结核颜色不一,灰黄-黄褐-红褐色混杂,呈潮湿-饱和状态,可塑-软塑;滑体上部土体稍湿-潮湿,可塑-硬塑。滑坡前部,滑床为基岩,属侏罗系中统延安组砂泥岩互层。砂岩呈灰白—灰黄色,泥岩呈灰绿色,出露地表的基岩表面受风化作用较为破碎。滑坡中后部,滑床为Qp2黄土,滑床内可见数层古土壤,红褐色,硬塑,并可见钙质结核层。赵家岸滑坡目前处于蠕动变形阶段,稳定性较差。滑坡标高988~1100m,居民居住主要集中在1000~1020m处。在滑坡后部的水库于2003年春季修建,2004年秋季完工并开始蓄水,导致地下水位上升。2004年秋冬季节引起老滑坡体上的村民房屋(标高约1000m)地基、墙体渗水,导致地基沉降、墙体开裂、变形,窑洞顶部掉块、后掌面塌落,窑洞无法居住,造成村民新建房屋和职业技术学校房屋废弃。

图5-3 赵家岸滑坡及红庄水库剖面图

1—晚更新世黄土;2—中更新世黄土;3—古土壤;4—粉质粘土(滑坡堆积);5—砂卵砾石;6—中侏罗世砂岩;7—中侏罗世泥岩;8—滑动画及滑向;9—水位线;10—泉

3.滑坡变形特征

2005年由于连续降雨,库水位上升达到1018m,滑坡右翼同时出现地基渗水。为减少库水位对滑坡居民房屋的影响,降低了水库水位,地基渗水情况得到初步缓解。目前,在滑坡右翼基岩出露点,可见地下水渗出。经调查,滑体上居民房屋已产生鼓胀变形和开裂,居民院内水井周壁塌落,出现渗冒混水迹象。滑体目前处于蠕动变形阶段。

(三)滑坡失稳机理

赵家岸滑坡是一处黄土-基岩接触面老滑坡,原处于延河侵蚀岸。受河水侧蚀作用,形成较大临空面及导致坡脚应力集中,加之雨水入渗侵蚀、软化,在黄土-基岩接触面形成贯通的坡体软弱带,导致坡体失稳,产生滑坡。目前老滑坡处于蠕动变形阶段,在一定条件下可能失稳。其失稳机制由以下几方面决定:

坡体后部水库对坡体稳定性影响很大。水库位于滑坡后侧,坝高1025m,蓄水位高于或与赵家岸村居民点标高相当。坡体下伏基岩为侏罗系延安组砂泥岩互层,泥岩风化剥蚀强烈,砂岩沉积层面间形成大孔隙,节理裂隙发育。节理密度2条/m,产状300°∠75°和130°∠85°。水库蓄水后,水流沿着砂岩节理、裂隙及砂岩结构面间孔隙入渗,一部分水流通过地下径流到达老滑坡滑面并沿其流动,在滑坡前部居民点渗出;另一部分沿基岩节理、裂隙及结构面出露地表。坡体内部地下水径流增加,导致坡体内地下水位上升,增大坡体静水压力及动水压力,对坡体有一定侵蚀作用,降低了土体抗剪强度。更为严重的是,库水位升降对坡体稳定性破坏很大,水位升降变化,导致坡体应力不断进行调整,坡体随之产生变形。土体是不能承受拉力作用的,坡体的平衡状态被打破,导致局部应力集中。在这种不断的“疲劳效应”作用下,坡体很容易失稳产生破坏。滑体节理发育,透水性较强。遇到雨季,雨水会沿着节理面入渗,节理面上覆土体在雨水浸泡、软化作用下沿节理面产生滑塌。

滑体整体坡度较陡,而滑体前部由于人工斩坡、开挖建房,使得坡体后部相对更为陡峭。坡体下滑力集中在滑体前部,坡体缺少抗滑力,加之老滑面受水的侵蚀润滑作用,在雨季或暴雨天气滑体容易失稳、老滑坡再度复活。

(四)滑坡稳定性分析

滑坡整体坡度较陡,节理发育,坡体极易沿其产生崩滑;水库的修建造成居民房屋出现变形、开裂、塌落和地基沉降等现象,使得坡体内地下水位上升,静水压力及动水压力增加;地下水对老滑面的侵润、软化,使坡体稳定性大为降低;房屋前部产生鼓胀变形,居民院内水井周壁鼓胀塌落、渗冒混水,均表明坡体处于蠕动变形阶段。人工斩坡、开挖使坡体前部应力更加集中。分析认为,赵家岸滑坡目前处于蠕动变形阶段,并有局部或整体复活的可能,对赵家岸村66口居民及村内小学构成直接威胁,受威胁资产约50万元。

四、河庄水库滑坡(BT1044)

(一)概述

滑坡是一处沿Qp3和Qp2黄土之间古土壤面滑动的黄土层内老滑坡。滑坡位于延安市宝塔区柳林镇河庄水库东岸坝肩。2001年修建河庄水库,开挖坡脚取土,修筑堤坝,以及工程施工放炮振动,引发滑体再次产生两处崩滑。一处位于滑体前缘,高差15m;另一处位于滑体北侧,高差30m。滑坡坡顶标高1265m,坡脚标高1200m,相对高差65m。滑体垂直节理发育,前部滑体破碎,有较大临空面,且古土壤层面基本完整,对滑体前方水库及下游居民构成直接威胁。

(二)滑坡基本特征

1.滑坡周界及滑体特征

滑坡在平面上呈近似半圆形,周界明显,后缘由于滑体下错形成陡壁。两侧以冲沟为界,滑体前部至库岸外缘。整个滑体东西长70m,南北宽30m,面积1000m2,体积0.84×104m3

滑体在剖面形态上中后部呈凹形,前部为陡坎,呈直线形。滑体后部、前部陡峻,中部稍缓,坡度45°。滑体上植被良好,树木灌丛茂盛。滑体北翼产生过崩滑,在平面上,后部呈高顶帽形,中前部呈长方形。滑体前部发生崩塌,形成高差15m的陡坎,从陡坎断面上可清晰观察到红褐色古土壤层面,其下部可见崩塌体,其上植被发育。整个滑体坡度陡,前部土体破碎,崩塌所形成的较大临空面均为滑体复活的潜在不稳定因素。

2.滑坡物质结构特征

滑坡物质结构分为三部分:崩滑堆积土、滑带土(古土壤层)、滑床Qp2黄土。滑坡堆积土主要是Qp3黄土,散乱,灰黄—浅黄色,疏松可塑,垂直节理发育。滑体前部多次产生崩滑,土体破碎松软。滑带土为古土壤,红褐色,坚硬致密,硬塑,有错动痕迹,呈不规则状碎块。下伏Qp2黄土为滑床,黄褐色,致密,硬塑。层内可观察到30cm厚钙板层,近水平状,层序正常,未受扰动,仅在滑体前部由于崩滑使得Qp2黄土部分产生塌落。坡脚处堆积的钙质结核,正是由于滑体前部崩塌,使得Qp2黄土内钙质结核滚落形成(图5-4)。

图5-4 河庄水库滑坡地质剖面图

1—晚更新世黄土;2—中更新世黄土;3—古土壤;4—粉质粘土(滑坡堆积);5—滑动面及滑向

(三)滑坡形成机理

滑坡是在水库修建之前形成的沿古土壤层面滑动的老滑坡,位于冲沟的侵蚀岸(凹岸)。在河流侧蚀作用下,坡体前部形成较大临空面,坡脚处应力集中,在卸荷作用下,坡体沿临空面方向产生变形位移。坡体垂直节理发育,雨水沿节理面入渗,古土壤层作为一个相对隔水层面,形成上层滞水,上覆Qp3黄土饱和软化,抗剪强度降低,在此界面上形成软弱带。坡体在自重作用下沿其产生滑动,形成剪切破坏。当滑动面全面贯通时,坡体整体产生滑动而形成滑坡。

(四)滑坡稳定性分析

滑坡目前稳定性较差,可能复活。滑体坡度45°,土质疏松,垂直节理发育,利于雨水入渗;古土壤层面(滑动面)基本完整,构成潜在滑动面;滑体前部因崩塌土体破碎,形成较大临空面,坡脚应力集中;水库水位上升,坡脚受水侵蚀软化。故坡体在雨季或暴雨期,很有可能失稳复活,对水库造成直接威胁。

五、桥儿沟镇烟洞沟滑坡(BT2117)

(一)概述

滑坡为黄土-红粘土接触面老滑坡,位于桥儿沟镇烟洞沟村。由于人工改造,滑体大部已被开挖清除,中-前部地形平缓,后壁斩坡建窑,形成后陡前缓地形。滑坡坡顶标高1145m,坡脚标高1100m,相对高差45m。红粘土在前部被滑体覆盖,未见出露;中部人工开挖修建地基,揭露红粘土。

(二)滑坡基本特征

1.滑坡周界及滑体特征

滑坡在平面上为近似半椭圆形,北侧邻近一大型滑坡,南侧以冲沟为界。后壁高15m,滑体前缘至支沟为界,滑坡周界明显。滑坡东西长150m,南北宽200m,面积3×104m2,体积9×104m3,坡向280°,整个坡体呈后陡前缓地形。

滑体剖面形态整体呈凹形,局部呈阶梯形(图5-5)。原坡体36°,凸形,滑动之后,坡度变缓为20°。由于人工开挖、修建平台、建房建窑,滑体大部被清除,形成三级平台,地形比较平缓。在二级平台内侧开挖断面上,可见红粘土,上覆黄土与红粘土界线十分明显。

图5-5 烟洞沟滑坡剖面示意图

1—晚更新世黄土;2—中更新世黄土;3—新近纪红粘土;4—滑移面及滑向;5—粉质粘土(滑坡堆积)

2.滑坡物质结构特征

滑坡物质结构分三部分:滑坡堆积土、Qp2黄土和红粘土。滑坡堆积土主要由Qp3和Qp2黄土组成,土体松散,灰黄—黄褐色混杂,可塑-硬塑,节理发育,产状265°∠66°。滑动面切穿Qp3和Qp2黄土,前部沿红粘土顶面剪出,滑床由中前部红粘土和后部Qp2黄土构成。Qp2黄土致密坚硬,黄褐色;红粘土红褐色,致密硬塑,可见固结后的碎块状颗粒。组成滑床的红粘土和黄土,在浸水条件下迅速软化,强度大幅度降低。

3.滑坡变形特征

滑坡由于人工开挖、修建平台、建房和建窑等人为改造,滑体大部已被清除,古滑坡整体处于稳定状态。在滑坡后壁,人工斩坡建窑,坡体陡峻,坡度65°,高差15m,垂直节理、卸荷裂隙发育。后壁上部冲沟十分发育,雨季或暴雨天气,雨水沿冲沟汇聚并冲蚀下部窑洞坡面,沿节理、裂隙入渗,下部窑洞窑面剥蚀掉土,窑顶渗水、裂缝和掉土。部分窑洞因崩塌废弃,曾发生过崩塌塌窑事件。目前滑坡后壁稳定性较差,在连阴雨或暴雨时,有再次失稳的可能。

(三)滑坡形成机理及失稳机制

烟洞沟滑坡是一处黄土-红粘土接触面滑坡,沿冲沟右岸发育。原始坡度较大,坡体常受河水侧蚀,重心外倾;黄土垂直节理、裂隙发育,为雨水入渗提供了通道条件。下伏红粘土,与上覆黄土透水性的差异,形成一个相对隔水层面。雨水沿裂隙下渗,形成潜水浸润面,软化黄土和红粘土,强度逐渐降低。坡体内部软弱带逐渐形成,产生滑动并形成滑坡。

(四)滑坡稳定性分析

滑体由于人工建房、建窑大部分被开挖清除,修整为三级平台,大大削减了滑体荷载,增加了坡体稳定性与安全性,滑坡整体上处于稳定状态。但滑坡后壁节理、裂隙发育,坡体在雨季不断受到沿冲沟汇聚雨水的冲蚀,人工斩坡也使得坡度过大,崩塌、塌窑事件曾发生多次,局部处于不稳定状态。滑坡后壁稳定性较差,建议采取地表排水、削坡等治理措施。

六、杨崖村滑坡(BT2051)

(一)概述

滑坡位于枣园镇杨崖村冲沟右岸,属于典型的在人类工程活动下老滑坡复活的新滑坡。修建高速公路时,在斜坡前缘开挖取土,经平整后修建了三幢居民楼。在开挖施工过程中,滑体前缘因不当开挖及工程振动等原因,引发老滑坡左翼滑体复活并造成新滑坡。新滑体覆盖了建筑北侧场地,建筑工程被迫终止。新滑坡目前仍处于变形阶段,老滑坡也由于滑体前缘开挖斩坡形成较大陡峻临空面而处于稳定性较差状态。

(二)滑坡基本特征

1.滑坡周界及形态特征

老滑坡在平面上为近似簸箕形,后壁高15m,坡度55°,冲沟发育,灌木及蒿草茂盛。北侧以冲沟为界,南侧至西川河岸坡,前缘至冲沟边缘。东西长150m,南北宽350m,面积2.6×104m2;新滑坡在平面上近似“钟”形,周壁可见滑体下错形成的陡坎,前缘至冲沟外缘。滑体长40m,宽80m,面积0.3×104m2,体积6.4×104m3

滑体在剖面形态上呈凹形,坡度25°。由于人为工程活动,坡体形成前部后部陡峻、中部较缓地形。老滑体冲沟发育,南侧滑体前缘由于人工斩坡建房被开挖清除,修建三级平台,形成高15m、坡度55°人工边坡。坡面由于雨水冲刷,形成数条小冲沟。老滑坡北侧滑体发生新滑坡,新滑体在剖面上呈直线形,中部略鼓,前部人工削坡较陡,后壁陡峭,坡面上发育宽度不一的鼓胀裂隙,目前仍处于变形阶段。

2.滑坡物质结构特征

滑坡物质结构可分为表层滑坡堆积土、后部滑床Qp2黄土和前部滑床侏罗纪砂泥岩及互层。滑坡堆积土由Qp2和Qp3黄土组成,土质疏松,灰黄—浅黄—黄褐色混杂,可塑-硬塑,节理发育,产状120°∠50°。滑体表面被雨水冲蚀形成多条冲沟,时有剥落、掉土现象发生。新滑体经滑动,土质更为疏松破碎,表面多条鼓胀裂隙。老滑坡为黄土-基岩接触面滑坡,滑面切穿黄土在滑坡中前部沿基岩顶面剪出,中前部滑床为侏罗纪砂泥岩,后部为Qp2黄土。黄土致密坚硬,黄褐色,可塑-硬塑。侏罗纪岩层由灰白—灰色砂岩泥岩及互层组成,坚硬,近水平产状。

3.滑坡变形特征

滑坡目前处于变形阶段,稳定性差。对于老滑坡南侧滑体,由于前缘人工斩坡开挖,形成高15m、坡度55°的人工边坡,坡面雨水冲刷形成数条小冲沟。在雨季或暴雨期,坡体有再次失稳的可能。老滑坡北侧滑体,新滑体表面由后部到中部形成一条拉张裂缝,几乎贯穿整个滑体。滑体前部经人工削坡修建平台,在上部土体推力作用下,表面形成多条鼓胀裂缝。目前坡体处于变形蠕动阶段,稳定性差,在雨水或人工加载作用下具有失稳可能。

(三)滑坡形成机理

老滑坡原始坡度45°,为陡坡地段,坡体下部发育冲沟。冲沟不断下切侧蚀,坡体前部形成较大临空面,为滑坡提供了滑动临空面。坡体因坡脚受侧蚀重心向外迁移,稳定性降低。在雨水入渗、风化及卸荷作用下,坡体受重力作用发生剪切破坏,土体内部形成剪切滑移面;坡体中前部,雨水入渗并汇聚到相对阻水的基岩顶面,上覆土体受水浸泡软化,强度降低,形成坡体内部软弱带,即潜在滑移面。当后部坡体剪切滑移面与中前部软弱带贯通时,坡体整体发生滑动并沿基岩顶面剪出形成滑坡(图5-6)。

图5-6 杨崖新滑坡形成机制过程示意图

A—滑体前缘人工开挖形成高陡边坡,导致坡顶拉应力集中,坡脚剪应力集中;B—滑体前缘出现鼓胀裂隙,中部出现鼓胀现象,后缘出现拉张裂缝,坡体处于不稳定状态;C—滑体后部人工削坡,弃土堆积于滑体中部,加载作用加剧了滑体的拉张裂缝和鼓胀裂隙的发育及变形,导致滑体沿老滑面产生滑动,致使滑体前部居民楼被错断,危及居民生命财产安全

老滑坡北侧滑体复活并形成滑动的原因是:原坡体经扰动已显疏松,坡体坡度较陡,老滑体剪节理发育,产状120°∠50°,构成老滑体内潜在滑动面。这些因素构成滑坡复活的基础条件;坡体下部,人工开挖斩坡和建房,使原滑体前部形成较陡临空面;施工过程中产生振动以及雨水入渗增加坡体重力,引发新滑坡发生。人类不合理工程活动和降水作用,触发老滑坡北侧滑体复活。

老滑坡南侧滑体复活的原因是:老滑坡北侧滑体复活后,北侧建筑场地不能直接使用。为整治滑坡,使用这块建筑场地,村民在滑坡后壁上部用推土机向滑体上推土,导致北侧新滑体再次滑动。滑体下部呈放射状向外扩展,推动老滑体南部滑体变形位移,毁坏新建楼房。

(四)滑坡稳定性分析

滑坡是在老滑体上诱发的新滑坡。2005年调查时,老滑坡南侧滑体由于人工开挖建房,形成坡高15m的人工陡坡。坡面受雨水冲蚀形成多条冲沟,在雨季或暴雨期间有失稳可能。新滑体土质松软破碎,易受雨水冲蚀产生崩滑。虽人工削坡并修建平台,但坡体过于松软破碎。目前,在滑体后缘出现了宽数十厘米的拉张裂缝,在滑体前部表层,出现数条鼓胀裂隙。滑体目前处于蠕动变形阶段,有可能发生失稳。2006年6月上旬,由于人为不合理削坡加载,导致滑体再次失稳,将前部新建的三栋楼房错断,形成危楼。目前,滑坡堆积体坡度陡峭,土体松散,存在很大安全隐患。遇连阴雨或大暴雨,有再次发生变形失稳的可能。

阅读全文

与红粘土遇水软化相关的资料

热点内容
生物处理污水的好处 浏览:705
连接污水检查井的管径 浏览:921
反渗透ro膜要买50还是75 浏览:842
热水瓶除垢网 浏览:616
废水氟含量 浏览:627
染料废水取样 浏览:193
做的饮水机为什么会漏水 浏览:33
pes树脂和ppsu树脂 浏览:197
家用净水机哪个是纯净水 浏览:107
煮土豆皮去水垢的原理 浏览:971
污水厂进水量怎么样 浏览:360
工业污水排放指标各值的含义 浏览:54
污水处理总余氯的标准 浏览:246
陆地巡洋舰的空调滤芯在什么位置 浏览:908
小区污水井一般深多少米 浏览:854
反渗透盐水处理招标 浏览:233
洗车店废水 浏览:562
享优乐净化器怎么连接手机 浏览:47
熔喷滤芯怎么拆换 浏览:837
净水器怎么清除泥沙 浏览:506