❶ 跪求!!!微生物酶制剂生产技术
酶制剂是由微生物产生的生物产品,其生产过程是大规模生产技术应用过程,由三大工序组成:发酵、提取、造粒。
发 酵
微生物经过DNA技术的重组,变成高效的特定酶制剂的生产菌,生产菌在丹麦批量生产并冷藏,使用前,首先要经过实验室的扩大培养,然后接入发酵车间内的种子罐进行再次扩大培养,最后扩大培养后的生产菌进入发酵罐开始酶制剂的人工化生产。生产菌在大型的不锈钢发酵罐内得到充分的养分和空气,在最适合的环境中迅速成长,同时产出大量的生物酶。整个发酵过程都是由计算机自动控制完成的,发酵所用的原料主要是农产品,发酵的整个过程完全符合GMP的要求。
提 取
提取过程的主要任务是从发酵液中提取酶。这是由许多过滤和浓缩步骤完成的。首先发酵液经初步过滤后,变成澄清的含有酶的滤液,此时的滤液经进一步过滤,去除大量的水份和小分子物质后变成酶的浓缩液。如果需要,酶的浓缩液可被进一步浓缩。对于以液体出售的酶产品,提取的最后步骤是标准化和稳定化。整个提取的生产过程完全符合GMP的要求。
造 粒
固体酶(颗粒酶)广泛应用于洗涤行业和纺织行业中。目前诺维信中国采用了全自动控制的先进特体流化床工艺来生产固体颗粒产品。在流化床中,来自提取工艺的浓缩液被以雾状形式喷到载体表面,并得到热空气的干燥。酶层以外,另有两层包膜被以同样的工艺过程包裹在含酶颗粒的外层,从而最终得到了自由流动,无粉尘,使用安全方便的固体颗粒产品。
❷ 试述酶的分离纯化和纯度鉴定的实验方法及其原理。
分离蛋白质混合物的各种方法主要是根据蛋白质在溶液中的以下性质:1)分子大小;2)溶解度;3)电荷;4)吸附性质;5)对其它分子的生物学亲和力等进行分离. 常见的分离提纯蛋白质的方法有:1、盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析.常用的中性盐有:硫酸铵、氯化钠、硫酸钠等.盐析时,溶液的pH在蛋白质的等电点处效果最好.凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀.2、电泳法:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动.电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小.3、透析法:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开.4、层析法:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离.主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量.5、分子筛:又称凝胶过滤法,蛋白质溶液加于柱之顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因此不同大小的蛋白质得以分离.6、超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离.超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比.
❸ 生物酶是什么
生物酶的结构和特性 生物酶是具有催化功能的蛋白质。象其他蛋白质一样, 酶分子由氨基酸长链组成。其中一部分链成螺旋状,一部分成折叠的薄片结构,而这两部分由不折叠的氨基酸链连接起来,而使整个酶分子成为特定的三维结构。生物酶是从生物体中产生的,它具有特殊的催化功能,其特性如下: 高效性:用酶作催化剂,酶的催化效率是一般无机催化剂的10^7~10^13倍。 专一性:一种酶只能催化一类物质的化学反应,即酶是仅能促进特定化合物、特定化学键、特定化学变化的催化剂。 低反应条件:酶催化反应不象一般催化剂需要高温、高压、强酸、强碱等剧烈条件,而可在较温和的常温、常压下进行。 易变性失活:在受到紫外线、热、射线、表面活性剂、金属盐、强酸、强碱及其它化学试剂如氧化剂、还原剂等因素影响时,酶蛋白的二级、三级结构有所改变。所以在大生产时,如有条件酶还可以回收利用。 可降低生化反应的反应活化能:酶作为一种催化剂,能提高化学反应的速率,主要原因是降低了反应的活化能,使反应更易进行。而且酶在反应前后理论上是不被消耗的,所以还可回收利用。 生物酶的作用机理 酶蛋白与其它蛋白质的不同之处在于酶都具有活性中心。酶可分为四级结构:一级结构是氨基酸的排列顺序;二级结构是肽链的平面空间构象;三级结构是肽链的立体空间构象;四级结构是肽链以非共价键相互结合成为完整的蛋白质分子。真正起决定作用的是酶的一级结构,它的改变将改变酶的性质(失活或变性)。酶的作用机理比较被认同的是Koshland的“诱导契合”学说,其主要内容是:当底物结合到酶的活性部位时,酶的构象有一个改变。催化基团的正确定向对于催化作用是必要的。底物诱导酶蛋白构象的变化,导致催化基团的正确定位与底物结合到酶的活性部位上去。
❹ 关于酶纯化的一道生化题目
a.酶溶液的比活
就是各纯化步骤对应的总活力/总蛋白
1.200
2.600
3.250
4.4000
5.15000
6.15000
单位均为U/mg
b. 4
c. 3
d. 有,比活在第6步无增加,可用SDS-PAGE评估。
❺ 盐析与透析在蛋白质,生物酶提取纯化中的意义
盐析可以初步提纯蛋白质和酶,在提取纯化的捕获阶段非常有用,中性盐的沉淀和复溶可以最大程度的保护酶的活性,在酶尤其是酵母分泌表达的酶提取时非常方便。而且盐析后的样品和疏水层析联用也很便利,不需要多余的样品处理。
透析主要的目的还是更换缓冲液,比如去除蛋白质,酶里面的盐分。相对于脱盐来说,透析后样品体积不会有太大变化(溶液中有甘油或蔗糖等除外),样品浓度不会出现过大的稀释。
❻ 酶的分离和纯化方法是什么
酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。
首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。
酶分离纯化的最终目的是获得单一纯净的酶,因此,容许在不破坏“目的酶”的限度内,使用各种手段;酶与底物和抑制剂的结合常使其理化性质和稳定性发生改变,这种特性已被用于酶的分离纯化。
由于酶及其来源的多样性及与之共存的高分子物质的复杂性,目前还很难找到一种通用的方法以适用于一切酶的纯化。为了使一种酶达到高度纯化,往往需要多种方法协同作用,通过酶活性的跟踪检测确定最佳流程。
(6)生物酶纯化水扩展阅读:
酶的本性是蛋白质,凡可用于蛋白质分离纯化的方法都同样适用于酶,但酶易失活,故分离纯化需在低温(4℃)、温和pH(4<pH>10)等条件下进行。
与蛋白质类似,酶易在溶液表面或界面处形成薄膜而变性,因此操作中应尽量减少泡沫形成,此外重金属易使酶失效,有机溶剂能使酶变性,微生物污染以及蛋白水解酶的存在能使酶分解破坏。
在进行菌种鉴定时,所用的微生物一般均要求为纯的培养物。得到纯培养的过程称是分离纯化。
❼ 生物酶是什么东西有什么作用
生物酶是由活细胞产生的具有催化作用的有机物,大部分为蛋白质,也有极少部分为RNA
生物酶是具有催化功能的蛋白质。像其他蛋白质一样,
酶分子由氨基酸长链组成。其中一部分链成螺旋状,一部分成折叠的薄片结构,而这两部分由不折叠的氨基酸链连接起来,而使整个酶分子成为特定的三维结构。生物酶是从生物体中产生的,它具有特殊的催化功能,其特性如下:高效性:用酶作催化剂,酶的催化效率是一般无机催化剂的10^7~10^13倍。
专一性:一种酶只能催化一类物质的化学反应,即酶是仅能促进特定化合物、特定化学键、特定化学变化的催化剂。
低反应条件:酶催化反应不象一般催化剂需要高温、高压、强酸、强碱等剧烈条件,而可在较温和的常温、常压下进行,另外,一些特殊的酶在特定条件下催化效率达最大值,如胃蛋白酶在胃液酸性条件下发生作用。
易变性失活:在受到紫外线、热、射线、表面活性剂、金属盐、强酸、强碱及其它化学试剂如氧化剂、还原剂等因素影响时,酶蛋白的二级、三级结构有所改变。所以在大生产时,如有条件酶还可以回收利用。
可降低生化反应的反应活化能:酶作为一种催化剂,能提高化学反应的速率,主要原因是降低了反应的活化能,使反应更易进行。而且酶在反应前后理论上是不被消耗的,所以还可回收利用。
作用机理
酶蛋白与其它蛋白质的不同之处在于酶都具有活性中心。酶可分为四级结构:一级结构是氨基酸的排列顺序;二级结构是肽链的平面空间构象;三级结构是肽链的立体空间构象;四级结构是肽链以非共价键相互结合成为完整的蛋白质分子。真正起决定作用的是酶的一级结构,它的改变将改变酶的性质(失活或变性)。酶的作用机理比较被认同的是Koshland的“诱导契合”学说,其主要内容是:当底物结合到酶的活性部位时,酶的构象有一个改变。催化基团的正确定向对于催化作用是必要的。底物诱导酶蛋白构象的变化,导致催化基团的正确定位与底物结合到酶的活性部位上去,重金属离子会与活性部位结合使酶失活。
❽ 给出一种酶,如何设计其纯化方案
发个实验给你参考参考!!!
酵母蔗糖酶的分离纯化和活力测定
实验简介:酶的分离制备在酶学以及生物大分子的结构功能研究种具有重要意义。啤酒酵母中蔗糖酶含量丰富。本实验用新鲜啤酒酵母作为原料,通过破碎细胞,热处理,乙醇沉淀,柱层析等步骤提取蔗糖酶。并对其活力进行测定。
实验原理
蔗糖酶主要存在于酵母中,但工业上通常从酵母中制取。酵母蔗糖酶系胞内酶,提取时细胞破碎或菌体自溶。常用的提纯方法有盐析、有机溶剂沉淀、离子交换和凝胶柱层析。以此可得到较高纯度的酶。
蔗糖酶催化下蔗糖水解为等量的葡萄糖和果糖。用测定生成还原糖(葡萄糖和果糖)的量来测定蔗糖水解的速度,本实验中,蔗糖酶的活力单位指在一定条件下反应5min,每产生l毫克葡萄糖所需酶量。 用考马斯亮蓝法测定蛋白质含量,比活力为每毫克蛋白质的活力单位数。
实验操作
1. 提取
(1) 准备一个冰浴,将研钵稳妥放入冰浴中。
(2) 将10g湿啤酒酵母,和适量(5g)二氧化硅一起放入研钵中。二氧化硅要预先研细。
(3) 缓慢加入预冷的30mL去离子水,每次加2mL左右,边加边研磨,至少用30分钟。以便将蔗糖酶充分转入水相,至酵母细胞大部分研碎,以便将蔗糖酶充分转入水相中。
(4) (可选项) 研磨时用显微镜检查研磨的效果。
(5) 将混合物转入两个离心管中,平衡后,用高速冷离心机,4℃,10000rpm,离心5min。
(6) 用滴管小心地取出水相,转入另一个清洁的离心管中,4℃,10000rpm,离心15min。
(7) 将清液转入量筒,量出体积,用广泛pH试纸检查上清液pH,用1mol / L 醋酸将pH调至5.0,称为“粗级分Ⅰ”。留出1.5mL测定酶活力及蛋白含量,剩余部分转入清洁的离心管中。
2. 热处理和乙醇沉淀
(1) 预先将恒温水浴调到50℃,将盛有粗级分I的离心管稳妥地放入水浴中,45℃下保温30分钟,在保温过程中不断轻摇离心管。
(2) 取出离心管,于冰浴中迅速冷却,用4℃,10000rpm,离心10min。
(3) 将上清液转入小烧杯中,放入冰盐浴(没有水的碎冰撒入少量食盐),逐滴加入等体积预冷至-20℃的95%乙醇,同时轻轻搅拌,共需30分钟,再在冰盐浴中放置10分钟,以沉淀完全。于4℃,10000rpm,离心10min,倾去上清,并滴干,沉淀保存于离心管中,盖上盖子或薄膜封口,然后将其放入冰箱中冷冻保存(称为“级分Ⅱ”)。废弃上清液之前,要用尿糖试纸检查其酶活性(于下一个实验一起做)。
3. DEAE纤维素柱层析纯化酶蛋白
(1) 离子交换剂的处理
称取1.5克DEAE纤维素(DE-32)干粉,加入0.5mol/L NaOH溶液(约50m1),轻轻搅拌,浸泡至少0.5小时(不超过1小时),用玻璃砂漏斗抽滤,并用去离子水洗至近中性,抽干后,放入小烧杯中,加50mL 0.5mol/L HCl,搅匀,浸泡0.5小时,用去离子水洗至。近中性,再用0.5 mol/L NaOH重复处理一次,用去离子水洗至近中性后,抽干备用(因DEAE纤维素昂贵,用后务必回收)。实际操作时,通常纤维素是已浸泡过并回收的,按“碱一酸”的顺序洗即可,因为酸洗后较容易用水洗至中性。碱洗时因过滤困难,可以先浮选除去细颗粒,抽干后用0.5 mol/L NaOH-0.5 mol/L NaCl溶液处理,然后水洗至中性。
(2) 装柱与平衡
先将层析柱垂直装好,在烧杯内用0.02 mol/L,pH7.3 Tris-HCl缓冲液洗纤维素几次,用滴管吸取烧杯底部大颗粒的纤维素装柱,然后用此缓冲液洗柱至流出液的pH与缓冲液相同或接近时即可上样。
(3) 上样与洗脱
上样前先准备好梯度混合器,详见附录TH-500梯度混合器使用说明。
用5mL 0.02mol/L,pH7.3的Tris-HCl缓冲液充分溶解醇级分Ⅱ(注意玻璃搅棒头必须烧圆,搅拌溶解时不可将离心管划伤),若溶液混浊,则4 000r/min离心除去不溶物。取1.5mL上清液(即醇级分Ⅱ样品,留待下一个实验测酶活力及蛋白含量),将剩余的3.5mL上清液小心地加到层析柱上,不要扰动柱床,上样后用约30mL缓冲液洗去柱中未吸附的蛋白质,至A280降到0.1以下,注意从上样开始使用部分收集器收集,每管2.5~3.0mL/l0min。然后打开梯度混合器,采用30mL,0.02mol/L,pH7.3的Tris-HCl缓冲液和30mL含0.2mol/L浓度NaCl的0.02mol/L,pH7.3的Tris-HCl.缓冲液,进行线性梯度洗脱,连续收集洗脱液,控制流速2.5~3.0mL/10min。测定每管洗脱液的A280光吸收值。
(4) 各管洗脱液酶活力的定性测定
在点滴板上每一孔内,加一滴0.2mol/L,pH4.6的乙酸缓冲液,一滴0.5mol/L蔗糖和一滴洗脱液,反应5min,在每一孔内同时插入一小条尿糖试纸,10~20min后观察试纸颜色的变化。用“+”号的数目,表示颜色的深浅,即各管酶活力的大小。合并活性最高的2~3管,量出总体积,并将其分成10份,分别倒人10个小试管,用保鲜膜封口,冰冻保存,使用时取出一管,此即“柱级分Ⅲ”。
4. 各级分Ⅰ、Ⅱ、Ⅲ蔗糖酶活力
用0.02mol/L,pH4.6乙酸缓冲液(也可以用pH5~6的去离子水代替)稀释各级分酶液,测出酶活合适的稀释倍数:
Ⅰ: 1 000~10 000倍;
Ⅱ: 1 000~10 000倍;
Ⅲ: 100~1 000倍;
以上稀释倍数仅供参考。
按“表1”的顺序在试管中加入各试剂,进行测定,为简化操作可取消保鲜膜封口,沸水浴加热改为用90~95℃水浴加热 8-10min,以5min生成的还原糖的毫克数为纵坐标,以试管中lmL反应混合物中的酶浓度(mg蛋白/m1)为横坐标,画出反应速度与酶浓度的关系曲线。
表1 各级分I、Ⅱ、Ⅲ蔗糖酶活性测定
各管名称 对照 级分Ⅰ 级分Ⅱ 级分Ⅲ 葡萄糖
管数 1 2 3 4 5 6 7 8 9 10 11 12 13
酶液/mL 0.0 0.05 0.20 0.50 0.05 0.20 0.50 0.05 0.20 0.50 / / /
H2O/mL 0.6 0.55 0.40 0.10 0.55 0.40 0.10 0.55 0.40 0.10 0.8 0.4 0.2
乙酸缓冲液0.2mol/L,pH4.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 / / /
葡萄糖2mmol/L / / / / / / / / / / 0.2 0.6 0.8
蔗糖0.25mol/L 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 / / /
加入蔗糖,立即摇匀开始记时,室温准确反应5min后,立即加1mL 0.1M NaOH中止反应
二硝基水杨酸溶液 mL 1.0
用保鲜膜封口,扎眼,沸水浴加热5min,立即用水冷却3分钟。
H2O/mL 4.0
A520
稀释后酶活力 /
原始酶活力 /
5. 考马斯亮兰法测定各级分蛋白质含量
(1) 蛋白质标准曲线制作
取14支试管,分两组按下表平行操作。
表2 蛋白质标准曲线制作
试管编号/mL 0 1 2 3 4 5 6
标准蛋白溶液/mL
0.02mol/L Tris-HCl缓冲液/mL
考马斯亮兰试剂/mL
摇匀,1h内以0号试管为空白对照,在595nm处比色
A595nm
(2) 各级分蛋白质含量测定
考马斯亮兰G-250在酸性溶液时呈茶棕色,最大吸收峰在465nm。当与蛋白质结合后变成深蓝色,最大吸收峰转至595nm,在10~100μg/mL蛋白质浓度范围内成正比。因此在测定各级分蛋白质含量时应稀释适当倍数,使其测定值在标准曲线的直线范围内。根据所测定的A595nm值,在标准曲线上查出相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/mL)。
6. 计算各级分的比活力、纯化倍数及回收率
为了测定和计算下面表3中的各项数据,对各个级分都必须取样,每取一次样,对于下一级分来说会损失一部分量,因而要对下一个级分的体积进行校正,以使回收率的计算不致受到不利的影响。
1活力单位(U)=酶在室温,pH=4.6条件下,每分钟水解产生1μmol葡萄糖所需酶量。比活力=活力单位/mg蛋白。
表3 各级分的比活力、纯化倍数及回收率
级
分 记录
体积
(m1) 校正
体积
(m1) 蛋白质
(mg/m1) 总蛋白
(mg) Unit
(s/m1) 总活力
(U) 比活力
(Units
/mg) 纯化
倍数 回收率
(%)
Ⅰ 1.0 100
Ⅱ
Ⅲ
下面表4是对假定的各级分记录体积进行校正计算的方法和结果:
表4 实验记录表
级分 记录体积 (m1) 校正体积计算 取样体积
(m1) 校正后体积
(m1)
Ⅰ 15 15 1.5 15.00
Ⅱ 5 5×(15/13.5) 1.5 5.5
Ⅲ 6 6×(15/13.5)×(5/3.5) 1.5 9.5
五、 结果
在同一张图上画出所有管的酶活力、光吸收值A280的曲线和洗脱梯度线。得出各级分的活力,比活力,提纯倍数以及回收率。
六、 注意事项
从上样开始收集,可能有两个活性峰,梯度洗脱开始前的第一个峰是未吸附物,本实验取用梯度洗脱开始后洗下来的活性峰。
七、 作业
1.为什么酶的提取需要低温操作?
2.热处理的根据是什么?
去除热敏感蛋白。
参考文献
1.邵雪玲,毛歆,郭一清.生物化学与分子生物学实验指导.武汉:武汉大学出版社,2003
2.张龙翔.高级生物化学实验选编.北京:高等教育出版社,1989
3.许培雅,邱乐泉.离子交换柱层析纯化蔗糖酶实验方法改进研究.实验室研究与探索,2002,21(3):82~84
编著者——陈彦,李绍飞
❾ 生物酶是什么,有什么作用
一般生物酶是具有催化活性的蛋白质,作用就是催化一些特定的化学反应,例如:人体内的物质合成代谢和分解代谢都是由酶催化的,葡萄糖生成二氧化碳和水就有有一系列的生物酶所催化的!
❿ 生物酶是什么
生物酶是由活细胞产生的具有催化作用的有机物,大部分为蛋白质,也有极少部分为RNA。
酶可分为四级结构:
一级结构是氨基酸的排列顺序;二级结构是肽链的平面空间构象;三级结构是肽链的立体空间构象;四级结构是肽链以非共价键相互结合成为完整的蛋白质分子。真正起决定作用的是酶的一级结构,它的改变将改变酶的性质(失活或变性)。
酶的作用机理比较被认同的是Koshland的“诱导契合”学说,其主要内容是:当底物结合到酶的活性部位时,酶的构象有一个改变。
催化基团的正确定向对于催化作用是必要的。底物诱导酶蛋白构象的变化,导致催化基团的正确定位与底物结合到酶的活性部位上去,重金属离子会与活性部位结合使酶失活。
蛋白酶的分类:
按蛋白酶水解蛋白质的方式可分为以下几种。
(1)切开蛋白质分子内部肽键,生成相对分子质量较小的多肽类,这类酶一般叫内肽酶;
(2)切开蛋白质或多肽分子氨基或羧基末端的肽键,而游离出氨基酸,这类酶叫外肽酶。作用于氨基末端的称为氨肽酶,作用于羧基末端的称为羧肽酶;
(3)水解蛋白质或多肽的脂键;
(4)水解蛋白质或多肽的酰氨键。
按酶的来源可以分为动物蛋白酶、植物蛋白酶、微生物蛋白酶。
微生物蛋白酶又可分为细菌蛋白酶、霉菌蛋白酶、酵母蛋白酶和放线菌蛋白酶。
按蛋白酶作用的最适 pH 可以分为 pH2.5-5.0 的酸性蛋白酶、pH9.5-10.5 的碱性蛋白酶、pH7-8 的中性蛋白酶。
为了方便起见,微生物蛋白酶常用这种分类方法;根据蛋白酶的活性中心和最适反应 pH 可以分为丝氨酸蛋白酶、巯基蛋白酶、金属蛋白酶和活性中心有两个羧基的酸性蛋白酶。