❶ 纯化水的再验证周期应该如何制定
纯化水系统应做持续取样,长期监控,并每年进行数据汇总分析结果,设置警戒限和纠偏限,超出后采取偏差处理,企业可根据风险评估结果制定再验证周期。
❷ 纯化水数据分析为什么要2倍标准偏差上限2倍标准偏差下限之类的
这是认为离群值啊
❸ 纯化水第一阶段结束 经评估后,是否可以进行工艺验证
应该是不可以的,原因:注射用水的制备是以纯化水为原料来制作的,如果纯化水系统发生偏差的话直接会影响注射用水。从风险评估的角度是不可以的。但是有的厂家正常使用没什么问题,为了节省时间,文件一起就做了。但是这样是不对的。
❹ 纯化水在线监测记录数据不完整如何处理
严格按照GMP要求,进行复检。然后在审核,验证!
❺ 纯化水设备一下数据,水质是否达标正常
1.工艺标准《水处理设备 技术条件 JB/T 2932-1999》《美国海德能膜反渗透膜技术手册》2011版 2.容器标准《钢制焊接压力容器GB150,GB151》《食品工业用不锈钢薄壁容器 QB/T 2681一2004》《钢制焊接常压容器 NB/T 47003.1—2009》 3.电气安装标准《电气装置安装工程接地装置施工及验收规范》(GB50169-2006) 《电气装置安装工程盘/柜及二次回路施工及验收规范》(GB50171-92)《低压开关设备和控制设备成套装置》IEC439-1 4.水质标准《中国药典》2010版“纯化水”要求 《欧盟药典》GMP7.0 版 《美国药典》USP36“PW”要求
❻ 纯化水管道系统变更换风险评估分析怎么做
纯化水管道一般采用巴氏消毒的方法进行系统消毒。关闭所有使用点,检查储罐中专的水属是否满足要求;用回水末端的热交换器将系统中的纯化水加热到80℃以上,并且在此温度下保持120分钟。灭菌过程中,要保持系统中的纯化水处于循环状态。
❼ 纯化水检查中各指标质检的原理
4.整个水质监测分为三个“验证”周期,每个周期7天
4.1.1.纯化水箱
取样频率:每天取样一次 检测项目:理化指标、微生物指标、电导率 检测方法: 按企业《纯化水检验规程》(根据中国药典2010年版二部纯化水标准及微生物检测标准制定)执行。 标准:《纯化水质量标准》(根据现行中国药典2010年版二部纯化水标准及微生物检测标准制定)。
4.1.2.总送水
取样频率:每天取样一次 检测项目:理化指标、微生物指标、电导率 检测方法: 按企业《纯化水检验规程》(根据中国药典2010年版二部纯化水标准及微生物检测标准制定)执行。 标准:《纯化水质量标准》(根据现行中国药典2010年版二部纯化水标准及微生物检测标准制定)。
4.1.3.总回水口(附件13性能确认水质检测报告) 取样频率:每天取样一次 检测项目:理化指标、微生物指标、电导率 检测方法: 按企业《纯化水检验规程》(根据中国药典2010年版二部纯化水标准及微生物检测标准制定)执行。 标准:《纯化水质量标准》(根据现行中国药典2010年版二部纯化水标准及微生物检测标准制定)。
4.1.4.各使用点
取样频率:每个“验证”周期轮流取样一次,共3次 检测项目:理化指标、微生物指标、电导率 检测方法: 按企业《纯化水检验规程》(根据中国药典2010年版二部纯化水标准及微生物检测标准制定)执行。 标准:《纯化水质量标准》(根据现行中国药典2010年版二部纯化水标准及微生物检测标准制定)。
4.2. 异常情况处理程序
4.2.1.在纯化水制备系统性能确认过程中,应严格按照系统标准操作程序、维护保养程序、取样程序、检验规程进行操作; 按质量标准进行判定,当个别取样点纯化水质量不符合标准的结果时,应按下列程序处理; 4.2.2.在不合格点重新取样,重新检测不合格项目或全项;必要时,在不合格点的前后分段取样,进行对照检测,以确定不合格原因;
4.2.3.若附属系统运行方面的原因,需报验证小组,调整运行参数或对系统进行处理。
5. 纯化水制备系统日常监测。
若连续3周(每7天为一个连续周期)的检测结果均在合格范围内,可做性能确认通过的评价。测试周的数据结果列在一个表中。各车间正常用水继续日常监测,最后确定管路清洗消毒周期。
5.1.取样点的布置
5.1.1.纯化水箱,每周取样1次
5.1.2.送、回水管每周取样1次
5.1.3.使用点可轮流取样,但需保证每个用水点每月不少于1次
5.1.4.验证周期结束后,每隔30天对微生物指标进行检验。
5.2.检测方法:中国药典2010版二部
5.3.管路清洗消毒周期的确认
5.3.1.当纯化水箱水样、送、回水管水样,各使用点水样其中任一水样细菌、霉菌和酵母菌总数大于100个/ml时必须对管路进行清洗消毒,(两次间隔时间为清洗消毒周期)
5.4质量管理部拟订日常监测程序及验证周期;执行《工艺用水质量监控程序》。
5.5.日常监控验证持续一年;
5.6.按标准测试,测试结果附入验证方案.
6.纯化水制备系统验证的结果评价及建议 工程部负责收集各项验证、试验结果记录,根据验证、试验结果起草验证报告、仪器标准操作程序、维护保养程序,报验证委员会。 验证委员会对验证结果进行综合评审,做出验证结论,发放验证证书,确认系统日常监测程序及验证周期。
❽ 纯化水电导率标准是多少
2010版《中国药典》纯化水质量标准中对电导率的规定如下:
10℃ ≤3.6μs/cm,
20℃ ≤4.3μs/cm,
25℃ ≤5.1μs/cm;
药厂的纯化水一般都是0.8-1.4之间,温度低容易得到1以下的数据,温度高的时候一般都会是1.2左右。
在介质中该量与电场强度E之积等于传导电流密度J。对于各向同性介质,电导率是标量;对于各向异性介质,电导率是张量。生态学中,电导率是以数字表示的溶液传导电流的能力。单位以西门子每米(S/m)表示。
生活饮用水卫生标准是从保护人群身体健康和保证人类生活质量出发,对饮用水中与人群健康的各种因素(物理、化学和生物),以法律形式作的量值规定,以及为实现量值所作的有关行为规范的规定,经国家有关部门批准,以一定形式发布的法定卫生标准。
电导率的测量需要两方面信息。一个是溶液的电导G,另一个是溶液的电导池常数Q。电导可以通过电流、电压的测量得到。
根据关系式K=Q×G可以得到电导率的数值。这一测量原理在直接显示测量仪表中得到广泛应用。
而Q= L/A
A——测量电极的有效极板面积
L——两极板的距离
这一值则被称为电极常数。在电极间存在均匀电场的情况下,电极常数可以通过几何尺寸算出。当两个面积为1 cm2的方形极板,之间相隔1 cm组成电极时,此电极的常数Q=1 cm-1。如果用此对电极测得电导值G=1000 μS,则被测溶液的电导率K=1000 μS/ cm。
(8)纯化水数据评估扩展阅读:
为贯彻《环境保护法》和《水污染防治法》,加强地表水环境管理,防治水环境污染,保障人体健康,现制定了《地表水环境质量标准》为国家环境质量标准该标准为强制性标准,由中国环境科学出版社出版,自2002年6月1日开始实施。国家环境保护总局二00二年四月二十六日颁布。标准名称、编号:地表水环境质量标准(GB 3838-2002)。
《地表水环境质量标准》(GB3838-2002)中规定,地面水使用目的和保护目标,中国地面水分五大类:
Ⅰ类:主要适用于源头水,国家自然保护区;
Ⅱ类:主要适用于集中式生活饮用水、地表水源地一级保护区,珍稀水生生物栖息地,鱼虾类产卵场,仔稚幼鱼的索饵场等;
Ⅲ类:主要适用于集中式生活饮用水、地表水源地二级保护区,鱼虾类越冬、回游通道,水产养殖区等渔业水域及游泳区;
Ⅳ类:主要适用于一般工业用水区及人体非直接接触的娱乐用水区;
Ⅴ类:主要适用于农业用水区及一般景观要求水域。
各类水用途规定:
Ⅰ类水质:水质良好。地下水只需消毒处理,地表水经简易净化处理(如过滤)、消毒后即可供生活饮用者;
Ⅱ类水质:水质受轻度污染。经常规净化处理(如絮凝、沉淀、过滤、消毒等),其水质即可供生活饮用者;
Ⅲ类水质:适用于集中式生活饮用水源地二级保护区、一般鱼类保护区及游泳区;
Ⅳ类水质:适用于一般工业保护区及人体非直接接触的娱乐用水区;
Ⅴ类水质:适用于农业用水区及一般景观要求水域。超过五类水质标准的水体基本上已无使用功能。
❾ 纯化水风险评估的rpn是怎么计算的
FMEA风险系数RPN=S×O×D。
1、 FMEA风险系数RPN=S×O×D, S---严重度 1-10,数字越大,严重度级别越高; O---频度 1-10 数字越大,越容易发生; D--探测度 1-10 数字越大,越容易探测; RPN分值越高,风险系数越大,RPN的高低并不是唯一判断FMEA的风险大孝实施相应对策的评价标。
2、 本方案风险的综合评估方法是通过计算RPN(风险优先系数) ,并对计算结果按《风险管理-原则与实施指南》风险水平与风险优先系数的关系中规定的评定标准进行评估的,RPN 值的计算方法是将评估后的每个质量风险因素的严重性(S )、可能性(P )及可检测性(D )三个评估得分值相乘获得(即:RPN=S×P×D )。
3、 综合风险可分为高风险水平、中风险水平和低风险水平。高风险水平和中等风险水平为不可 接受风险,必须尽快采取适当的控制措施来降低风险水平,直至达到低风险水平以下,降低风险水平的方法可通过提高风险的可检测性或降低风险产生的可能性来实现。低水平风险为可接受风险,无需采取额外的控制措施。具体风险水平与风险优先系数的对应关系
拓展资料:
风险识别与分析
1、 根据GMP 对纯化水系统的要求,通过对风险情况的识别,我们对纯化水系统确认所产生风险的各种要素进行分析,认为纯化水系统生产风险主要存在设备安装、机械 过滤器、活性炭过滤器、精密过滤器、一级水泵、一级反渗透装置、淡水罐、二级水泵、二级反渗透装置、纯化水罐、仪器仪表、循环泵、紫外灯装置、管道分配系统、人员操作等方面。
2、 质量风险识别、分析和采取的措施或验证活动情况。
3、 纯化水系统使用饮用水作为水源,通过机械过滤器、活性炭过滤器、软化器、精密过滤器,反渗透装置等纯化工艺。主要用于车间生产、清洁、消毒剂和清洁剂的配 制,为达到新版《药品生产质量管理规范》要求,确保药品质量,对现在的改造方案中纯化水系统改造做以风险分析,确定改造项目可行性,使风险降到最低,对改造后的空气净化系统做以确认,是否到达风险最低,合格后,正常生产按规定的文件进行监控。
❿ 纯化水设备系统验证内容有哪些呢
纯化水设备系统验证文件即4Q验证,包含IQ安装确认、OQ运行确认、PQ性能确认、DQ设计确认,以下是详细内容:(详细的系统验证流程可进入【carryclean科瑞】网站查看)
1.IQ安装确认
安装确认(IQ)主要是通过设备安装后,确认设备安装符合设计要求,文件及附件齐全,通过检验并用文件的形式证明设备的存在。也就是说,通过检查文件和其它项目,来确认设备和系统是按照设计安装的,并符合设备和系统设计要求和标准,并且已经正确地安装了。
IQ安装确认包括
•包装确认
•设备清单
•安装过程确认
•材料确认(与产品直接接触的)
•仪器部分确认
•润滑剂确认(与产品接触的润滑剂必须是食 品级的)
•各种技术图纸及操作指南确认
•公用系统确认
2.DQ设计确认
设计确认(DQ)在《药品生产验证指南》中明确解释为“预确认,即设计确认,通常指对待订购设备技术指标适应性的审查及对供应厂商的选定。”同时,在《药品生产质量管理规范实施指南》中认为“预确认:是对设备的设计与选型的确认
DQ设计确认包括
对设备的性能、材质、结构、零件、计量仪表和供应商等的确认
PID图确认
GAD图确认
部件清单
电路图
3.OQ运行确认
运行确认(OQ)是通过空载运行实验,检查和测试设备运行、操作和控制性能通过记录并以文件形式证实制药机械(设备)符合生产工艺的要求。在安装确认后有设备的制造方和使用方共同根据验证方案进行运行确认,对设备运行性能的符合性、协调性进行确认。
OQ运行确认包括
测试仪器校准
设备/系统各部分功能测试
指示器,互锁装置和安全控制检测
报警器检测
断电和修复
4.PQ性能确认
性能确认(PQ)性能确认是对设备实际运行效果的确认,性能确认应在完成运行确认并已得到认可 后进行。是在制药套工艺技术指导下进行工业性负载生产,用模拟生产的方法,通过观察、记录、取样检测等手段,搜集及分析数据证明制药机械(设备)运行的可靠性和对生产的适应性。
PQ是模拟生产的过程,由使用者按照药品生产的工艺要求进行实际生产运行, PQ需要按每套设施设备及其相关工艺程序制定个别的确认方案。
carryclean科瑞提供完整的系统验证服务,提供专业的DQ、IQ、OQ、PQ系统文件。行业首创超纯水设备三维模拟制造安装,客户全程参与,设备细节效果提前展示,全方位保障客户需求。