㈠ 大豆等电点同大豆新旧有关系吗
[摘要〕生大豆中含有多种抗营养因子,对饲料的使用价值有不利的影响.本文综述了其中最主要的九种,分析有关特性及对饲喂动物的生理作用,并介绍了一些钝化变性技术,以提高大豆饲料营养品质的方法.
大豆中富含品质较高蛋白质和脂肪.是饲料中植物蛋白质的主要来源.因其中含有一些抗营养因子,对其饲用价值产生了不利的影响,因此重视大豆加工过程中的质量控制,保证豆粕或豆饼的的有关技术指标,提高大豆的饲料价值显得非常重要.
表1大豆中抗营养因子的含量及其对饲喂动物的影响
抗营养因子
含量(%)
对饲喂动物的影响
胰蛋白酶抑制因子
2.0
增加胰腺的合成与分泌.胰腺肥大,抑制生长
血球凝集素
1.5
红血细胞凝集
低聚糖
0.8-5.1
肠胃胀气
产雌激素因子
0.26
抑制生长,子宫增大
皂苷
0.3-0.5
抑制胰凝乳蛋白酶和胆碱酶的活性
植酸
1.41
降低微量元素和生物效价,磷的有效性,降低蛋白质的溶解性和酶的活性
蛋白酶抑制因子
蛋白酶抑制因子是大豆蛋白质中最重要的一类抗营养因子,它包括胰蛋白酶(trypsininhibitors)和胰凝乳蛋白酶抑制因子(chymotrypsininhibitor),胰蛋白酶抑制因子更为突出.
大豆中至少含有5种胰蛋白酶抑制因子,但其中只有库尼兹(kunitz,简称kti),与包曼-伯克(bowman-birk简称bbi)两种抑制剂被分离提纯,研究较为深入.
大豆中胰蛋白酶的含量变异很大,生大豆粉约含有1.4%的khi和0.6%的bbi.,由于胰蛋白酶具有热不稳定性,人们普遍认为,热处理能提高大豆的饲料价值是由于抑制因子受到破坏的结果.事实上,胰蛋白酶抑制因子的加热钝化确实与蛋白质营养价值的改善相关联.
过去人们认为饲用含有大豆胰蛋白酶抑制因子的大豆蛋白质引起动物生长停滞的原因,是肠道中的蛋白质水解酶对食入的蛋白质的消化受到抵制而巳,但有科技工作者试验表明,当动物饲料中加入预先消化好的蛋白质或游离氨基酸以后,胰蛋白酶抑制因子仍抑制动物的生长.这个结果说明蛋白质水解作用的抑制并不是动物生长停滞的唯一原因.因此,研究的重点以集中到胰蛋白酶抑制因子的其它作用方式上.
由于生大豆和胰蛋白酶抑制因子本身都能引起胰腺分泌活性的增加.这个结果使人们认为胰蛋白酶抑制因子引起的动物的生长停滞,中胰腺机能亢进导致分泌过多.造成必需氨基酸内源性损失的结果.由于胰脏的酶类(如胰蛋白酶和胰凝乳蛋白酶)含有特别丰富的含硫氨基酸,胰脏肥大后就会合成更多的这类酶,从而造成身体组织中缺少含硫氨基酸.因大豆蛋白质中本身就缺少含硫制氨基酸再加上胰脏肥大带来含硫氨基酸的额外损失,使这种短缺情况更加严重.
kti与bbi胰蛋白酶抑制因子的生化性质
生化性质
kti
bbi
分子量
氨基酸残基数
等电点
电泳类型
21500
197
4.5
4
7975
72
4.2
5
二硫键
对热,酸,胃蛋白酶的稳定性
2
不稳定
7
稳定
活性中心
精氨酸63与异亮氨酸64(胰蛋白酶结合点)
赖氨酸16与丝氨酸17(胰蛋白酶结合点)
亮氨酸44与丝氨酸45(胰凝乳蛋白酶结合位点)
对胰凝乳蛋白酶抑制性
低
高
血球凝集素
血球凝集素是指能凝集红细胞的植物蛋白质.大豆中的血球凝集素具有多样性,4种不同的血球凝集素通过等电聚焦而定性,分别记为a,b,c,d;并反映出不同的免疫化学性质,现己证明,liener等人1952年首次从大豆中分离出的血球凝集素属于b型,是最重要的一种,它是一种糖蛋白,含有4.5%的甘露糖和1%的氨基酸葡萄糖,分子量为110000,并含有两个多肽链.资料表明,所有4种大豆血球凝集素都是糖蛋白,其氨基酸组成都很类似,都含有甘露糖和氨基酸葡萄糖,但它们的碳水化合物的含量上有差别.
目前认为,血球凝集素至少是引起生大豆营养价值较低的部分原因.将钝化的大豆血球凝集素加到经过加热处理的大豆粉中随意饲喂,会使受试动物的生长受到抑制,但把食用不含血球凝集素的对照组动物的摄食量限制到等于食有血球凝集素的试验组动物的摄食量时,试验结果反映出大豆凝集素的生长抑制作用是由于降低了动物的食欲所引起的.但这种作用对鸡的影响不大,可以通过加热处理的方法得以解决.
皂苷
皂苷是一种三萜烯醇的复合糖苷,极性很弱,不溶于己烷而残留在脱脂豆粕中.
虽然大豆皂苷一直被认为是抗营养因子,但在鸡和鼠的日粮中含有0.5%~3.0%的皂苷时,仍未发现其有害的影响.当鸡和鼠日粮中豆粕的含量达到20^%时在其血液中仍未检出皂苷或其配基,说明皂苷没有被吸收.他们在肠内被盲肠的结肠的微生物所水解.皂苷对几种酶有抑制作用,如胰凝乳蛋白酶和胆碱酯酶
㈡ 制药分离工程的图书目录
第1章 绪论1
1.1 制药工业1
1.1.1 生物制药1
1.1.2 化学制药2
1.1.3 中药制药3
1.2 制药分离技术4
1.2.1 制药分离技术的作用4
1.2.2 制药分离原理与分类5
1.2.3 制药分离技术的进展6
参考文献8
第2章 固液萃取(浸取)9
2.1 概述9
2.2 浸取过程的基本原理9
2.2.1 药材有效成分的浸取过程9
2.2.2 费克定律与浸取速率方程10
2.2.3 浸取过程的影响因素13
2.3 浸取过程的计算14
2.3.1 单级浸取和多级错流浸取15
2.3.2 多级逆流浸取17
2.3.3 浸出时间的计算19
2.4 浸取工艺及设备20
2.4.1 浸取工艺20
2.4.2 浸取设备22
2.5 浸取强化技术简介25
2.5.1 超声波协助浸取25
2.5.2 微波协助浸取27
参考文献30
第3章 液液萃取31
3.1 概述31
3.2 液液萃取过程的基本原理31
3.2.1 液液萃取的平衡关系31
3.2.2 液液萃取过程的影响因素34
3.3 萃取过程的计算36
3.3.1 单级萃取的计算36
3.3.2 多级错流萃取38
3.3.3 多级逆流萃取39
3.3.4 微分接触萃取43
3.3.5 萃取剂最小用量45
3.4 液液萃取设备46
3.4.1 萃取设备的分类46
3.4.2 典型萃取设备简介47
3.5 萃取设备内流体的传质特性50
3.5.1 分散相的形成和凝聚50
3.5.2 萃取设备内的传质51
3.5.3 萃取塔内的液泛51
3.5.4 萃取塔内的返混52
3.5.5 萃取设备的效率52
参考文献53
第4章 超临界流体萃取54
4.1 概述54
4.2 超临界(流体)萃取的基本原理54
4.2.1 超临界流体的特性54
4.2.2 超临界萃取的特点56
4.2.3 超临界萃取剂56
4.2.4 超临界萃取工艺类型57
4.2.5 使用夹带剂的超临界CO2萃取58
4.3 溶质在超临界流体中的溶解度59
4.3.1 溶质在超临界CO2中的溶解度规则59
4.3.2 溶质在超临界流体中溶解度计算方法60
4.4 超临界萃取过程的质量传递64
4.4.1 影响超临界萃取过程传质的因素64
4.4.2 超临界萃取过程传质模型65
4.5 超临界萃取技术的应用66
4.5.1 超临界萃取工艺的设计66
4.5.2 超临界萃取在天然产物加工中的应用66
4.5.3 超临界萃取在中药制剂中的应用68
4.5.4 超临界萃取技术的局限性与发展前景70
参考文献71
第5章 反胶团萃取与双水相萃取72
5.1 反胶团萃取72
5.1.1 概述72
5.1.2 反胶团的形成及特性72
5.1.3 反胶团萃取蛋白质的过程73
5.1.4 反胶团萃取的过程及工艺开发76
5.1.5 反胶团萃取的应用78
5.2 双水相萃取79
5.2.1 概述79
5.2.2 双水相体系79
5.2.3 双水相萃取原理81
5.2.4 双水相萃取的应用85
5.2.5 双水相萃取技术的进展85
参考文献87
第6章 非均相分离88
6.1 概述88
6.2 物料的性质88
6.2.1 固体颗粒特性88
6.2.2 液体的特性91
6.2.3 悬浮液的特性91
6.3 过滤92
6.3.1 过滤的基本概念92
6.3.2 过滤的基本理论94
6.3.3 过滤的基本操作96
6.3.4 过滤设备99
6.4 离心分离104
6.4.1 离心分离原理104
6.4.2 离心分离的操作和基本计算105
6.4.3 离心沉降设备106
6.5 重力沉降分离109
6.5.1 重力沉降原理109
6.5.2 重力沉降设备110
6.6 制药生产中药液的固液分离应用110
6.6.1 中药的过滤分离特性110
6.6.2 发酵液的过滤分离111
6.6.3 活性炭与脱色后药液的过滤112
6.6.4 药液除菌过滤112
6.6.5 结晶体的过滤112
参考文献112
第7章 精馏技术113
7.1 概述113
7.2 间歇精馏114
7.2.1 间歇精馏操作方式114
7.2.2 工艺流程114
7.2.3 过程的操作115
7.2.4 主要影响因素116
7.2.5 间歇精馏的基本计算119
7.2.6 特殊间歇精馏过程121
7.3 水蒸气蒸馏124
7.3.1 水蒸气蒸馏的原理125
7.3.2 水蒸气量的计算125
7.3.3 水蒸气蒸馏的应用举例127
7.4 分子蒸馏127
7.4.1 分子蒸馏过程及其特点127
7.4.2 分子蒸馏流程和分子蒸发器128
7.4.3 分子蒸馏的基本概念与计算130
7.4.4 分子蒸馏在制药领域的应用131
参考文献133
第8章 膜分离134
8.1 概述134
8.2 超滤135
8.2.1 超滤过程的基本特性135
8.2.2 超滤膜的性能137
8.2.3 膜性能参数137
8.2.4 浓差极化——凝胶层138
8.2.5 影响超滤速度的因素139
8.2.6 超滤系统设计与应用140
8.3 微滤、纳滤和反渗透简介142
8.4 膜的污染与清洗143
8.4.1 膜面与料液间分子作用143
8.4.2 蛋白质类大溶质吸附144
8.4.3 颗粒类大溶质沉积144
8.4.4 无机化合物污染144
8.4.5 蛋白质与生物污染144
8.4.6 物理清洗与化学清洗145
8.4.7 膜的清洗与杀菌145
8.5 膜分离的应用与进展146
8.5.1 应用举例147
8.5.2 膜工艺进展147
参考文献148
第9章 吸附150
9.1 概述150
9.2 吸附分离原理150
9.2.1 吸附分离过程分类150
9.2.2 常用吸附剂152
9.2.3 吸附平衡154
9.2.4 吸附传质157
9.3 吸附操作与基本计算158
9.3.1 搅拌槽吸附158
9.3.2 固定床循环操作159
9.3.3 吸附剂的再生160
9.4 吸附分离设备160
9.4.1 固定床160
9.4.2 流化床161
9.4.3 移动床和模拟移动床161
9.5 吸附分离技术的应用163
9.5.1 聚酰胺吸附色谱法162
9.5.2 大孔吸附树脂163
参考文献164
第10章 离子交换165
10.1 概述165
10.2 离子交换剂166
10.2.1 无机离子交换剂166
10.2.2 合成无机离子交换剂166
10.2.3 离子交换树脂166
10.2.4 性能指标169
10.3 分离原理170
10.3.1 道南(Donnan)理论170
10.3.2 离子交换平衡171
10.3.3 离子交换动力学和质量传递176
10.4 操作方式与设备179
10.4.1 搅拌槽间歇操作179
10.4.2 固定床离子交换设备179
10.4.3 半连续移动床式离子交换设备181
10.4.4 连续式离子交换设备182
10.5 离子交换在制药工业中的应用184
参考文献186
第11章 色谱分离过程187
11.1 概述187
11.2 色谱分离过程的基本原理187
11.2.1 分离原理187
11.2.2 固定相(色谱柱填料)188
11.2.3 色谱柱及柱技术189
11.3 色谱的分类190
11.3.1 按流动相状态分类190
11.3.2 按处理量分类190
11.3.3 按分离机制分类190
11.3.4 按使用目的191
11.4 色谱分离过程基础理论191
11.4.1 保留值、分离度和柱效率191
11.4.2 色谱理论模型193
11.5 气相色谱及其应用195
11.5.1 气相色谱仪195
11.5.2 气相色谱的应用196
11.6 高效液相色谱及其应用197
11.6.1 高效液相色谱仪197
11.6.2 高效液相色谱的应用198
11.7 典型制备色谱工艺及应用199
11.7.1 模拟移动床色谱200
11.7.2 扩展床吸附色谱202
11.7.3 制备型超临界流体色谱203
11.7.4 制备型加压液相色谱(pre?PLC)205
11.8 色谱分离技术展望205
参考文献206
第12章 结晶过程207
12.1 概述207
12.1.1 晶体结构与特性207
12.1.2 晶体的粒度分布208
12.1.3 结晶过程及其在制药中的重要性208
12.2 结晶过程的相平衡及介稳区209
12.2.1 溶解度与溶解度曲线209
12.2.2 两组分物系的固液相图特征210
12.2.3 溶液的过饱和与介稳区212
12.3 结晶过程的动力学213
12.3.1 结晶成核动力学213
12.3.2 结晶生长动力学214
12.4 溶液结晶过程与设备215
12.4.1 溶液结晶过程215
12.4.2 典型的溶液结晶器217
12.4.3 溶液结晶过程的操作与控制219
12.5 熔融结晶过程与设备222
12.5.1 熔融结晶的基本操作模式222
12.5.2 熔融结晶设备223
12.6 其他结晶方法224
参考文献225
第13章 电泳技术226
13.1 概述226
13.2 基本原理226
13.3 电泳技术分类227
13.3.1 影响电泳迁移率的因素227
13.3.2 电泳分析常用方法及操作要点228
13.4 电泳的技术问题和对策232
13.5 在生物技术研究上应用的电泳技术234
13.6 生物技术产品分离纯化上应用的电泳技术234
13.6.1 平板电泳234
13.6.2 连续凝胶电泳236
13.6.3 等电聚焦电泳237
13.6.4 连续流动电泳239
13.6.5 无载体连续流动电泳239
参考文献242
第14章 手性分离243
14.1 概况243
14.2 手性药物的制备方法244
14.2.1 手性药物的色谱分离法245
14.2.2 手性药物的毛细管电泳分离研究进展250
14.2.3 膜技术拆分252
参考文献254
第15章 干燥和造粒255
15.1 概述255
15.2 干燥过程的基本原理255
15.2.1 湿空气的基本性质255
15.2.2 干燥平衡257
15.2.3 干燥过程热量质量的衡算257
15.3 干燥过程动力学258
15.3.1 湿物料的性质258
15.3.2 干燥曲线及干燥速率259
15.3.3 单颗粒干燥动力学模型260
15.3.4 干燥过程的模拟计算261
15.4 干燥造粒技术262
15.4.1 喷雾干燥造粒263
15.4.2 流化床干燥造粒264
15.4.3 其他干燥造粒方法270
15.4.4 干燥器选型时应考虑的因素270
15.5 液相凝聚造粒法271
15.6 干燥造粒技术的发展272
参考文献272
思考题和练习题273
……
㈢ 药物分离纯化技术的图书目录
第一章 绪论
第一节 药物分离纯化技术的研究内容及重要性
一、分离纯化的研究内容和意义
二、药物分离纯化的重要性
第二节 分离纯化的原理与方法
一、分离纯化的原理
二、分离纯化方法的分类
第三节 分离纯化方法选择的标准及其评价
一、分离纯化方法选择的标准
二、分离纯化方法的评价
思考题
参考文献
第二章 药物的液液萃取技术
第一节 基本概念
一、萃取
二、反萃取
三、物理萃取
四、化学萃取
第二节 分子间作用力与溶剂特性
一、分子间作用力
二、溶质的溶解与溶剂极性
第三节 分配平衡与分配定律
一、分配定律及分配平衡常数
二、分配比
三、萃取率
四、分离系数
第四节 弱电解质分配平衡
第五节 乳化和去乳化
一、乳化及乳化形成的稳定条件
二、乳状液的类型及其消除
三、乳状液的消除
第六节 化学萃取法
一、溶质与萃取剂之间的化学作用
二、萃取剂
三、稀释剂
四、影响化学萃取的因素
五、化学萃取在医药领域中的应用
第七节 萃取过程计算
一、单级萃取
二、多级萃取
思考题
参考文献
第三章 浸取分离技术
第一节 药材成分与浸取机理
一、中药化学成分简介
二、药材成分的浸取机理
第二节 浸取的基本理论
第三节 浸取溶剂与浸取方法
一、浸取溶剂
二、浸取方法
第四节 影响浸取过程的因素
一、药材的粉碎粒度
二、浸取的温度
三、浸取的时间
四、浸取的压力
五、浓度差
六、浸取溶剂
七、药物成分的影响
第五节 浸出工艺与设备
一、单级浸出工艺
二、多级浸出工艺
三、连续逆流浸出工艺
第六节 浸取计算
一、平衡状态下的浸出计算
二、浸出时间的计算
第七节 微波协助浸取技术
一、微波的特性
二、微波协助浸取的原理与特点
三、影响微波协助浸取的因素
四、微波协助浸取在中药提取中的应用
五、微波协助浸取中药成分的评价及存在问题
第八节 超声波协助浸取技术
一、超声波提取的原理
二、超声波提取的特点
三、影响超声波提取的因素
四、超声波技术在中药提取中的应用
第九节 半仿生提取法
一、半仿生提取法简介
二、半仿生提取在中药提取中的应用
思考题
参考文献
第四章 超临界流体萃取技术
第一节 概述
第二节 超临界流体萃取技术的基本原理
一、超临界流体的基本性质
二、超临界流体萃取的萃取剂
三、超临界流体萃取的基本过程
第三节 超临界CO2流体萃取
一、超临界CO2流体的特点
二、超临界CO2流体相图
三、超临界CO2流体的传递性质
四、超临界CO2流体对溶质的溶解性能
五、影响超临界CO2流体对溶质溶解能力的因素
六、不同溶质在超临界CO2流体中的溶解度
七、夹带剂对超临界CO2流体溶解能力的影响
第四节 超临界CO2流体萃取的工艺流程与设备
一、超临界CO2流体萃取的工艺流程
二、超临界CO2流体萃取的设备
第五节 超临界CO2流体萃取的应用与实例
一、萜类与挥发油的提取
二、香豆素和木脂素的提取
三、黄酮类化合物的提取
四、醌及其衍生物的提取
五、生物碱的提取
六、糖及苷类的提取
思考题
参考文献
第五章 双水相萃取技术
第一节 概述
一、双水相体系形成
二、双水相萃取原理
三、双水相体系的热力学模型
第二节 双水相萃取的特点及影响因素
一、双水相萃取的特性
二、影响双水相萃取的主要因素
第三节 双水相体系及其应用
一、双水相体系
二、双水相萃取的工艺流程
三、PEG双水相体系
第四节 伴有温度诱导效应的双水相系统及其应用
第五节 普通有机溶剂/盐体系及其应用
一、双水相体系中不同种类盐分相能力的差异
二、不同种类盐对有机溶剂的分相
思考题
参考文献
第六章 制备色谱分离技术
第一节 概述
一、制备色谱简介
二、色谱分离原理及特点
三、色谱的分类
四、色谱法中常用的术语和参数
五、色谱法的基本理论
第二节 凝胶色谱分离技术及其应用
一、凝胶色谱分离的原理和分类
二、凝胶的种类及性质
三、凝胶特性参数
四、凝胶色谱分离的步骤
五、凝胶色谱分离技术的应用与实例
第三节 高速逆流色谱分离技术
一、简介
二、高速逆流色谱的原理与特点
三、高速逆流色谱溶剂系统的选择
四、高速逆流色谱的操作过程及其应用实例
第四节 制备薄层色谱分离技术
一、薄层色谱条件
二、制备薄层色谱操作技术
三、离心薄层色谱和加压薄层色谱
第五节 制备柱色谱分离技术
一、常压柱色谱
二、加压柱色谱
三、减压柱色谱
第六节 亲和色谱分离技术
一、亲和色谱分离的原理
二、载体的选择
三、配基的选择
四、亲和色谱分离的操作过程
思考题
参考文献
第七章 大孔吸附树脂分离技术
第一节 概述
一、吸附与吸附作用
二、大孔吸附树脂的吸附
三、吸附树脂的分类
四、国内外代表性树脂的型号和特性
五、大孔吸附树脂的应用特点
第二节 大孔吸附树脂柱色谱技术
一、大孔吸附树脂柱色谱的操作步骤
二、大孔吸附树脂柱色谱分离效果的影响因素
三、大孔吸附树脂柱色谱分离工艺条件的确定
四、大孔吸附树脂柱色谱分离技术应用中存在的问题及解决办法
第三节 大孔吸附树脂分离技术的应用与实例
一、在中药化学成分分离纯化中的应用
二、在中药复方精制中的应用
三、在海洋天然产物分离纯化中的应用
四、在微生物药物分离纯化中的应用
思考题
参考文献
第八章 分子印迹技术简介
第一节 概述
一、分子印迹技术的原理
二、分子印迹技术的方法
三、分子印迹技术的特点
四、分子印迹聚合的反应物
第二节 分子印迹聚合物的制备与合成
一、分子印迹聚合物的制备过程
二、分子印迹聚合物的合成方法
第三节 分子印迹聚合物对模板分子的识别
一、模板分子进入印迹聚合物空穴
二、印迹聚合物对底物分子的结合
三、印迹反应
第四节 分子印迹技术的应用
一、分子印迹技术的应用领域
二、分子印迹技术的应用实例
三、分子印迹技术及解决办法
思考题
参考文献
第九章 离子交换分离技术
第一节 离子交换基本原理
第二节 离子交换剂的分类及命名
一、离子交换剂的分类
二、离子交换剂的命名
第三节 离子交换动力学
一、离子交换速度
二、离子交换过程的动力学
第四节 离子交换树脂的特性
一、离子交换树脂的基本要求
二、离子交换树脂的理化性能
第五节 离子交换的选择性
一、离子的化合价
二、离子水合半径
三、溶液的pH
四、交联度、膨胀度和分子筛
五、有机溶剂的影响
第六节 离子交换操作过程
一、树脂的选择与处理
二、装柱
三、通液
四、洗涤与洗脱
五、树脂的再生和毒化
第七节 离子交换分离技术的应用与实例
一、在中药分离纯化中的应用
二、在抗生素提取分离中的应用
三、在多肽、蛋白质和酶分离中的应用
四、在氨基酸提取分离中的应用
思考题
参考文献
第十章 分子蒸馏技术
第一节 概述
一、分子蒸馏的原理
二、分子蒸馏技术的特点
第二节 分子蒸馏技术和主要设备
一、分子蒸馏装置的组成
二、分子蒸馏装置
第三节 分子蒸馏技术的应用与实例
一、分子蒸馏的应用优势
二、分子蒸馏技术的应用范围
三、分子蒸馏技术应用实例
思考题
参考文献
第十一章 膜分离技术
第十二章 干燥技术