㈠ 水泥石的腐蚀有哪些类型
水泥石的腐蚀
(一)水化物氢氧化钙Ca(OH)2的溶失
1、溶析性侵蚀
溶析性侵蚀又称淡水侵蚀或溶出侵蚀,是指硬化水泥石中的水化产物被淡水溶解并带走的一种侵蚀现象。在水泥石的各种水化物中,Ca(OH)2溶解度最大,在淡水中会首先被溶出。当水量不多,或在静水、无压的情况下,水中Ca(OH)2浓度很快达到饱和程度,溶出作用也就中止。但在大量或流动的水中,水流会不断地将Ca(OH)2溶出并带走。
2、镁盐侵蚀
在海水、地下水或矿泉水中,常含有较多的镁盐,一般以氯化镁、硫酸镁形态存在。镁盐与水泥石中的氢氧化钙起置换作用,生成松软且胶凝性不高的氢氧化镁。
3、碳酸侵蚀
在工业污水或地下水中常溶解有较多的二氧化碳(CO2),CO2与水泥石中的氢氧化钙Ca(OH)2作用,可生成碳酸钙(CaCO3),CaCO3再与水中的碳酸作用,生成可溶的重碳酸钙Ca(HCO3)2而溶失。
氢氧化钙的大量溶失,不仅使水泥石的密度和强度降低,而且导致水泥石的碱度降低,随之将引起水化硅酸钙(CSH)和水化铝酸钙的不断分解,水泥石内部不断受到破坏,强度不断降低,最终将会引起整个混凝土结构物的破坏。
(二)硫酸盐侵蚀
穿越海湾、沼泽或跨越污染河流的道路结构、沿线桥涵墩台,有时会受到海水、沼泽水、工业污水的侵蚀,这些水中常常含有碱性硫酸盐(如Na2SO4、K2SO4)等。这些硫酸盐先与水泥石中的氢氧化钙作用生成硫酸钙,即二水石膏(CaSO4·2H2O),这种生成物再与水泥石中的水化铝酸钙反应生成钙矶石,其体积约为原来的水化铝酸钙体积的2.5倍,从而使硬化水泥石中的固相体积增加很多,产生相当大的结晶压力,造成水泥石开裂甚至毁坏。
(三)强酸与强碱的腐蚀
1、酸
酸类离解出来的H+离子和酸根R-离子,分别与水泥石中Ca(OH)2的OH-和Ca2+结合成水和钙盐。
2H++2OH-=2H2O
Ca2++2R-=CaR2
碳酸腐蚀
在工业污水、地下水中常溶解有较多的二氧化碳,这种水对水泥石的腐蚀作用是通过下面方式进行的:
开始时二氧化碳与水泥石中的氢氧化钙作用生成碳酸钙:
Ca(OH)2+CO2+H2O→CaCO3+2H2O
生成的碳酸钙再与含碳酸的水作用转变成重碳酸钙,是可逆反应:
CaCO3+CO2+H2O
Ca(HCO3)2
生成的重碳酸钙易溶于水。当水中含有较多的碳酸,并超过平衡浓度,则上式反应向右进行。因此水泥石中的氢氧化钙,通过转变为易溶的重碳酸钙而溶失。氢氧化钙浓度降低,还会导致水泥石中其他水化物的分解,使腐蚀作用进一步加剧。
一般酸的腐蚀
在工业废水、地下水、沼泽水中常含无机酸和有机酸,工业窑炉中的烟气常含有氧化硫,遇水后即生成亚硫酸。各种酸类对水泥石都有不同程度的腐蚀作用。它们与水泥石中的氢氧化钙作用后生成的化合物,或者易溶于水,或者体积膨胀,在水泥石内造成内应力而导致破坏。腐蚀作用最快的是无机酸中的盐酸、氢氟酸、硝酸、硫酸和有机酸中的醋酸、蚁酸和乳酸。
例如,盐酸与水泥石中的氢氧化钙作用:
2HCl+Ca(OH)2=CaCl2+2H2O
生成的氯化钙易溶于水。
硫酸与水泥石中的氢氧化钙作用:
H2SO4+Ca(OH)2=CaSO4·2H2O
生成的二水石膏或者直接在水泥石孔隙中结晶产生膨胀,或者再与水泥石中的水化铝酸钙作用,生成高硫型水化硫铝酸钙,其破坏性更大。
2、碱
碱类溶液如浓度不大时一般是无害的。但铝酸盐含量较高的硅酸盐水泥遇到强碱(如氢氧化钠)作用后也会破坏。氢氧化钠与水泥熟料中未水化的铝酸盐作用,生成易溶的铝酸钠:
3CaO.Al2O3+6NaOH=3Na2O.Al2O3+3Ca(OH)2
当水泥石被氢氧化钠浸透后又在空气中干燥,与空气中的二氧化碳作用而生成碳酸钠:
2NaOH+CO2=Na2CO3+H2O
碳酸钠在水泥石毛细孔中结晶沉积,而使水泥石胀裂。
NaOH+CO2+H2O→Na2CO3.10H2O
㈡ 水泥石腐蚀的定义
水泥石被腐蚀的基本因为:一是水泥石中存在有易被腐蚀的组分,如Ca(OH)2与水化铝酸钙;二是水泥石本身不致密,有很多毛细孔通道,侵蚀性介质易于进入其内部。例如以下介质:
1、软水侵蚀(溶出性侵蚀)。不含或仅含少量重碳酸盐(含HCO的盐)的水称为软水,如雨水、蒸馏水、冷凝水及部分江水、湖水等。
2、盐类侵蚀。水中通常溶有大量的盐类,某些溶解于水中的盐类会与水泥石相互作用产生置换反应。
3、酸类侵蚀。在某些工业污水和地下水中常溶解有较多的二氧化碳,这种水分对水泥石的侵蚀作用称为碳酸侵蚀。
4.强碱侵蚀。水泥石本身具有相当高的碱度,因此弱碱溶液一般不会侵蚀水泥石,但是,当铝酸盐含量较高的水泥石遇到强碱(如氢氧化钠)作用后出会被腐蚀破坏。
5、糖、氨、盐、动物脂肪、纯酒精、含环浣酸的石油产品等对水泥石也有一定的侵蚀作用。
(2)水泥石软水腐蚀扩展阅读
预防措施
1、根据侵蚀介质的类型,合理选用水泥品种。采用铝酸三钙含量低于5%的水泥,可有效抵抗硫酸盐的侵蚀;掺入活性混合材料,可提高硅酸盐水泥抵抗多种介质的侵蚀作用。
2、提高水泥石的密实度。水泥石(或混凝土)的孔隙率越小,抗渗能力越强,侵蚀介质也越难进入,侵蚀作用越轻。
3、设置隔离层或保护层。当侵蚀作用较强或上述措施不能满足要求时,可在水泥制品(混凝土、砂浆等)表面设置耐腐蚀性高且不透水的隔离层或保护层。
㈢ 防止水泥石腐蚀的措施有-----、-------、-------。
1、尽量减少水泥石中易受侵蚀的组分,根据环境特点,合理选择水泥品种。
水泥石中引起腐蚀的组分主要是氢氧化钙和水化铝酸钙。当水泥石遭受软水侵蚀时,可选用水化产物中氢氧化钙含量少的水泥。水泥石如处在硫酸盐的腐蚀环境中,可采用铝酸三钙含较低的抗硫酸盐水泥。在硅酸水泥熟料中掺入某些人工或天然矿物材料(混合材料)可提高水泥的抗腐蚀能力。
2、提高水泥石的密实度,合理进行混凝土的配比设计。
水泥石中的毛细管、孔隙是引起水泥石腐蚀加剧的内在原因之一。因此,采取适当技术措施,如强制搅拌、振动成型、真空吸水、掺外加剂等,在满足施工操作的前提下,努力降低水灰比,提高水泥石的密实度,都将使水泥石的耐侵蚀性得到改善。
3、采取在混凝土表面施加保护层等手段,隔断侵蚀性介质与水泥石的接触,避免或减轻侵蚀作用。
当侵蚀作用比较强烈时,而在水泥制品表面加做保护层。保护层的材料常采用耐酸石料(石英岩、辉绿岩)、耐酸陶瓷、玻璃、塑料、沥青等。
(3)水泥石软水腐蚀扩展阅读:
影响水泥石腐蚀的因素:
1、水泥石中含有易引起腐蚀的组分,即Ca(OH)₂和水化铝酸钙。
2、水泥石不密实。水泥水化反应时理论需水量仅为水泥质量的23%,而实际应用时拌合用水量多为40%~70%,多余水分会形成毛细管和孔隙存在于水泥石中,侵蚀性介质不仅在水泥石表面起作用,而且易于通过毛细管和孔隙进入水泥石内部引起严重破坏。
掺混合材料的水泥水化反应生成物中Ca(OH)2明显减少,其耐侵蚀性比硅酸盐水泥明显改善。
㈣ 水泥石的腐蚀的种类水泥石腐蚀的原因及防止措施(建筑材料学)
导致水泥石腐蚀的因素很多,作用过程亦甚为复杂,仅介绍几种典型介质对水泥石的侵蚀作用。
1.软水侵蚀(溶出性侵蚀)。不含或仅含少量重碳酸盐(含HCO的盐)的水称为软水,如雨水、蒸馏水、冷凝水及部分江水、湖水等。当水泥石长期与软水相接触时,水化产物将按其稳定存在所必需的平衡氢氧化钙(钙离子)浓度的大小,依次逐渐溶解或分解,从而造成水泥石的破坏,这就是溶出性侵蚀。
在各种水化产物中,Ca(OH)2的溶解最大(25℃约1.3gCaO/l),因此首先溶出,这样不仅增加了水泥石的孔隙率,使水更容易渗入,而且由于Ca(OH)2浓度降低,还会使水化产物依次发生分解,如高碱性的水化硅酸钙、水化铝酸钙等分解成为低碱性的水化产物,并最终变成硅酸凝胶、氢氧化铝等无胶凝能力的物质。在静水及无压力水的情况下,由于周围的软水易为溶出的氢氧化钙所饱和,使溶出作用停止,所以对水泥石的影响不大;但在流水及压力水的作用下,水化产物的溶出将会不断地进行下去,水泥石结构的破坏将由表及里地不断进行下去。当水泥石与环境中的硬水接触时,水泥石中的氢氧化钙与重碳酸盐发生反应:
生成的几乎不溶于水的碳酸钙积聚在水泥石的孔隙内,形成致密的保护层,可阻止外界水的继续侵入,从而可阻止水化产物的溶出。
2.盐类侵蚀。在水中通常溶有大量的盐类,某些溶解于水中的盐类会与水泥石相互作用产生置换反应,生成一些易溶或无胶结能力或产生膨胀的物质,从而使水泥石结构破坏。最常见的盐类侵蚀是硫酸盐侵蚀与镁盐侵蚀。
硫酸盐侵蚀是由于水中溶有一些易溶的硫酸盐,它们与水泥石中的氢氧化钙反应生成硫酸钙,硫酸钙再与水泥石中的固态水化铝酸钙反应生成钙矾石,体积急剧膨胀(约1.5倍),使水泥石结构破坏,其反应式是:
钙矾石呈针状晶体,常称其为“水泥杆菌”。若硫酸钙浓度过高,则直接在孔隙中生成二水石膏结晶,产生体积膨胀而导致水泥石结构破坏。
镁盐锓蚀主要是氯化镁和硫酸镁与水泥石中的氢氧化钙起复分解反应,生成无胶结能力的氢氧化镁及易溶于水的氯化镁或生成石膏导致水泥石结构破坏,其反应式为:
可见,硫酸镁对水泥石起镁盐与硫酸盐双重侵蚀作用。
在海水、湖水、盐沼水、地下水、某些工业污水及流经高炉矿渣或煤渣的水中常含钾、钠、铵等硫酸盐;在海水及地下水中常含有大量的镁盐,主要是硫酸镁和氯化镁。
3.酸类侵蚀。
(1)碳酸侵蚀:在某些工业污水和地下水中常溶解有较多的二氧化碳,这种水分对水泥石的侵蚀作用称为碳酸侵蚀。首先,水泥石中的Ca(OH)2与溶有CO2的水反应,生成不溶于水的碳酸钙;接着碳酸钙又再与碳酸水反应生成易于水的碳酸氢钙。反应式为:
当水中含有较多的碳酸,上述反应向右进行,从而导致水泥石中的Ca(OH)2不断地转变为易溶的Ca(HCO3)2而流失,进一步导致其他水化产物的分解,使水泥石结构遭到破坏。
(2)一般酸侵蚀:水泥的水化产物呈碱性,因此酸类对水泥石一般都会有不同程度的侵蚀作用,其中侵蚀作用最强的是无机酸中的盐酸、氢氟酸、硝酸、硫酸及有机酸中的醋酸、蚁酸和乳酸等,它们与水泥石中的Ca(OH)2反应后的生成物,或者易溶于水,或者体积膨胀,都对水泥石结构产生破坏作用。例如盐酸和硫酸分别与水泥石中的Ca(OH)2作用:
反应生成的氯化钙易溶于水,生成的石膏继而又产生硫酸盐侵蚀作用。
4.强碱侵蚀。水泥石本身具有相当高的碱度,因此弱碱溶液一般不会侵蚀水泥石,但是,当铝酸盐含量较高的水泥石遇到强碱(如氢氧化钠)作用后出会被腐蚀破坏。氢氧化钠与水泥熟料中未水化的铝酸三钙作用,生成易溶的铝酸钠:3CaOAl2O3+6NaOH=3Na2OAl2O3+3Ca(OH)2,当水泥石被氢氧化钠浸润后又在空气中干燥,与空气中的二氧化碳作用生成碳酸钠,它在水泥石毛细孔中结晶沉积,会使水泥石胀裂。
除了上述4种典型的侵蚀类型外,糖、氨、盐、动物脂肪、纯酒精、含环浣酸的石油产品等对水泥石也有一定的侵蚀作用。
在实际工程中,水泥石的腐蚀常常是几种侵蚀介质同时存在、共同作用所产生的;但干的固体化合物不会对水泥石产生侵蚀,侵蚀性介质必须呈溶液状且浓度大于某一临界值。
水泥的耐蚀性可用耐蚀系数定量表示。耐蚀系数是以同一龄期下,水泥试体在侵蚀性溶液中养护的强度与在淡水中养护的强度之比,比值越大,耐蚀性越好。
预防措施:
水泥石腐蚀的防止
从以上对侵蚀作用的分析可以看出,水泥石被腐蚀的基本内因为:一是水泥石中存在有易被腐蚀的组分,如Ca(OH)2与水化铝酸钙;二是水泥石本身不致密,有很多毛细孔通道,侵蚀性介质易于进入其内部。因此,针对具体情况可采取下列措施防止水泥石的腐蚀。
1.根据侵蚀介质的类型,合理选用水泥品种。如采用水化产物中Ca(OH)2含量较少的水泥,可提高对多种侵蚀作用的抵抗能力;采用铝酸三钙含量低于5%的水泥,可有效抵抗硫酸盐的侵蚀;掺入活性混合材料,可提高硅酸盐水泥抵抗多种介质的侵蚀作用。
2.提高水泥石的密实度。水泥石(或混凝土)的孔隙率越小,抗渗能力越强,侵蚀介质也越难进入,侵蚀作用越轻。在实际工程中,可采用多种措施提高混凝土与砂浆的密实度。
3.设置隔离层或保护层。当侵蚀作用较强或上述措施不能满足要求时,可在水泥制品(混凝土、砂浆等)表面设置耐腐蚀性高且不透水的隔离层或保护层。
㈤ 水泥石软水侵蚀中的软水,和正常水有什么区别
不含或含较少可溶性钙、镁化合物的水叫做软水(soft water)。软水不易与肥皂产生浮渣专
在日常生活中,我们属经常见到水壶用久后内壁会有水垢生成,这是因为在我们取用的水中含有不少无机盐类物质,如钙、镁盐等。这些盐在常温下的水中肉眼无法发现,一旦它们加温煮沸,便有不少钙、镁盐以碳酸盐形式沉淀出来,它们紧贴壶壁就形成水垢。我们通常把水中钙、镁离子的含量用“硬度”这个指标来表示。硬度1度相当于每升水中含有10毫克氧化钙。低于8度的水称为软水,高于17度的称为硬水,介于8~17度之间的称为中度硬水。雨、雪水、江、河、湖水都是软水,泉水、深井水、海水都是硬水。
水的硬度对日常生活影响是很大的。如水的硬度大时洗衣服不起泡;旅居异地因饮水的硬度不适应可出现水土不服的症状;壶内结水垢会使壶的导热性下降;工业锅炉的水垢可引起爆炸事故。所以,生活和工业用水均应适当控制水的硬度。一般来说,软水多用于生活中,洗澡、洗衣服等。不用于饮用,所含矿物质过少。
㈥ 水泥石腐蚀的防护措施有哪些
1.软水侵蚀(溶出性侵蚀)。不含或仅含少量重碳酸盐(含HCO的盐)的水称为软水,如雨水、蒸馏水、冷凝水及部分江水、湖水等。当水泥石长期与软水相接触时,水化产物将按其稳定存在所必需的平衡氢氧化钙(钙离子)浓度的大小,依次逐渐溶解或分解,从而造成水泥石的破坏,这就是溶出性侵蚀。
在各种水化产物中,Ca(OH)2的溶解最大(25℃约1.3gCaO/l),因此首先溶出,这样不仅增加了水泥石的孔隙率,使水更容易渗入,而且由于Ca(OH)2浓度降低,还会使水化产物依次发生分解,如高碱性的水化硅酸钙、水化铝酸钙等分解成为低碱性的水化产物,并最终变成硅酸凝胶、氢氧化铝等无胶凝能力的物质。在静水及无压力水的情况下,由于周围的软水易为溶出的氢氧化钙所饱和,使溶出作用停止,所以对水泥石的影响不大;但在流水及压力水的作用下,水化产物的溶出将会不断地进行下去,水泥石结构的破坏将由表及里地不断进行下去。当水泥石与环境中的硬水接触时,水泥石中的氢氧化钙与重碳酸盐发生反应:
生成的几乎不溶于水的碳酸钙积聚在水泥石的孔隙内,形成致密的保护层,可阻止外界水的继续侵入,从而可阻止水化产物的溶出。
2.盐类侵蚀。在水中通常溶有大量的盐类,某些溶解于水中的盐类会与水泥石相互作用产生置换反应,生成一些易溶或无胶结能力或产生膨胀的物质,从而使水泥石结构破坏。最常见的盐类侵蚀是硫酸盐侵蚀与镁盐侵蚀。
硫酸盐侵蚀是由于水中溶有一些易溶的硫酸盐,它们与水泥石中的氢氧化钙反应生成硫酸钙,硫酸钙再与水泥石中的固态水化铝酸钙反应生成钙矾石,体积急剧膨胀(约1.5倍),使水泥石结构破坏,其反应式是:
㈦ 常见的水泥石腐蚀有哪几种情况
水泥腐蚀的类型有哪几种:
1,软水及硫酸盐腐蚀;
2,镁盐腐蚀;
3,碳酸回腐蚀;
4,软水侵蚀答(溶出性侵蚀);
5,强碱腐蚀;
6,除上述四种侵蚀类型外,对水泥石有腐蚀作用的还有糖类、酒精、脂肪;
7,防止腐蚀的措施有:①合理选用水泥品种;②提高密实度;③增设保护层。
㈧ 只有软水对水泥石有腐蚀吗硬水对水泥石没腐蚀为什么
因为软水中只存在阴离子,不存在碳酸钙/镁等阳离子,当软水与水泥接触时,软水中的阴离子与水泥中的钙镁质结合,也即夺取水泥中的钙镁离子,表观上我们可以看到水泥被腐蚀了。
硬水中的阴/阳离子基本上处于接近平衡状态,所以化学上可以认为是一种稳定的无机溶剂,对于水泥等等碳酸盐/硅酸盐物质的腐蚀作用不显著,如果硬水中的碳酸盐/硅酸盐物质浓度比水泥高,反而会析出附着于水泥表面或内部。
㈨ 为什么流动的软水对水泥石有腐蚀作用
请在此输入您的回答,每一次专软水侵蚀:不含或仅含少量重碳酸盐(含HCO3-的盐)的水称为软水,如雨水、蒸馏水、冷凝水及部分江水、湖水等。当水泥石长期与软水相接触时,水化产物将按其稳定存在所必需的平衡氢氧化钙(钙离子)浓度的大小,依次逐渐溶解或分解,从而造成水泥石的破坏,这就是溶出性侵蚀。
在各种水化产物中,Ca(OH)2的溶解最大(25℃约1.3gCaO/l),因此首先溶出,这样不仅增加了水泥石的孔隙率,使水更容易渗入,而且由于Ca(OH)2浓度降低,还会使水化产物依次发生分解,如高碱性的水化硅酸钙、水化铝酸钙等分解成为低碱性的水化产物,并最终变成硅酸凝胶、氢氧化铝等无胶凝能力的物质。在静水及无压力水的情况下,由于周围的软水易为溶出的氢氧化钙所饱和,使溶出作用停止,所以对水泥石的影响不大;但在流水及压力水的作用下,水化产物的溶出将会不断地进行下去,水泥石结构的破坏将由表及里地不断进行下去。当水泥石与环境中的硬水接触时,水泥石中的氢氧化钙与重碳酸盐发生反应:
生成的几乎不溶于水的碳酸钙积聚在水泥石的孔隙内,形成致密的保护层,可阻止外界水的继续侵入,从而可阻止水化产物的溶出。业解答都将打造您的权威形象